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We give an exposition of some basic results concerning remainders in
Taylor expansions for smooth functions between convenient vector spaces, in
the sense of Frölicher and Kriegl, cf. [2], [11], [3], [13].

We needed such results in [9], but could not find them in the works
quoted.1

The method we employ is very puristic: we never have to consider limits,
or any other analytic tools, except for finite dimensional vector spaces Rn.
In this sense, we carry Frölicher’s program of considering mutually balancing
sets of curves R → X and functions X → R to the extreme. (Also, the
puristic aspect makes it easy to transfer the theory to ”synthetic” contexts,
like [7].)

Besides the introduction, where we recall some of the existing theory, the
paper contains two sections: 1) on the general theory of Taylor remainders
for smooth maps X → Y , where X and Y are convenient vector spaces; and
2) a more refined theory for the case where X = Rn.

First, we recall the notion of convenient vector space in the formulation
of [3]: it is a vector space X over R, equipped with a linear subspace X ′

∗This is a retyping of a preprint [8] with the same title, Aarhus Preprint Series 1984/85
No. 18. The bibliography has been updated, since [9] and [10] in the meantime have been
published. Also, [4] has been published (1988). The numbering of the equations have
changed, but the numbering of Propositions, Theorems, etc. is unchanged compared to
the Preprint Version.

1[4] does have some of these results; [8] is quoted there (Section 4.4) in connection with
Taylor expansion.
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of the full algebraic dual X∗, such that X ′ separates points, and with the
following two completeness properties:

• The bornology induced on X by X ′ is a complete bornology

• with respect to this bornology, every bounded linear X → R belongs
to X ′

We refer the reader to [6], say, for the bornological notions, but actually
we shall not directly use these completeness properties, but rather some
consequences of them, contained in particular in the following results below:
Proposition 0.3, Theorem 0.7, and Theorem 2.1 .

In the following X, Y , Z etc. denote always convenient vector spaces,
X = (X,X ′), etc. The vector space Rn carries a unique convenient structure,
namely the full linear dual.

The following notions are basic in the approach of Frölicher [2]:

Definition 0.1 A map c : Rn → X is called smooth if for all φ ∈ X ′,
φ ◦ c : Rn → R is smooth (= C∞).

If X = Rm, this is clearly consistent with the standard use of the word
‘smooth’.

Definition 0.2 A map f : X → Y is called smooth if for any smooth c :
Rn → X, f ◦ c is smooth.

This is clearly consistent with Definition 0.1. Also, smooth maps compose,
and so convenient vector spaces and smooth maps form a category F

Proposition 0.3 The smooth linear maps X → R are exactly the elements
of X ′.

Proof. See [3] Proposition 3.1.

Proposition 0.4 If X and Y are convenient, then X ⊕ Y = X × Y carries
a convenient structure (X ⊕ Y )′, defined as X ′ ⊕Y ′ ⊆ X∗ ⊕ Y ∗ = (X ⊕ Y )∗.
With this structure, X ⊕ Y is the categorical product in the category F .
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Proof. See remark after Theorem 6.2 in [3].

Let C∞(X, Y ) denote the set of smooth maps X → Y . It carries a natural
vector space structure induced from that of Y .

Theorem 0.5 There is a convenient structure on C∞(X, Y ) making it into
an exponential object Y X in F , (which thus is cartesian closed).

This is a main result in [12], [2], and a main motivation for their theory.
– With this convenient structure on C∞(X, Y ), a map Z → C∞(X, Y ) is
smooth iff its transpose Z ×X → Y is smooth.

Let L(X, Y ) ⊆ C∞(X, Y ) denote the linear subspace of smooth linear
maps. It carries a convenient structure in such a way that Z → L(X, Y ) is
smooth iff Z → L(X, Y ) ⊆ C∞(X, Y ) is smooth. Similarly

Lp(X, Y ) ⊆ C∞(X × . . .×X
︸ ︷︷ ︸

p

→ Y )p

for the linear subspace of smooth p-linear maps X × . . .× X → Y . In par-
ticular L(X,R) = X ′ , by Proposition 0.3. So X ′ acquires itself a convenient
structure.

Remark 0.6 In general, linear and multilinear maps need not be smooth.
However, linear maps f : Rn → X are automatically smooth, since for
φ ∈ X ′, φ ◦ f : Rn → R is linear, hence smooth. Similarly for multilinear
maps. Also, for t ∈ R, the homothety ‘multiplication by t’ :X → X is
smooth, and so is any ‘translation by a constant’, x 7→ x + a. And any
map X1 ⊕ X2 → Y1 ⊕ Y2 defined by a 2 × 2 matrix of smooth linear maps
fij : Xi → Yj is smooth linear. Finally, for x0, x1 ∈ X, the map (which we
shall use later),

[x0, x1] : R → X, (1)

defined by t 7→ x0 + t · x1, is smooth.

– All these remarks are verified the same standard way: test with relevant
smooth linear functionals φ into R (and with smooth ‘plots’ c : Rn → X,
is case X is not finite dimensional), to reduce the question to the finite
dimensional case, where the result is well known.
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Note that if ξ : X → Y is linear, then

ξ ◦ [x0, x1] = [ξ(x0), ξ(x1)]. (2)

Let f : X → Y be smooth. For any x0, x1 ∈ X and φ ∈ Y ′, consider the
smooth function

R
[x0, x1]

- X
f

- Y
φ

- R (3)

(cf. (1) for notation). A main result in [3] is

Theorem 0.7 For any smooth f : X → Y , there exists a (unique) smooth
function

X
df

- L(X, Y )

such that for any x0, x1 and φ ∈ Y ′,

φ(df(x0; x1)) = (φ ◦ f ◦ [x0, x1])
′(0).

(We write df(x0; x1) instead of df(x0)(x1), and ( )′ denotes ordinary
derivative of smooth functions R → R, in particular (3).

For purely algebraic reasons, we get the following ‘linear’ chain rules for
df :

Proposition 0.8 Let f : X → Y be smooth. If ψ : Y → Z is smooth linear

d(ψ ◦ f)(x0; x1) = ψ(df(x0; x1)), (4)

and if ξ : Z → X is smooth linear

d(f ◦ ξ)(z0; z1) = df(ξ(z0); ξ(z1)). (5)
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Proof. Let φ ∈ Z ′ be arbitrary. Then

φ(d(ψ ◦ f)(x0; x1)) = (φ ◦ ψ ◦ f ◦ [x0, x1])
′(0)

= (φ ◦ ψ)(df(x0; x1))

(since φ ◦ ψ ∈ Y ′)
= φ(ψ(df(x0; x1)).

Since this holds for all φ ∈ Z ′, and Z ′ separates points, we conclude (4).
Similarly, for (5), let φ ∈ Y ′ be arbitrary. Then

φ(d(f ◦ ξ)(z0; z1)) = d(φ ◦ f ◦ ξ)(z0, z1)

(by (4))
= (φ ◦ f ◦ ξ ◦ [z0, z1])

′(0)

= (φ ◦ f ◦ [ξ(z0), ξ(z1)])
′(0)

(by (2))
= φ(df(ξ(z0); ξ(z1));

and since Y ′ separates points, we conclude (5).

For p ∈ N, and f : X → Y smooth, one defines inductively a smooth

dpf : X → Lp(X, Y )

as the composite

X
d(dp−1f)

- L(X,Lp−1(X, Y ))∼= Lp(X, Y ).

So for x0, . . . , xp ∈ X, we have dpf(x0; x1, . . . , xp) depending smoothly on
the xi’s simultaneously, and linearly on those after the semicolon.

Proposition 0.8 (p) Let f, ψ, ξ be as in Proposition 0.8. Then

dp(ψ ◦ f)(x0; x1, . . . , xp) = ψ(dpf(x0; x1, . . . , xp)) (6)

and
dp(f ◦ ξ)(z0; z1, . . . , zp) = dpf(ξ(z0); ξ(z1), . . . , ξ(zp)). (7)

Also, if ξ : X → X is translation by a constant,

dp(f ◦ ξ)(z0; z1, . . . , zp) = dpf(ξ(z0); z1, . . . , zp). (8)
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Proof. Easy induction in p. We shall do (7) only. Assume (7) for n (for
p = 1, the case is settled by (5)). Let evx denote the smooth linear map
‘evaluating at x2, . . . , xp+1’

evx : Lp(X, Y ) → Y.

For any φ ∈ Y ′, consider φ ◦ evx ∈ (Lp(X, Y ))′. Then the defining property
of dp+1 in terms of d(dp) yields

φ(dp+1f(x0; x1, . . . , xp+1)) = (φ ◦ evx ◦ d
pf ◦ [x0, x1])

′(0). (9)

Thus, for z = (z2, . . . , zp+1) and ξ(z) = (ξ(z2), . . . , ξ(zp+1)), we have by (0.11)
(with zi for xi, f ◦ ξ for f)

φ(dp+1(f ◦ ξ)(z0; z1, . . . , zp+1))

= (φ ◦ evz ◦ d
p(f ◦ ξ) ◦ [z0, z1])

′(0)

= (φ ◦ evξ(z) ◦ d
p(f) ◦ [ξ(z0), ξ(z1)])

′(0)

(by induction, and by (2)),

= φ(dp+1f(ξ(z0); ξ(z1), . . . , ξ(zp+1))

by (9) again. Since this holds for all φ ∈ Y ′, and Y ′ separates points, we get
(7) for p+ 1.

Corollary 0.9 Let f : X → Y be smooth. For fixed x0 ∈ X,
dpf(x0; x1, . . . , xp) is symmetric in the remaining p arguments.

Proof. Using (8), the problem reduces to the case x0 = 0. Using (6) with ψ
ranging over Y ′ reduces the problem to the case where Y = R. Let σ be a
permutation of {1, . . . , p}, and let Σ : Rp → Rp be the corresponding linear
map, ei 7→ eσ(i), where ei is the i’th canonical basis vector. Also, consider
the (smooth) linear map ξ : Rp → X given by ei 7→ xi, (i = 1, . . . , p). We
now use (7) in connection with the smooth linear maps ξ,Σ, and ξ ◦ Σ:

dpf(0; x1, . . . , xp) = dp(f ◦ ξ)(0; e1, . . . , ep)

(by (7) for ξ)
= dp(f ◦ ξ)(0; eσ(1), . . . , eσ(p))
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(by the known symmetry in the finite dimensional case ([1], (8.2.4)),

= dp(f ◦ ξ ◦ Σ)(0; e1, . . . , ep)

(by (7) for Σ)
= dpf(0; xσ(1), . . . , xσ(p))

(by (7) for ξ ◦ Σ). This proves the Corollary.

Let us finally note

Proposition 0.10 The process f 7→ df defines a (smooth) linear map d :
C∞(X, Y ) → C∞(X,L(X, Y )).

Proof. Using (6) with ψ ranging over Y ′ easily reduces the linearity question
to the finite dimensional case, where it is known. The smoothness we shall
not need; for a proof, see [12] Satz p. 299.

1 General theory of Taylor remainders

For a smooth f : R → R, the following two conditions are known to be
equivalent, and if they are satisfied, f is said to have order ≥ k:

• There exists a smooth R → R such that f(t) = tk · g(t) ∀t;

• f(0) = f ′(0) = ... = f (k−1)(0) = 0

(for the equivalence, cf. e.g. [1], Exercise 6 in VIII.14).
In the following, X, Y, Z, . . . denote convenient vector spaces, as before.

Definition 1.1 A smooth map f : X → Y is of order ≥ k if for every
φ ∈ Y ′ and every x ∈ X, the function R → R qiven by t 7→ φ(f(t · x)) is of
order ≥ k.

For an equivalent definition, see Theorem 2.13 below.
Clearly these functions form a linear subspace of C∞(X, Y ), which we

denote Ordk(X, Y ).
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Theorem 1.2 Let f : X → Y be smooth. For any x0 ∈ X, the function
g : X → Y defined by

g(x) := f(x0 + x) −
k−1∑

p=0

1

p!
dpf(x0; x, . . . x) (10)

is of order ≥ k.

Proof. For any φ ∈ Y ′, we have, by Proposition 0.8 that

φ(g(t · x)) = (φ ◦ f ◦ [x0, x])(t) −
∑

p<k

1

p!
dp(φ ◦ f ◦ [x0, x])(0; t, . . . , t).

The sum here is the k first terms of the Taylor series at 0 of the function
φ ◦ f ◦ [x0, x] : R → R, and therefore the difference is of order ≥ k as a
function of t.

Let us call a smooth map f : X → Y p-homogeneous if f(t ·x) = tp ·f(x),
∀t ∈ R, x ∈ X, and let Poly<k(X, Y ) denote the linear subspace of C∞(X, Y )
spanned by p-homogeneous maps for all p < k, (‘polynomial maps of degree
< k’). We easily see that

Poly<k(X, Y ) ∩ Ordk(X, Y ) = {0}; (11)

for if f : X → Y belongs to both, then for any φ ∈ Y ′

(φ ◦ f)(t · x) =
∑

p<k

tp · gp(x) = tk · h(t, x)

for suitable h, smooth in t. Keeping x fixed, this, by a standard finite di-
mensional result, means that (φ ◦ f)(t · x) = 0 ∀t, hence (φ(f(x)) = 0. Since
x and φ are arbitrary, and Y ′ separates points, f(x) ≡ 0.

Now consider (10) for x0 = 0. The sum
∑

p<k there is clearly polynomial of
degree < k, so from (11) and Theorem 1.2, we obtain the two first assertions
in

Corollary 1.3 1) Every smooth function f : X → Y can uniquely be written
f = h+ g, with g of order ≥ k, and h polynomial of degree < k; equivalently

C∞(X, Y ) = Poly<k(X, Y ) ⊕Ordk(X, Y ).
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2) Any polynomial map h : X → Y of degree < k can be written in the form

h(x) =
∑

p<k

hp(x, ...x) (12)

with hp : X×, . . . ,×X → Y p-linear and smooth. 3) The decomposition (12)
is unique if we require the hp’s to be symmetric.

Proof of 3). Since a k-homogeneous map is of order ≥ k, it follows by an
easy downward induction on p, using (11), that the p-homogeneous part of a
smooth map is uniquely determined. So it suffices to see that if h is smooth
p-linear, there exist a unique symmetric smooth p-linear map h̃ with

h(x, . . . , x) = h̃(x, . . . , x) ∀x.

But the purely algebraic symmetrization process for p-linear maps preserves
the property of being smooth (being essentially a finite linear combination).
Also, the purely algebraic process which to a symmetric p-linear map h asso-
ciates its diagonalization h(x, . . . , x) is injective, since h can be reconstructed
from the latter by polarization, cf. [5] 9.12.

Corollary 1.4 A smooth k-homogeneous map f : X → Y is of form f(x) =
h(x, ...x) for a unique smooth k-linear symmetric h : Xk → Y . In particular,
1-homogeneous smooth maps are linear.

2 Taylor remainders for smooth plots

For any convenient vector space X, we have a linear bijection ev : L(R, X) →
X given by “evaluation at 1 ∈ R”. (It is also, for quite trivial reasons, an
isomorphism for the convenient structures, but we do not use that fact.) For
any smooth map f : R → X (‘a smooth curve’), we define its derivative
f ′ : R → X to be the composite

R
df
- L(R, X)

ev
- X.

From linearity of the operator d (Proposition 0.10) and of ev, one immediately
sees that f 7→ f ′ is a linear map

C∞(R, X) → C∞(R, X)
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(it is in fact smooth linear). Also, if φ : X → Y is smooth linear, (6) implies

(φ ◦ f)′ = φ ◦ f ′. (13)

So if f ′ ≡ 0, we have (φ ◦ f)′ ≡ 0 for all φ ∈ Y ′, and so φ ◦ f : R → R is
constant. Since Y ′ separates points, f itself must be constant. So a smooth
curve f : R → X can, modulo a constant, have at most one primitive, i.e.
a smooth curve g : R → X with g′ ≡ f . A fundamental completeness for
convenient vector spaces is now that for every smooth curve, there is in fact
a primitive, cf. [11] Satz p. 119; so

Theorem 2.1 Every smooth curve R → X has a primitive, unique up to a
constant ∈ X.

Definition 2.2 Let R → X be smooth, and a, b ∈ R. Then

∫ b

a
f(s) ds := g(b) − g(a)(∈ X)

where g is any primitive of f .

From (13) and the definition immediately follows that

Proposition 2.3 Let φ : X → Y be smooth linear. Then

φ(
∫ b

a
f(s) ds) =

∫ b

a
φ(f(s)) ds.

We also have

Proposition 2.4 Let f : R → X be smooth. Then the function g : R → X
defined by

g(t) :=
∫ t

a
f(s) ds

is smooth and satisfies g′ ≡ f .

Proof. To see g is smooth, we must (definition 0.1) check that φ◦g is smooth
∀φ ∈ X ′. But by Proposition 2.3,

φ(g(t)) =
∫ t

a
(φ ◦ f)(s) ds (14)
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and since φ◦f is smooth, this integral is, by known finite dimensional calculus,
smooth as a function of t. Also, by the fundamental theorem of calculus,
(14) gives (φ ◦ g)′ = φ ◦ f . On the other hand, by (13), (φ ◦ g) = φ ◦ g′. So
φ ◦ g′ = φ ◦ f ∀φ ∈ X ′, and since separates points, g′ = f .

Exactly the same technique proves the following three Propositions:

Proposition 2.5 For fixed a, b ∈ R,
∫ b
a f(s) ds depends linearily on f ∈

C∞(R, X) .

Proposition 2.6 Let h : Rn × R → X be smooth. Then the function g :
Rn → X defined by

g(t) :=
∫ b

a
h(t, s) ds

is smooth.

(These results can be interpreted as saying:
∫ b
a is a smooth linear function

C∞(R, X) → X.)

Proposition 2.7 If h : R → R and f : R → X are smooth, then

(f ◦ h)′ = (f ′ ◦ h) · h′. (15)

Theorem 2.8 Assume f : R → X is smooth curve with f(0) = 0. Then
there exist a unique smooth curve g : R → X such that f(t) = t ·g(t) ∀t ∈ R.

Proof. Define g by

g(t) =
∫ 1

0
f ′(t · s) ds. (16)

Smoothness of g then follows from Proposition 2.6, with h(t, s) = f ′(t · s).
To prove (15), let τ : R → R be multiplication by t (so τ ′ = t). We then
have

t · g(t) = t ·
∫ 1

0
f ′(t · s) ds =

∫ 1

0
t · f ′(t · s) ds

=
∫ 1

0
(f ◦ τ)′(s) ds = (f ◦ τ)(1) − (f ◦ τ)(0),

using Proposition 2.1 and 2.7, and the Definition 2.2 of integrals. But
f(τ(1)) = f(t), and f(τ((0)) = f(0) = 0. – To prove uniqueness of g, it
suffices to prove that if t · g(t) ≡ 0 for a smooth curve g : R → X, then
g ≡ 0. This is known for the case X = R, and the general result now follows
in the standard way, using that X ′ separates points.
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Corollary 2.9 Any smooth curve f : R → X of order ≥ k can be written
f(t) = tk · g(t) for a unique smooth g : R → X.

Proof. By induction in k. The theorem gives the case k = 1. Assume the
result for k − 1. If f has order ≥ k, it has order > k − 1, and thus can be
written

f(t) = tk−1 · h(t).

It suffices to prove that h(0) = 0, and then apply the Theorem to h. Now,
for any φ ∈ X ′

tk−1 · (φ ◦ h)(t) = (φ ◦ f)(t) = tk · gφ(t)

for some smooth gφ : R → R, by the assumption on f . Now since φ ◦ h and
gφ are smooth functions R → R, we get by this equation that (φ ◦ h)(0) = 0
(standard result about smooth, in fact about continuous, mappings R →
R). Since X ′ separates points, h(0) = 0. – Uniqueness is proved like the
uniqueness assertion in the theorem.

An analogous result for several variables is Theorem 2.11 below. To prove
that, we first need the following reformulation of previous results.

Proposition 2.10 Any smooth function f : R → Y can, for given k, be
written

f(t) =
∑

p<k

tp · yp + tk · g(t)

for unique yp ∈ Y and unique smooth g : R → Y .

Proof. A p-linear map Rp → Y is, for purely algebraic reasons, of form
(t1, . . . , tp) 7→ (

∏
tj) · x for some unique x ∈ X. From Corollary 1.3, we

therefore get that f can be uniquely written

f(t) =
∑

p<k

tp · yp + h(t)

with h of order ≥ k. Now apply Corollary 2.9 to h.

Theorem 2.11 Any smooth f : Rn → X of order ≥ k can be written (using
standard conventions on multi-indices α)

f(t) =
∑

|α|=k|

tα · hα(t) (17)

for suitable smooth hα : Rn → X (not uniquely determined in general).
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Proof. This we shall prove by induction on n, combining the n − 1 result
for X with the n = 1 result for C∞(Rn−1, X) (which we have by Corollary
2.9). Denote (temporarily) the linear subspace of C∞(Rn, X) consisting of
functions of the form (17) by Effk (”functions that are of effective order ≥ k”);
it is clearly a subspace of Ordk(R

n, X). For n = 1, the converse inclusion

Ordk ⊆ Effk(R
n, X) (18)

follows from Corollary 2.9. Assume we have the inclusion (18) for a given
n, and for all convenient vector spaces X. Suppose now f : Rn+1 → X is
smooth and of order ≥ k. By exponential adjointness, f corresponds to a
smooth

f̂ : R → C∞(Rn, X)

to which we now apply Proposition 2.10 to obtain

f̂(t) =
∑

p<k

tp · yp + tk · ĝ(t) (19)

with yp ∈ C∞(Rn, X) and ĝ a smooth curve R → C∞(Rn, X). Now (20) is
equivalent, under exponential adjointness, to

f(t, s) =
∑

p<k

tp · yp(s) + tk · g(t, s).

The last term clearly ∈ Effk(R
n+1, X) due to the factor tk. For each term

tp · yp(s), write by Corollary 1.3 and by induction assumption

yp(s) = hp(s) + rp(s)

with hp polynomial of degree < k − p, and with rp ∈ Effk−p(R
n, X). Then

tp · rp(s) (as a function of (t, s)) belongs to Effk(R
n+1, X), and tp · hp(s) is

polynomial of degree < k. Summing over p, and using Ordk ∩Poly<k = {0},
we conclude from f(t, s) ∈ Ordk that

∑
tp · hp(s) = 0, so

f(t, s) =
∑

p<k

tp · rp(s) + tk · g(t, s),

which belongs to Effk(R
n+1, X) . This proves the theorem.

The explicit form of the remainder in Taylor expansions which this theo-
rem provides, yields, by making explicit the polynomial part of such expan-
sion, the following reformulation:

13



Theorem 2.12 Let f : Rn → X be smooth. Let k ≥ 0 be an integer. There
exist smooth functions gα : Rn → X such that

f(t) =
∑

|α|<k

1

|α|!

∂|α|f

∂tα
(0)tα +

∑

|α|=k

tα · gα(t). (20)

Here, ∂|α|f/∂tα are iterated partial derivatives ∂f/∂ti, which in turn can
be defined the standard way from df , or, alternatively, can be defined as f ′

i

where fi : R → C∞(Rn−1, X) is one of the exponential adjoints of f .

Proof. The difference of f with the
∑

|α|<k sum is proved to be of order ≥ k,
by the technique used in the proof of Theorem 1.2 (noting that

∂(φ ◦ f)/∂ti = φ ◦ (∂f/∂ti)

for φ smooth linear), and utilizing the validity of (20) in the case X = R.
So f −

∑

|α| is of the required form, by Theorem 2.11.

We end by giving an alternative description of the notion ‘order ≥ k’
(Definition 1.1) for an arbitrary smooth f : X → Y .

Theorem 2.13 Let f : X → Y be smooth. Then f is of order ≥ k iff there
exists a smooth G : R×X → Y such that

f(t · x) = tk ·G(t, x) ∀(t, x) ∈ R ×X.

Proof. The implication ⇐ is trivial. Assume next that f is of order ≥ k. Let
F : R → C∞(X, Y ) be defined by F (t)(x) = f(t · x). Write by Proposition
2.10, applied to C∞(X, Y ),

F (t) =
∑

p<k

tp · yp + tk · g(t)

with yp ∈ C∞(X, Y ) and g : R → C∞(X, Y ) smooth. For any fixed x ∈ X
and φ ∈ Y ′, we thus have

φ(F (t)(x)) =
∑

p<k

tp · φ(yp(x)) + tk · φ(g(x)).
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But the left hand side is, as a function R → R of t, equal to φ(f(t · x)) and
thus by assumption of order ≥ k. Standard finite dimensional calculus thus
tells us that φ(yp(x)) = 0. Since x, φ were arbitrary, and Y ′ separates points,
yp = 0, so (2) yields

F (t) = tk · g(t) ∈ C∞(X, Y )

or
f(t · x) = tk ·G(t, x),

where G : R ×X → Y is the exponential adjoint of g : R → C∞(X, Y ) and
thus is smooth.
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Cahiers de Top. et Géometrie Diff. Cat. 27 (1986), 3-17.

15



[10] Kock, A. and Reyes, G.E., Corrigendum and Addenda to the paper
“Convenient Vector Spaces Embed . . . ”, Cahiers de Top. et Géometrie
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