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An equivalence of groupoids P : G’ — G is called surjective if it surjective
on objects. If p : G — Gy is the object-part of P, we say that P covers
p. The classification we give is more precisely: given a groupoid G’ and a
fixed surjection p : Gy — Gl; then we describe the category of equivalences
G’ — G covering p in terms of a category of cocycles.

The study was motivated by the desire to construct the “gauge” groupoid
X X! of a principal G-bundle X directly out of a G-valued Cech cocycle for
the bundle X; such desription is essentially given in [1], Theorem I1.2.19. We
reproduce this in Section 2. There we also discuss briefly the two extreme
cases, where p is the identity map, and where p has codomain 1.

We present the construction and theory in the category of sets. But it is
clear that it applies in any topos, and hence also, via a Yoneda embedding,
in any category, provided the notion of “surjection” is replaced by “universal
effective descent epi”. For the case of principal bundles, the choice of sur-
jection is often “etale surjection”, like [[U; — M, where (U;);c; is an open
cover of a space M.

Most of the present note was circulated as a pamphlet entitled “Descend-
ing groupoids” in Feb. 2001. We used there a superfluous hypothesis, namely
that the groupoids in question were transitive (connected).

1 Groupoids under a groupoid, vs. cocycles

For a fixed groupoid G’ with object set Gf, and for a fixed surjection p :
Gy — Gy, we organize the class of equivalences P : G' — G, covering p, as
objects of a category (a groupoid, in fact); the morphisms from P : G’ — G
to @ : G’ — H are pairs T, t, where T': G — H is a full and faithful functor



which is the identity map on the set GGy of objects, and where ¢ is a natural
transformation from 7 o P to ). Call the category thus described Eq(p, G')
(for “equivalences covering p”). It may be considered as a subcategory of
groupoids under G'.

We let R denote the kernel pair of p : G — Go. It is a groupoid with
Gy, as set of objects, so we may consider the functor category, whose objets
are those functors V from R to G’, which are the identity map on the set
Gy of objects. Morphisms are the natural transformations between such
functors. Call the category thus described Cocycl(p, G'). (Its objects are
kind of cocycles, cf. Example 1 in the next Section; and in a certain sense,
they are descent data).

There is a canonical functor Fq(p, G") — Cocycl(p, G')°? which we now
describe. First, given an object P : G’ — G of Eq(p, G’), we describe the
cocycle V as follows. Let (2/,2") € R, so p(z') = p(z”) ( = z, say). We
put V(z',2") equal to the unique arrow 2’ — z” which by P goes to the
identity arrow 1, of z. (Recall that P is assumed to be full and faithful.) By
uniqueness, it is clear that V is indeed a functor. Next, given a morphism 7', ¢
of Eq(p, G'). Let V be the cocycle associated to its codomain @ : G’ — H.
To describe a natural transformation 7 : V — V, let 2/ € G. Then 7, is
taken to be the unique arrow z/ — z’ which by () maps to t,,. Note that
t, is an endo-arrow, since T'(p(z')) = q(z’), by assumption. (Note that T
does not enter in the description; in fact, T" is redundant information, it can
be reconstructed from ¢.) To prove naturality of 7, consider the naturality
square for ¢ w.r.to the arrow V(2’, 2”). This naturality square is (composing
forwards)

t. Q(V(2',2")) =T(P(V (', 2"))).tum.

(All four corners of this naturality square are equal, namely T'(p(z’)) =
q(z') = q(2”) = T(p(z")) ( = z, say). This equation may be written

Q(Tw’)'Q(V(lja :E”)) = 196-@(7—00”)7
and so since () is a functor, we conclude
Q. V(2 2" 71 = 1,

fL'N

from which we conclude that 7,,.V (', 2").7,} = V(2/,2"), and this is exactly

the naturality condition for 7 : V — V with respect to the arrow (z', 2”) in
R. So we have defined a functor

Eq(p,G") — Cocycl(p, G") (1)



Theorem 1 The functor (1) is an equivalence of categories.

We construct an inverse for it, up to isomorphism; in other words, given
a cocycle V : R — G’, we construct a surjective equivalence P : G' — G
(we “descend G’ along p”); and to a natural transformation 7 : V — V (7 co-
homologous cocycles”), we define a morphism (7', ¢) between the descended
groupoids.

So given V : R — G, we construct the groupoid G as follows. The
objects are those of the given Gy, of course; if z,y € Gy, then an arrow
x — y is an equivalence class of triples < 2, ¢,y’ > where p(z’) = = and
p(y') =y, and ¢ : ' — ¢/, under an equivalence relation yet to be described.
To compose

<2 ¢,y > and <y’ 0,2 >,

where p(y') = p(y”), we take the triple

<2, 0.V, y" ), 2 >, (2)

and then it is clear that the composition is associative and has triples of form
< a',1y,2" > as identities (using V(z’,2') = 1,/). The equivalence relation
is given by identifying

< ¢,y > with <2" V(" 2).0.V(/', y"),y" >.

To prove that the composition (2) is well defined, one uses the cocycle con-
dition V(2/,2").V(2",2") = V(2',2""). The functor P which takes ¢ to
the equivalence class of < 2/, ¢,y" >, where 2’ and ¢y’ are the domain and
codomain of ¢, is then clearly full and faithful, and the construction of
G’ — G is then provided. It is clear that the cocycle arising from P is
the given V.

This describes the functor Cocycl(p, G') — Eq(p, G’) in so far as objects
are concerned. We now consider it on morphisms, so assume that 7 is a
natural transformation from V to V. Let P : G’ — G and Q : G’ — H
be the surjective equivalences constructed from V and V, respectively. We
construct a morphism (7,¢) : P — @ in Eq(p, G’) as follows

First, we produce an (iso)morpism of groupoids 7" : G — H (identity on
the set G of objects); for arrows: to < 2/, ¢,y >, associate {2/, Tx/.¢.73;1, v'},
where curly brackets denote the (equivalence classes of) triples that define
H out of V).



Both well-definedness and preservation of composition depend in a purely
equational way on the the naturality of 7, and we shall do only the proof for
composition in detail. Given < ', ¢,y > and < y”, v, 2’ >, their composite

<z, oV, Yy, 2 >
goes by T to {2, 7.,.0.V(y/,y").4p.7;', 2'}, whereas the composite of

{x’,Tm/.¢.Ty71,y'} and {y", 7prab.7t, 2}
is )
{2, 7007, Ny ) g b7 2
Now the product of three factors 7, LV (., y" ).T,» may by naturality of 7
with respect to (', y”) be replaced by V(y/,y"), and then we are back at the
previous expression.

We finally have to produce ¢,/ : T(P(z')) — Q(a'), for any 2’ € Gj. We
put t, := {2/, 7, 2'}. Let us prove naturality of ¢t w.r. to ¢ : 2’ — /. This
means to prove the equation

to.Q(¢) = T(P(¢)) Ly,

and by the definitions, this means

{x,'7—$/7 ‘/'E,}'{'CE,) ¢7 y/} = T(< :L'/’ ¢7 y/ >)'{y/7 Ty’a y/}'

The left hand side is {2/, 7,7.¢, 3}, since V(2/, ") = 1; the right hand side is
{xla Tx/.QZS.Ty_/l, y,}'{yla Ty's ?//}7

and using V(y/,y') = 1, the T ' and 7, cancel, and we are again left with
{2/, 7wr.¢,y'} , proving naturality of the ¢ constructed.
It is easy to prove that the composite of the two constructions

Cocycl(G',p) — Eq(G', p) — Coycl(G', p)
is in fact the identity functor. Conversely, consider the effect of
Eq(G',p) — Coycl(G',p) — Eq(G',p)

on P : G' — G, call the result ) : G’ — H. There is a canonical iso-
morphism from @) to P: there is a canonical functor 7' : H — G given on
morphisms by
<2 ¢,y >— P(¢).
This functor evidently satisfies T' o () = P, and taking the 2-cell ¢ to be the
identity, we obtain the desired canonical isomorphism (7,¢) from @ to P.
This concludes the proof/construction of the Theorem.
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2 Special cases

Example 1. Suppose U; — M is an open cover of a space M, and let G be a
group. A G-valued Cech cocycle 7i; defined on this cover may be construed
as a cocycle in the sense of the previous section; the surjection p in question
is U — M, where U = []; U;. We have a groupoid G’ with object set U,
namely the product of the “chaotic” groupoid U x U on U, and the group G
(considered as a 1-object groupoid). (This is what in [1] is called the trivial
groupoid on U with group G.) An element (z’,z") of the kernel pair R of
U — M is the same thing as a triple (z,¢,j) where z € U; N U; C M, and
we put
V(' 2") = (', 2", y;(x)) e U x U x G.

The construction then furnishes a surjective equivalence from the groupoid
U x U x G to a groupoid on M. If Xis the principal G-bundle on M con-
structed by the Cech cocycle, the groupoid constructed is what is usually
denoted X X ~!. - This is essentially the construction given in [1], Theorem
I1.2.19.

To give a natural transformation 7 : V = V is equivalent to exhibiting
the two corresponding Cech cocycles v and 4 as cohomologous.

Example 2. The map p : Gj — Gy is the identity. Then R is the
diagonal (the minimal equivalence relation on Gj), and there is only one
cocycle V. So the category (groupoid) C'ycl(G’, p) has only one object, i.e.
is a group. It is easy to see that this group is [[, G'(x,x) where = ranges
over Gj. The category of equivalences out of G’ covering the identity map is
therefore, by the Theorem, equivalent to this group.

Example 3. The map pis p: Gj — 1. Then R is the maximal equiva-
lence relation on Gj,, and a cocycle V is the same thing as a trivialization of
the groupoid G’. Of course, there are only such trivializations if the groupoid
is transitive. An equivalence covering p : G — 1 is the same thing as an
equivalence of G’ with a group. But such equivalences are now organized
in a category (groupoid). Because of the Theorem, we may analyze this
groupoid by means of the groupoid of natural transformations 7 between
trivializations V of G’. Because there now are so many arrows in R, there
are many naturality constraints, and in fact it is clear that such a natural
transformation 7 is completely described by its component 7, at any fixed
z € Gf,.



So the groupoid of equivalences covering Gj, — 1 is equivalent (not canon-
ically, though) to any vertex group G'(z, z).

References

[1] K. Mackenzie, Lie Groupoids and Lie Algebroids in Differential Geometry,
London Math. Soc. Lecture Note Series 124, Cambridge University Press
1987.



