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An equivalence of groupoids P : G′ → G is called surjective if it surjective
on objects. If p : G′

0
→ G0 is the object-part of P , we say that P covers

p. The classification we give is more precisely: given a groupoid G′ and a
fixed surjection p : G′

0
→ G0; then we describe the category of equivalences

G′ → G covering p in terms of a category of cocycles.
The study was motivated by the desire to construct the “gauge” groupoid

XX−1 of a principal G-bundle X directly out of a G-valued Čech cocycle for
the bundle X; such desription is essentially given in [1], Theorem II.2.19. We
reproduce this in Section 2. There we also discuss briefly the two extreme
cases, where p is the identity map, and where p has codomain 1.

We present the construction and theory in the category of sets. But it is
clear that it applies in any topos, and hence also, via a Yoneda embedding,
in any category, provided the notion of “surjection” is replaced by “universal
effective descent epi”. For the case of principal bundles, the choice of sur-
jection is often “etale surjection”, like

∐
Ui → M , where (Ui)i∈I is an open

cover of a space M .
Most of the present note was circulated as a pamphlet entitled “Descend-

ing groupoids” in Feb. 2001. We used there a superfluous hypothesis, namely
that the groupoids in question were transitive (connected).

1 Groupoids under a groupoid, vs. cocycles

For a fixed groupoid G′ with object set G′

0
, and for a fixed surjection p :

G′

0
→ G0, we organize the class of equivalences P : G′ → G, covering p, as

objects of a category (a groupoid, in fact); the morphisms from P : G′ → G

to Q : G′ → H are pairs T, t, where T : G → H is a full and faithful functor
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which is the identity map on the set G0 of objects, and where t is a natural
transformation from T ◦ P to Q. Call the category thus described Eq(p,G′)
(for “equivalences covering p”). It may be considered as a subcategory of
groupoids under G′.

We let R denote the kernel pair of p : G′

0
→ G0. It is a groupoid with

G′

0
as set of objects, so we may consider the functor category, whose objets

are those functors ∇ from R to G′, which are the identity map on the set
G′

0
of objects. Morphisms are the natural transformations between such

functors. Call the category thus described Cocycl(p,G′). (Its objects are
kind of cocycles, cf. Example 1 in the next Section; and in a certain sense,
they are descent data).

There is a canonical functor Eq(p,G′) → Cocycl(p,G′)op which we now
describe. First, given an object P : G′ → G of Eq(p,G′), we describe the
cocycle ∇ as follows. Let (x′, x′′) ∈ R, so p(x′) = p(x′′) ( = x, say). We
put ∇(x′, x′′) equal to the unique arrow x′ → x′′ which by P goes to the
identity arrow 1x of x. (Recall that P is assumed to be full and faithful.) By
uniqueness, it is clear that ∇ is indeed a functor. Next, given a morphism T, t

of Eq(p,G′). Let ∇̃ be the cocycle associated to its codomain Q : G′ → H.
To describe a natural transformation τ : ∇̃ → ∇, let x′ ∈ G′

0
. Then τx′ is

taken to be the unique arrow x′ → x′ which by Q maps to tx′ . Note that
tx′ is an endo-arrow, since T (p(x′)) = q(x′), by assumption. (Note that T
does not enter in the description; in fact, T is redundant information, it can
be reconstructed from t.) To prove naturality of τ , consider the naturality
square for t w.r.to the arrow ∇(x′, x′′). This naturality square is (composing
forwards)

tx′.Q(∇(x′, x′′)) = T (P (∇(x′, x′′))).tx′′ .

(All four corners of this naturality square are equal, namely T (p(x′)) =
q(x′) = q(x′′) = T (p(x′′)) ( = x, say). This equation may be written

Q(τx′).Q(∇(x′, x′′)) = 1x.Q(τx′′),

and so since Q is a functor, we conclude

Q(τx′ .∇(x′, x′′).τ−1

x′′ ) = 1x

from which we conclude that τx′ .∇(x′, x′′).τ−1

x′′ = ∇̃(x′, x′′), and this is exactly
the naturality condition for τ : ∇̃ → ∇ with respect to the arrow (x′, x′′) in
R. So we have defined a functor

Eq(p,G′) → Cocycl(p,G′)op (1)
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Theorem 1 The functor (1) is an equivalence of categories.

We construct an inverse for it, up to isomorphism; in other words, given
a cocycle ∇ : R → G′, we construct a surjective equivalence P : G′ → G

(we “descend G′ along p”); and to a natural transformation τ : ∇̃ → ∇ (”co-
homologous cocycles”), we define a morphism (T, t) between the descended
groupoids.

So given ∇ : R → G′, we construct the groupoid G as follows. The
objects are those of the given G0, of course; if x, y ∈ G0, then an arrow
x → y is an equivalence class of triples < x′, φ, y′ > where p(x′) = x and
p(y′) = y, and φ : x′ → y′, under an equivalence relation yet to be described.
To compose

< x′, φ, y′ > and < y′′, ψ, z′ >,

where p(y′) = p(y′′), we take the triple

< x′, φ.∇(y′, y′′).ψ, z′ >, (2)

and then it is clear that the composition is associative and has triples of form
< x′, 1x′, x′ > as identities (using ∇(x′, x′) = 1x′). The equivalence relation
is given by identifying

< x′, φ, y′ > with < x′′,∇(x′′, x′).φ.∇(y′, y′′), y′′ > .

To prove that the composition (2) is well defined, one uses the cocycle con-
dition ∇(x′, x′′).∇(x′′, x′′′) = ∇(x′, x′′′). The functor P which takes φ to
the equivalence class of < x′, φ, y′ >, where x′ and y′ are the domain and
codomain of φ, is then clearly full and faithful, and the construction of
G′ → G is then provided. It is clear that the cocycle arising from P is
the given ∇.

This describes the functor Cocycl(p,G′) → Eq(p,G′) in so far as objects
are concerned. We now consider it on morphisms, so assume that τ is a
natural transformation from ∇̃ to ∇. Let P : G′ → G and Q : G′ → H

be the surjective equivalences constructed from ∇ and ∇̃, respectively. We
construct a morphism (T, t) : P → Q in Eq(p,G′) as follows

First, we produce an (iso)morpism of groupoids T : G → H (identity on
the set G0 of objects); for arrows: to < x′, φ, y′ >, associate {x′, τx′.φ.τ−1

y′ , y′},
where curly brackets denote the (equivalence classes of) triples that define
H out of ∇̃).
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Both well-definedness and preservation of composition depend in a purely
equational way on the the naturality of τ , and we shall do only the proof for
composition in detail. Given < x′, φ, y′ > and < y′′, ψ, z′ >, their composite

< x′, φ.∇(y′, y′′).ψ, z′ >

goes by T to {x′, τx′.φ.∇(y′, y′′).ψ.τ−1

z′ , z′}, whereas the composite of

{x′, τx′ .φ.τ−1

y′ , y
′} and {y′′, τy′′ .ψ.τ−1

z′ , z
′}

is
{x′, τx′.φ.τ−1

y′ .∇̃(y′, y′′).τy′′ .ψ.τ−1

z′ , z
′}.

Now the product of three factors τ−1

y′ .∇̃(y′, y′′).τy′′ may by naturality of τ
with respect to (y′, y′′) be replaced by ∇(y′, y′′), and then we are back at the
previous expression.

We finally have to produce tx′ : T (P (x′)) → Q(x′), for any x′ ∈ G′

0
. We

put tx′ := {x′, τx′, x′}. Let us prove naturality of t w.r. to φ : x′ → y′. This
means to prove the equation

tx′ .Q(φ) = T (P (φ)).ty′,

and by the definitions, this means

{x′.τx′, x′}.{x′, φ, y′} = T (< x′, φ, y′ >).{y′, τy′ , y′}.

The left hand side is {x′, τx′.φ, y′}, since ∇̃(x′, x′) = 1; the right hand side is

{x′, τx′.φ.τ−1

y′ , y
′}.{y′, τy′ , y′},

and using ∇̃(y′, y′) = 1, the τ−1

y′ and τy′ cancel, and we are again left with
{x′, τx′ .φ, y′} , proving naturality of the t constructed.

It is easy to prove that the composite of the two constructions

Cocycl(G′, p) → Eq(G′, p) → Coycl(G′, p)

is in fact the identity functor. Conversely, consider the effect of

Eq(G′, p) → Coycl(G′, p) → Eq(G′, p)

on P : G′ → G, call the result Q : G′ → H. There is a canonical iso-
morphism from Q to P : there is a canonical functor T : H → G given on
morphisms by

< x′, φ, y′ >7→ P (φ).

This functor evidently satisfies T ◦Q = P , and taking the 2-cell t to be the
identity, we obtain the desired canonical isomorphism (T, t) from Q to P .

This concludes the proof/construction of the Theorem.
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2 Special cases

Example 1. Suppose Ui →M is an open cover of a space M , and let G be a
group. A G-valued Čech cocycle γij defined on this cover may be construed
as a cocycle in the sense of the previous section; the surjection p in question
is U → M , where U =

∐
i Ui. We have a groupoid G′ with object set U ,

namely the product of the “chaotic” groupoid U ×U on U , and the group G
(considered as a 1-object groupoid). (This is what in [1] is called the trivial
groupoid on U with group G.) An element (x′, x′′) of the kernel pair R of
U → M is the same thing as a triple (x, i, j) where x ∈ Ui ∩ Uj ⊆ M , and
we put

∇(x′, x′′) := (x′, x′′, γij(x)) ∈ U × U ×G.

The construction then furnishes a surjective equivalence from the groupoid
U × U × G to a groupoid on M . If Xis the principal G-bundle on M con-
structed by the Čech cocycle, the groupoid constructed is what is usually
denoted XX−1. - This is essentially the construction given in [1], Theorem
II.2.19.

To give a natural transformation τ : ∇ ⇒ ∇̃ is equivalent to exhibiting
the two corresponding Čech cocycles γ and γ̃ as cohomologous.

Example 2. The map p : G′

0
→ G0 is the identity. Then R is the

diagonal (the minimal equivalence relation on G′

0
), and there is only one

cocycle ∇. So the category (groupoid) Cycl(G′, p) has only one object, i.e.
is a group. It is easy to see that this group is

∏
x G′(x, x) where x ranges

over G′

0
. The category of equivalences out of G′ covering the identity map is

therefore, by the Theorem, equivalent to this group.

Example 3. The map p is p : G′

0
→ 1. Then R is the maximal equiva-

lence relation on G′

0
, and a cocycle ∇ is the same thing as a trivialization of

the groupoid G′. Of course, there are only such trivializations if the groupoid
is transitive. An equivalence covering p : G′

0
→ 1 is the same thing as an

equivalence of G′ with a group. But such equivalences are now organized
in a category (groupoid). Because of the Theorem, we may analyze this
groupoid by means of the groupoid of natural transformations τ between
trivializations ∇ of G′. Because there now are so many arrows in R, there
are many naturality constraints, and in fact it is clear that such a natural
transformation τ is completely described by its component τx at any fixed
x ∈ G′

0
.
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So the groupoid of equivalences covering G′

0
→ 1 is equivalent (not canon-

ically, though) to any vertex group G′(x, x).
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