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This article aims at clarifying the relationship between principal fibre bundles and
groupoids, and along with it, the relationship between connections in the bundle or
groupoid, and the associated connection forms. These notions are essentially due
to E. Cartan [2] and to Ehresmann [4], [5], who in them saw some of the funda-
mental aspects of differential geometry, cf. also [10].

To this end, we introduce the notion of pregroupoid over a base ‘space’ B (‘space’
may mean either ‘topological space’, ‘smooth manifold’, or ‘object in a topos &,
and accordingly for ‘map’ (or ‘operation’ or ‘law’)). We use the word ‘set’ syno-
nymously with ‘space’, and give some standard comments for this abuse below.
Formally, a pregroupoid over B is a set £— B over B equipped with a partially
defined ternary operation A, satisfying certain equations. In essence, a pregroupoid
over B is the same as a principal fibre bundle, or torsor, over B, but whereas for
a torsor, a group has to be given in advance, a pregroupoid canonically creates its
own group. Also, by a dual construction, a pregroupoid creates a groupoid over B.
Identifying the pregroupoid with a principal bundle H, this groupoid is Ehres-
mann’s HH ™', [4].

In the context of differential geometry, a typical example of a pregroupoid is the
bundle £ of orthonormal frames on a Riemannian manifold B; for x,y,z such
frames, with x and z being frames at the same point of B, A(x, y,z) is the frame (at
the same point as y) which has the same coordinates in terms of y as z does in terms
of x.

To describe the relationship between connections and connection forms, we need
to assume that the base ‘space’ B comes equipped with a reflexive symmetric ‘neigh-
bour’ relation. Except for the two trivial extreme cases, topological spaces do not
carry any natural relation of this kind, nor do smooth manifolds. However, for the
latter, the method of synthetic differential gcometry (cf. e.g. [7]) becomes available:
essentially, it consists in embedding the category Mf of smooth manifolds into a
suitable ‘well-adapted’ topos . When viewed in &, any smooth manifold does
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acquire canonically such a reflexive symmetric relation, ‘the first neighbourhood of
the diagonal’. It is a subobject B(;, of BX B in &; its construction and use is well
established also prior to synthetic differential geometry, cf. e.g. [11]. (One may
think of By, as the manifold B but equipped with an ‘enlarged” structure sheaf,
whose stalks have nilpotent elements.) One effect of working in the topos ¢ is that
to a certain extent one can talk and reason about objects in a topos as if they were
sets, a by now well established technique which finds its justification in categorical
logic, cf. e.g. [7].

We now present the notion of pregroupoid (cf. also [9, §5]). A pregroupoid is a
set E (‘total space’), a surjective map m: £— B onto another set B (‘base space’), and
a law 1 which to x,y,z with n(x)=n(z) associates an element A(x,y,z) with

n(A(x, 3, 2) =7(y),
_—— || A »2)

y

e

and satisfying those equational conditions which A(x, y,2) := y-x~'. z satisfies in
any group; it suffices to require

A, Y, ) =Y,
{A tx2)=z
Az A 0,2, 1) =A(x 0, 0),
[,1 s 6, A0 ,2) =4 (% 1, 2).

Some of the purely equational theory deriving from this was developed in [9], and
we begin by summarizing the main points of this in Section 1. In Section 2, we
further assume that B is equipped with a symmetric reflexive relation, the ‘neigh-
bour’-relation ~, and in terms of that, we describe the notion of (Ehresmann-)
connection and connection-form. This purely combinatorial theory does in fact
include the differential-geometric theory which the terminology suggests, namely via
synthetic differential geometry (cf. e.g. [7]), with the relation ~ being ‘the first
neighbourhood of the diagonal’, ([3] or [6]); but we shall not here go into that
aspect. In Sections 3 and 4, we deal with parallel transport, and integration, of
connections and forms, respectively.

1. Groupoid and group associated canonically to a pregroupoid

Let n: E— B, A be a pregroupoid. We construct a groupoid E* with B as its set
of objects; an arrow a: a— b (a,b € B) is an equivalence class of pairs x, y € E with
n(x)=a, n(y)=>b, under the equivalence relation

0o M) =(z,A(x, ¥, 2)).



Combinatorial notions relating to principal fibre bundles 143

The arrow a— b defined by the pair (x, y) is denoted Xy or X, y. Identity arrow over
aeB is xx for any x over a, and yfoXy=x! defines the composition.

Also, we construct a group E; it has for its elements equivalence classes of pairs
(x, z) with n(x) =7(z), under the equivalence relation

x,2)=(, A%, 3, 2)).

The element defined by (x, z) is denoted xz or X, z. Group multiplication is defined by
Xz -zl =Xt

The groupoid E* acts on E on the left, and the group E acts on E on the right.
These actions commute with each other. The E-action is principal homogeneous,
and makes n: E— B into a principal E-bundle. If a: @— b is an arrow in E*, left
multiplication by & defines a map E,— E}, (where E, denotes the fibre of E over a,
etc.). The action of E*is given by a- 7= A(x, y, z) where ¢ =Xy, and the action of Ey
is given by y- g =A(x, y, z) where o =xz. These actions are unitary, associative, and
both are principal, but in two different senses: for any x, y € E, there is a unique
arrow ¢: n(x)— 7(y) in E* with a - x=y (namely Xy); for each x, z in the same fibre,
there is a unique o € E4 with x- 0=z, (namely xz).

We collect for convenience several basic equations and bi-implications concerning
the operations introduced. Note that ¥y ‘behaves like y-x~! does in a group’,
whereas xz ‘behaves like x~'- z does’; we also put these ‘rules of thumb’ in our
reference list, but in quotes. All the rules are to be read with the proviso that the
conditions for the expressions to be meaningful must be satisfied, e.g. in (1.4):
do(a) = ().

“Woop2)=y-x ' 27, (1.0)
Xy=zu iff xz=yu iff Aoy, 2)=u. (1.1)
YloXy =xt,

{ﬁ.g_:x_ﬁ 1.2)

abocd=c,A(a,b,d), 1.3)
ab- cd=a A(c.b,d). ¢

a-x=y iff Xy=a (W=y-x "), (1.4)
x-ag=z iff xz=¢ Cxz=x"1-2). ’
{xy.xzy’ (1.5)
x._x_z:z_

Xy 2=y x2=A(% $2). (1.6)
X, 0 y=00Xp,

T xv=xvoa "}

a-x,y=xyoa -, (1.7)
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{x—- G,¥ G =XJ, (1.8)

o-X0-Z=XZ.

Also Xx and xx act as neutral elements for the relevant compositions.
If G is a group and B a set, BX G becomes a pregroupoid over B by putting

A((B1, 81), (b2, 8), (b1, 82)) = (0, £ &1 '~ &3)-

We then have canonically, by identifying (5y, g,), (b, 2) With (b1, 25+ 27 % by),
E*=BXGXB,

and composition in BX G X B is given by
(by, b, b3)o(by, 8,b))=(by,h-g ', by).

Also, we have canonically, by identifying (b, g), (b, k) with g~ ' A,
E«=0G.

The actions of E* and E are then defined through the evident formulae:
(b1> & by) - (D1, h) = (by, - ),
b, h)-g=(b,h-g).

2. Connections and forms

Both reflexive-symmetric relations and groupoids are graphs, meaning: a
collection of ‘vertices’ (or ‘objects’), and a collection of ‘edges’ (or ‘arrows’); each
row has a domain and a codomain (which are objects); to each arrow is given an-
other arrow (the ‘inverse’ arrow) with domain and codomain interchanged, and to
each object is given an identity arrow. No composition of arrows is assumed.

A graph map maps objects to objects, arrows to arrows, and commutes with
inversion and identity formation. If the two graphs have the same object set B, and
the graph map maps each object to itself, we call it a graph map over B.

In the following, B is a set with a reflexive symmetric relation ~ on it; the graph
thus given is denoted By).

The first to envisage a graph viewpoint for connections and forms was Joyal; but
the relation ~ and its utilization for connections appear already in [6].

If @ is a groupoid with B as its object set, a graph map over B

74 :B(l)_’dj

is called a connection on @, If G is a group (considered as a groupoid with one
object, hence as a graph with one vertex), a graph map

is called a 1-form on B (with values in G); cf. [8] for the differential geometric
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motivation for this notion and its equivalence with the classical notion of differen-
tial form with values in the Lie algebra of G.

We now consider groupoids @ of the form £* with E a pregroupoid over B. We
provide E with a reflexive symmetric relation ~ by setting x~y iff n(x) ~ n(y) in B.

Proposition 2.1. There is a natural 1-1 correspondence between connections V on
E*, and E.valued 1-forms Q on E which are right Eequivariant in the sense that
Q(xz-0)=2((x,2)-0 VoekE,, Vx,z with n(x)=n(2); 2.1)

Q is called the connection-form of the connection V.

Proof/construction. Given V, define Q by
Q(X,y) e V(ﬂ(x), 7T(,V))‘X,J’- (2‘2)
Given £, define IV by

Via, b):=xy- Q(,x), (2.3)

where x and y are arbitrary elements in E over respectively @ and b. This well-defines
V(a,b), for, if we had chosen x'=x- ¢ instead of x, we would get

X0,y - QUx-0)=x-0,y- QX)) 0=xy2(,x)

by (2.1) and (1.8). Similarly, if we had chosen y’=y - ¢ instead of y; then we would
use 2Q(y-0,x)=0"'- Q(y,x), which follows from (2.1) and Q(,s)=Q(s,7) . We
leave the further checking to the reader. It is of course similarly trivial/equa-
tional. [

3. Integrable connections and exact forms

We first summarize some notions from [8]. Let throughout this section B be a
set with a symmetric reflexive relation ~. If G is a group, a (G-valued) O-form on
B is just a map B— G, a (G-valued) 1-form is as defined in Section 2, and a (G-
valued) 2-form is a law which to any ‘2-simplex’ in B (meaning a triple x, y, z with
X~y ~z~X) associates an element of G, and which satisfies some equational condi-
tions which we shall not need here.

To a 0-form f on B, we associate two 1-form df and df, given by, respectively

@f)ab)=1) fl@) ", 3.1)
@f)aby=f(@ " f(b), (3.2)

for a~b.
Also, to a 1-form w, we associate two 2-forms dw and dw, given by, respectively

(dw)(@ b, 0)=wl(c,a)- w(b,c)- wla,b), (3.3)
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(dw)(a, b, c)=w(a b)- w(b,c)- wlc a). 3.9

for any 2-simplex a, b, c.

Clearly d(df) and d(df) are both the zero 2-form, meaning it takes value ee G
on any 2-simplex (¢=neutral element of G). In the following, we shall give prefer-
ence to the lower-bar case (3.2)-(3.4), and write df for df, dw for dw. Also, we
say that a 1-form w is closed if dw=0.

We say that the pair (B, ~), G admits integration if ‘‘closed 1-forms are exact’’,
meaning precisely: to any closed 1-form w, there is a O-form f: B— G with df=w
(‘a primitive of w’), and any two such primitives differ by left multiplication by a
fixed ge G,

fik)y=g-f,(b) VbeB.

Remark 3.1. One of the fundamental theorems of differential geometry may be
expressed: if G is a Lie group, and B is a connected and simply connected manifold,
then B, G admits integration. This requires the use of the context of synthetic differ-
ential geometry, and in particular, taking ~ to be the first neighbourhood of the
diagonal of B. For a proof, see [8].

Closely connected with coboundary of 1-forms is curvature of connections. If @
is a groupoid over B, and V is a connection in @, the curvarure of V is the law which
to any 2-simplex (a, b, c) in B associates the composible arrow

Vic,a)oV(b,c)oV(a b)e D(a,a),

and we say that V is curvature-free if for all 2-simplices, this arrow is an identity
arrow.

Also, closely connected with primitives of 1-forms are integrals of connections:
if  is a connection on @, an integral for it is a map V: Bx B— & with V(a,b): a— b
for all ¢, be B, and with

V(a,b)=V(ad) for a~b
V(b,c)oV(a,b)=V(a,c) Va,b,c.

Equivalently: ¥ is a functor over B from the codiscrete groupoid myB on B, extend-
ing V. Or, equivalently again, it is a curvature free connection ¥ in &, but now with
B viewed as having the codiscrete ~ on it (@ ~ b for all 4, b), and with I/ extending V.
Clearly, if V has an integral, then it is a curvature free.
We now consider the case where the groupoid @ is of the form E* for some pre-
groupoid E over B. Then

Proposition 3.2. Under the correspondence of Proposition 2.1, curvature free con-
nections correspond to closed forms.
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Proof. Suppose V is curvature free, and let x, y,z be a 2-simplex in E. Write a, b, ¢
for n(x), n(¥), and m(z), respectively. Then

Q) Q2)- iz x)=V(a,b)-x,y-V(b,o)-y,z-V(c,a) z,x.

Now multiply the two entries in the first factor on the left by o=V {(c,a)oV(,¢),
which we may by (1.8), and similarly, multiply the two entries in the second factor
by ¢ =V(c,a). By (1.2), the expression then reduces to

Vica)oV(b,c)oV(a b)- x,x; (3.5)

the left hand entry is x, by the assumption on V being curvature free, so we get
xx=e. Conversely, if Q is closed, and g, b, ¢ is a 2-simplex in B, we may choose x,
¥, and z above a, b, and ¢, respectively. The same calculation as before now leads
from the assumption on £ to the conclusion that (3.5) is e, whence, by (1.4),
V(c,a)oV(b,c)oV (a,b) is an identity arrow in E*. This proves the proposition. [

Corollary 3.3. Let V be a connection on E* with connection from Q. Then there
is a natural 1-1 correspondence between integrals V of V, and extensions Q of Q

Q:EXE—E,
which are right Es-equivariant, and satisfy

Qxy)- Q2 -2z x)=e Vx,yz€eEF. (3.6)

Proot. Apply the correspondence of Proposition 2.1, but now with B equipped with
the codiscrete ~, to get the 1-1 correspondence between ¥’s and @’s. Then, by
Proposition 3.2, ¥/ is an integral (i.e. is curvature free) iff € is closed, i.e7 satisfies
(3.6). Since the correspondence V& @ is given by (2.2) and (2.3), as is the cor-
respondence between I and €, it follows that 7 extends V iff @ extends Q. [

It is easy to see that there is a bijective correspondence between, on the one side,
maps Q: Ex E— E, which are right E4-equivariant, and are closed 1-forms with
respect to the codiscrete ~ on E (i.e. they satisfy (3.6)), and, on the other side, or-
bits of right Es-equivariant maps f: E— E, under the left (valuewise) action of Ey,
namely, to the orbit of f, associate d f given by (df)(x, ¥) :==f(x) "' f(3), and to 3,
associate the orbit of Q(x,-): E— Ey, for some (any) fixed x,€E.

We can now prove

Theorem 3.4. Assume the pair (B, ~), E4 admits integration. Then, any curvature-
free connection V on E* has a unique integral V: BX B— E*,

Proof. We shall use a useful and well-known fact of categorical logic: if a construc-
tion can be performed using a hypothetical splitting s of an epic 7, but the result
of the construction is independent of the chosen splitting, then the construction can
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be performed, even though no splitting of 7 exists. (Proof of this fact: construct
locally; glue together by uniqueness.) So suppose s: B— E is a hypothetical splitting
of 7. The connection form Q of V is closed (Proposition 3.2), hence so is the 1-form
s*Qon B (s*Q(a, b) = 2(s(a),s(b)). By the integration assumption, there exists a map
h: B—E, with dh=s5*Q, so for a~b in B

h(a)’1 - h(b)=Q(s(a), s(b))=V(a,b) - s(a),s(b) 3.7
by (2.2). We construct 7 essentially by (2.3):
7 (a,b) :=s(a),s(b)- h(b) ' h(@)=s(a)- h(a)~',5(b)- h(b)~" (3.8)

(the last equality by (1.8)). Then it is immediate from (1.2) that I is curvature free.
Also, it extends V, for, if ~b in B, we have by (3.8), (3.7), and (2.3)

V(a, b)=s(a),s(b) - h(b)~ ' h(a)=s(a),s(b) - Q(s(D),s(a)) =V (a,b).

To prove uniqueness of such 7 (and, as explained, the uniqueness justifies the use
of the splitting s), let 7}, 7, be two integrals of 7. By Corollary 3.3, they corre-
spond to right-equivariant closed 1-forms Q;, &, on E (with codiscrete ~), extend-
ing Q, and hence, as we remarked, to two (orbits of) right Es-equivariant maps
f1» 21 E— E. Both of these are right-invariant primitives of £2, hence factor across
7 and belong to the same orbit under the left E4-action, whence Ql =!§2, whence
V7, =V,. This proves the uniqueness and thus the theorem. [J

Recall that a groupoid @ with object set B is called transitive if for any a,b € B,
there is at least one arrow a¢— b. ‘The’ isotropy group of a transitive @ is the group
@ (a,a) for any ae B; it is only determined up to (non-canonical) isomorphism.

Corollary 3.5. Let @ be a transitive groupoid on B, with isotropy group G. Assume
the pair (B, ~), G admits integration. Then a connection V in @ admits an integral
iff it is curvature free. Such an integral is unique.

Proof. Any transitive @ is of the form E* for some pregroupoid £ on B (cf. [9]),
namely with E, = ®(a, b) (fixed a), and A(x, y,2)=y ox~ oz, Then Ey is isomorphic
to the isotropy group of @. Now apply the theorem to E. [

4. Lift along curves, and holonomy

Let G be a group, and let I be a set with a symmetric reflexive relation ~ on it,
such that (, ~), G admits integration and such that any G-valued 1-form on [/ is
closed (hence exact, with unique primitive, modulo left multiplication). In the appli-
cation, I will be the unit interval.

Let us also consider a groupoid @ over B, transitive and with isotropy group =G.
We assume B is equipped with a symmetric reflexive relation ~. By a path in B we
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mean any map f: I— B which preserves the relation ~. If fis a path, the groupoid
& over B pulls back to a groupoid @, over I, with hom sets given by

Dr(ty, 1) == DS (1)), ().

Also, given a connection V': B(;,— @, it pulls back to a connection V: I;,— @;: for
tl i tp_ in/

Vit ) =V (f(1)), [(t)) € DU (1), S (1)) = Pyl11, 1),

Applying Corollary 3.5 for the groupoids &, and the connection V; (which is cur-
vature free, since its connection form, when @, is written in form E* for a pre-
groupoid E over I, is closed, by assumption on /), we get

Theorem 4.1. To any path f: I— B, there exists a unique functor l7f: gl — @ which
is f on objects and satisfies, for all t,t,,5 in I with t;~1,,

VUt f(6) o Vils T) = V(s 1),
(““Lift of f by V, or lift of V along f’.)

Assume now further that 7is equipped with two specified elements 0 and 1. By
the holonomy groupoid #(V)C @ of the connection V, we understand the smallest
subgroupoid containing I7f(0, 1) for all paths f: I— B. It is a transitive subgroupoid
of @ is we assume B to be path-connected: to any a, b € B, there exists a path f with
f@®=a, f(1)=>b. ‘The’ holonomy group s#(V) of V is defined to be ‘the’ isotropy
group of (V).

Corollary 4.2. Assume B path connected, and such that the pair (B, ~), Ex admits
integration, and suppose V is a curvature free connection on E*. Then the holo-
nomy groupoid #(V') is trivial (i.e. codiscrete: for any pair a,b in B, there is exactly
one arrow).

Proof. Let IV: B x B— E* be the integral of / (Corollary 3.5). For any path f: I B
from a to b, the function /X 7— E* given by

(s,2)~ V(f(s), (1))

will be an integral of Vy, so
which is independent of the path f. O

A transitive groupoid @ on B with isotropy group G is said to be reducible to the
subgroup G'C G if there is a subgroupoid &’C & with isotropy group G’ and still
transitive on B. (The notion really applies not to subgroups but to conjugacy classes
of subgroups.) We get in particular, under the standing hypotheses of this section,
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the following corollary of Theorem 4.1:

Corollary 4.3. If IV is a connection on the transitive groupoid ®@ over B, and B is
path connected, then @ is reducible to the holonomy subgroup of V.

From the assumptions made so far, it does not follow that V(a,b)e AV ). We
have to assume that among the paths f from « to b, there exists one with l7f(a, b)=
V(a,b); in the applications, such a path will be the unique affine path t~
(1-#8)-a+t- b, which, for a~b, can be proved to be independent of the choice of
coordinate chart employed to make sense to this affine combination.

Let E be a pregroupoid. As in [9, §3], we may (for any a € B), by choosing a base
point 0 in E,, construct an isomorphism of groups & : E*(a, a) = E; any two such
differ by inner automorphism on E,. Therefore, if HCEy is a normal subgroup,
and #CE* a subgroupoid, it makes sense to say that #(a,a)SH (meaning:
&o(#(a,a)) € H for one, hence any, 0 E,).

Let us in what follows suppress mentioning of ~ on B and I, and let us accumu-
late the hypotheses made so far: (E—B, A) is pregroupoid, (B, E4) admits integra-
tion; B is path connected, and (/, Ex) admits integration. Under these hypotheses,
we have the following version of Ambrose-Singer’s Theorem:

Theorem. Let H<E, be a normal subgroup such that B, E/H admits integration.
If V is a connection on E* with connection form Q, such that all values of dQ
belong to H, then the holonomy groups #(a,a) of V are contained in H.

Proof. The set E/H of orbits of the right action of H C E, can be equipped with
structure of pregroupoid A (over B), with p: E— E/H a pregroupoid homomor-
phism in the evident sense. (This follows from the easily proved equations

A g, 3,2)=A0x1,2)- (g7 )%,
/l(x’y' g,z)zl(x,y,z) ‘ gﬁ;
A2 9 =A(2,2)-&

where a?:=("' a-b). Then (E/H), is canonically identified with E./H. Also,
there is a groupoid homomorphism E*— (E/H)*, and using this, we get a connec-
tion Vy on (E/H)*, whose curvature form Qy is related to the curvature form
of by

Qu(px), p(¥)=2(x,y)- HEE\/H.

The assumption on dQ now says by Proposition 3.2 that Vg is curvature free. By
Corollary 4.2, its holonomy groupoid AV ) S (E/H)*, is codiscrete, or

H viewed as an element of E,/H. Since lifts of paths by V by p: E— E/H go to their
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lifts by Vg, we conclude

AV)SH.
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