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Introduction

The notions of bundle, and bundle functor, are useful and well exploited notions
in topology and differential geometry, cf. e.g. [12], as well as in other branches of
mathematics. The category theoretic set up relevant for these notions is that of
fibred category, likewise a well exploited notion, but for certain considerations
in the context of bundle functors, it can be carried further. In particular, we
formalize and develop, in terms of fibred categories, some of the differential
geometric constructions: tangent- and cotangent bundles, (being examples of
bundle functors, respectively star-bundle functors, as in [12]), as well as jet
bundles (where the formulation of the functorality properties, in terms of fibered
categories, is possibly new).

Part of the development in the present note was expounded in [11], and is
repeated almost verbatim in the Sections 2 and 4 below. These sections may
have interest as a piece of pure category theory, not referring to differential
geometry.

1 Basics on Cartesian arrows

We recall here some classical notions, cf. e.g. [2] or [17].
Let π : X → B be any functor. For α : A → B in B, and for objects

X,Y ∈ X with π(X) = A and π(Y ) = B, let homα(X,Y ) be the set of arrows
h : X → Y in X with π(h) = α.

The fibre over A ∈ B is the category, denoted XA, whose objects are the
X ∈ X with π(X) = A, and whose arrows are arrows in X which by π map to
1A; such arrows are called vertical (over A). The hom functor of XA is denoted
homA.

Let h be an arrow X → Y , and denote π(h) by α : A → B, where A = π(X)
and B = π(Y ). For any arrow ξ : C → A, and any object Z ∈ XC , post-
composition with h : X → Y defines a map

h∗ : homξ(Z,X) → homξ.α(Z, Y ).

(we compose from left to right). Recall that h is called Cartesian (with respect
to π) if this map is a bijection, for all such ξ and Z. It is easy to see that
Cartesian arrows compose, and that isomorphisms are Cartesian. In particular,
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the Cartesian arrows form a subcategory of X . Also, a vertical Cartesian arrow
is an isomorphism.

Example. The following is a fundamental example, which will also be the
origin for some of the applications that we present. Let B be any category, and
let B2 be the category of arrows in B, so the arrows in B2 are the commutative
squares in B. Let ∂1 : B2 → B be the functor which to an arrow assigns its
codomain. Then a commutative square in B is a Cartesian arrow in B2 (with
respect to ∂1 : B2 → B) precisely when the square is a pull-back.

The property of being a Cartesian arrow is clearly a kind of universal prop-
erty. There is a weaker notion of when an arrow h as above is pre-Cartesian1,
namely that, for any Z ∈ XA, post-composition with h defines a bijection

h∗ : homA(Z,X) → homα(Z, Y ).

The property of being a pre-Cartesian arrow is clearly a universal property. In
fact, to say that h : X → Y is preCartesian over α can be expressed by saying
that h is terminal in a certain “relative comma-category” XA ↓α Y whose objects
are arrows in X over α with codomain Y , and whose arrows are arrows in XA

making an obvious triangle commute.

Remark. There are dual notions of coCartesian and pre-coCartesian arrows;
they will not play much role in the following, except that we at one point shall
consider the latter notion; thus, if α : A → B in X , and X ∈ XA, we have
another “relative comma-category” X ↓α XB whose objects are arrows in X
over α with domain X, and whose arrows are arrows in XB making an obvious
triangle commute. Then a pre-coCartesian arrow over α with domain X is by
definition an initial object in this category.

Clearly, if h is Cartesian, then it is also pre-Cartesian. Also Cartesian arrows
over α, with given codomain Y , are unique up to unique vertical map (necessarily
invertible) in XA; the same applies to pre-Cartesian arrows.

If h is Cartesian, the injectivity of h∗ implies the cancellation property that
h is “monic w.r. to π”, meaning that for parallel arrows k, k′ in X with codomain
X, and with π(k) = π(k′), we have that k.h = k′.h implies k = k′.

For later use, we recall a basic fact:

Lemma 1.1 If k = k′.h is Cartesian and h is Cartesian, then k′ is Cartesian.

For pull-back squares, this is well known property for the functor ∂1 : B2 →
B, cf. the Example above.

The functor π : X → B is called a fibration if there are enough Cartesian
arrows, in the following sense: for every α : A → B in B and every Y ∈ XB ,
there exists a Cartesian arrow over α with codomain Y . Such arrow is called a
Cartesian lift of α with codomain Y . A choice, for each arrow α : A → B in

1called Cartesian in the earlier literature (Grothendieck et.al); we follow the terminology
mostly in use now, see e.g. [2] or [17].
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B and for each Y ∈ XB , of a Cartesian lift of α with codomain Y , is called a
cleavage of the fibration π. The domain of the chosen Cartesian arrow over α
with codomain Y is sometimes denoted α∗(Y ). We use cleavages mainly as a
notational tool, to facilitate reading, but generally, we avoid cleavages.

The functor ∂1 : B2 → B (cf. the Example above) is a fibration precisely when
B is a category with pull-backs; then ∂1 is called “the codomain fibration”. A
cleavage for it amounts to a choice of pull-back diagrams in B.

2 The “factorization system” for a fibration

Let π : X → B be a fibration, and let z : Z → Y be an arrow in X . Let
h : X → Y be a Cartesian arrow over α := π(z). By the universal property of
the Cartesian arrow h, there is a unique vertical v : Z → X with z = v.h.

Thus, every arrow z in X may be written as a composite of a vertical arrow
followed by a Cartesian arrow (Cartesian arrows, we like to think of as being
“horizontal”). And, crucially, this decomposition of z is unique modulo a unique
vertical isomorphism. Or, equivalently, modulo a unique arrow which is at
the same time vertical and cartesian. (Recall that for vertical arrows, being
Cartesian is equivalent to being an isomorphism (= invertible).) This means
that every arrow z in X may be represented by a pair (v, h) of arrows with v
vertical and h cartesian, with z = v.h, (and with the codomain of v equal to the
domain of h). We call such a pair a “vh composition pair”, to make the analogy
with vh spans, to be considered below, more explicit. Two such pairs (v, h)
and (v′, h′) represent the same arrow in X iff there exists a vertical cartesian
(necessarily unique, and necessarily invertible) s such that

v.s = v′ and s.h′ = h. (1)

We say that (v, h) and (v′, h′) are equivalent if this holds. The composition of
arrows in X can be described in terms of representative vh composition pairs,
as follows. If zj is represented by (vj , hj) for j = 1, 2, then z1.z2 is represented
by (v1.w, k.h2), where k is cartesian over π(h1) and w is vertical, and the square
displayed commutes:

·

·

v1

? h1 - ·

·

w

?

k
- ·

v2

?

h2

- ·

(2)
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Such k and w exists (uniquely, up to unique vertical cartesian arrows): construct
first k as a Cartesian lift of π(h1) with same codomain as v2, then use the
universal property of Cartesian arrows to construct w.

The arrows z1 and z2 may be inserted, completing the diagram with two
commutative triangles, since zj = vj .hj . But if we refrain from doing so, we
have a blueprint for a succinct and choice-free description of the fibrewise dual
X ∗ of the fibration X → B, to be described in Section 4.

Note that a vh factorization of an arrow in X is much reminiscent of the
factorization for an E-M factorization system, as in [2] I.5.5, say, (with the class
of vertical arrows playing the role of E, and the class of Cartesian arrows playing
the role of M ; however, note that not every isomorphism in X is vertical.

3 Construction of functors out of a fibered cate-
gory

Let π : X → B be a fibration, and consider a functor F : X → Y. Let X denote
the category of vertical arrows in X . Then by restriction, F gives a functor
F : X → Y. The restriction of F (or of F ) to the fibre XA is denoted FA.
Similarly, let X denote the category over B consisting of the Cartesian arrows
of X only, and let F denote the restriction of F to X . Then F gives rise to the
following data:

1) for each A ∈ B, a functor FA : XA → Y
2 a functor F : X → Y.

Since the FAs and F are restrictions of the same functor F , it is clear that we
have the properties

3) if s is vertical over A, and Cartesian, FA(s) = F (s)
4) Given a commutative square in X , with v and w vertical and with h and

k Cartesian (over α : A → B, say)

·
k - ·

·

v

?

h
- ·

w

?

Then FA(v).F (h) = F (k).FB(w).

Theorem 3.1 Given functors FA : XA → Y (for all A ∈ B), and given a
functor F : X → Y over B as in 1) and 2), and assume that the conditions 3)
and 4) hold. Then there exists a unique functor F : X → Y with restrictions
FA to the fibres XA and with restriction F to the Cartesian arrows.

If Y comes with a functor to B, and if for all A ∈ B, FA factors through
YA ⊆ Y, then the constructed F is a functor over B.
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Proof. Given an arrow x over α : A → B, say. Since X → B is a fibration, x
admits a vh factorization x = v.h with v vertical over A and h Cartesian over
α, so we are forced to define F (x) := FA(v).F (h). To see that this F is well
defined, we consider another possible vh factorization x = v′.h′. It compares
with the given v.h by a vertical Cartesian s with v′ = v.s and h = s.h′. We
have

FA(v).F (h) = FA(v).F (s.h′) = FA(v).F (s).F (h′),

FA(v
′).F (h′) = FA(v.s).F (h′) = FA(v).FA(s).F (h′),

using that F and FA are functors. By condition 3), F (s) = FA(s), so the
two expressions agree. Let us next prove that the F constructed preserves
composition of arrows, say f1.f2. Pick a vh factorization of f1, say f1 = v1.h1,
and similarly for f2. Interpolate a w and k as in (2); then use condition 4) for
the interpolated square. –The last assertion is obvious.

Even when, as in the last statement of the Proposition, the category Y is
given as a category over B, it is not assumed to be fibered over B. But if Y → B
happens to be a fibration, then given the family of functors FA : XA → YA, the
data of the functor F may be formulated in an alternative way, provided we
assume given cleavages of both X → B and Y → B. For then, to give the value
of F on a Cartesian arrow X ′ → X over α, it suffices to give the value of F on
the chosen Cartesian arrow h : α∗(X) → X over α and with codomain X. This
value is an arrow in Y over α and with codomain FB(X), and as such factors
uniquely by a vertical arrow vα,X followed by the chosen Cartesian arrow over
α with that codomain, thus

FA(α
∗(X))

α∗(FB(X))

vα,X

?
- FB(X)

F (h)

-

with the bottom arrow the chosen Cartesian. (Note that F (h) need not be
Cartesian; we did not assume that F preserves the property of being Cartesian.)
So the data of F resides in the FAs, together with the vertical maps

vα,X : FA(α
∗(X)) → α∗(FB(X)). (3)

(The vα,X thus derived satisfy certain equations, in particular, for fixed α, vα,X
is natural in X ∈ XB ; there are also equational conditions involving the com-
parison isomorphisms between α∗ ◦ β∗ and (β ◦α)∗. In terms of pseudofunctors
sometimes used to present fibrations, v is a lax (or colax?) transformation
between the pseudofunctors representing X and Y, respectively. - We shall
not enter into these conditions, since the conditions in the Theorem are clear
enough.)
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4 The dual fibration X ∗; comorphisms

The construction2 presented in this Section is elementary. (In fact it is clear that
it makes sense for categories and fibrations internal to an exact category.) It is
is a direct generalization of the “star bundle” construction of [12] 41.1, where
it is presented to account for the functorial properties of, say, the formation of
cotangent bundles in differential geometry.

Given a fibration π : X → B. We describe another category X ∗ over B, the
“fibrewise dual of X → B”, as follows: The objects of X ∗ are the same as those
of X ; the arrows X → Y are represented by vh spans, in the following sense:

Definition 4.1 A vh span in X from X to Y is a diagram in X of the form

·
h - Y

X

v

?

(4)

with v vertical and h cartesian.

The set of arrows in X ∗ from X to Y are equivalence classes of vh spans
from X to Y , for the equivalence relation ≡ given by (v, h) ≡ (v′, h′) if there
exists a vertical isomorphism s (necessarily unique) in X so that

s.v. = v′ and s.h = h′. (5)

We denote the equivalence class of the vh span (v, h) by {(v, h)}. They are the
arrows of X ∗; the direction of a the arrow {(v, h)} is determined by its Cartesian
part h.

Composition has to be described in terms of representative pairs; it is in
fact the standard composite of spans, but let us be explicit: If zj is represented
by (vj , hj) for j = 1, 2, then z1.z2 is represented by (w.v1, k.h2), where k is

2The construction, in elementary terms, of the dual fibration can be distilled out of a more
general construction [1] by Barwick et al. in the context of quasi-categories. I was unaware
of their construction when I put a preliminary version [11] of the present paper on arXiv. I
want to thank them for calling my attention to their work. The construction (for categories,
not for quasi-categories) was apparently also known by Borceux, cf. Exercise 8.8.2 in [2] II.
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Cartesian over π(h1) and w is vertical, and the square displayed commutes:

·
k - ·

h2 - ·

·

w

?

h1

- ·

v2

?

·

v1

?

(6)

Such k and w exists (uniquely, up to unique vertical cartesian arrows): construct
first k as a cartesian lift of π(h1), then use the universal property of cartesian
arrows to construct w. (The square displayed will then actually be a pull-back
diagram, thus the composition described will be the standard composition of
spans.)

Composition of vh spans does not give a definite vh span, but rather an
equivalence class of vh spans. So referring to (6), the composite of {(v1, h1)}
with {(v2, h2)} is defined by

{(v1, h1)}.{(v2, h2)} := {(w.v1, k.h2)}.

There is a functor π∗ from X ∗ to B; on objects, it agrees with π : X → B;
and π∗({(v, h)}) = π(h). Note that if v : X ′ → X is vertical, the vh span (v, 1)
represents a morphism X → X ′ in X ∗.

Clearly, a vertical arrow in X ∗ has a unique representative span of the form
(v, 1). So the fibres of π∗ : X ∗ → B are canonically isomorphic to the duals
of the fibres of π : X → B, i.e. (X ∗)A ∼= (XA)

op; so X ∗ is “fibrewise dual” to
X (but is not in general dual to X , since the functor π∗ : X ∗ → B is still a
covariant functor). The arrows in X ∗, we call comorphisms in X ; it is ususally
harmless to use the name “comorphism” also for a representing vh span (v, h).

There are two special classes of comorphisms: the first class consists of those
comorphisms that can be represented by a pair (v, 1) where 1 is the relevant
identity arrow. They are precisely the vertical arrows for X ∗ → B. – The
second class consists of those comorphisms that can be represented by a pair
(1, h) where 1 is the relevant identity arrow. We shall see that these are precisely
the cartesian morphisms in X ∗.

We first note that if (v, h) represents an arbitrary arrow in X ∗, then

(v, h) ∈ {(v, 1)}.{(1, h)}; (7)
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this is witnessed by the diagram

·
1 - ·

h - ·

·

1

?

1
- ·

1

?

·

v

?

since the upper left square is of the form considered in (6).

Proposition 4.2 An arrow g is Cartesian in X ∗ iff it admits a vh represen-
tative of the form (1, h). Any vh representative of such g is of the form (w, k)
with w (vertical and) invertible.

Proof. In one direction, let (1, h) represent a comorphism Y → Z over the
arrow β in B, and let (v, k) represent a comorphism X → Z over α.β. We
display these data as the full arrows in the following display (in X and B):

·

X

v

?
Y

h
-

k′

................................-

Z

k

-

: : :

·
α

- ·
β

- ·

;

The dotted arrow k′, with k′.h = k, comes about by using the universal property
of the Cartesian arrow h in X . Since k and h are Cartesian, then so is k′, by
Lemma 1.1. So (v, k′) is a comorphism over α, and (v, k′).(1.h) ≡ (v, k), and
using the cancellation property of Cartesian arrows, (v, k′) is easily seen to
represent the unique comorphism over α.β composing with (1, h) to give (v, k).

In the other direction, let g be a cartesian arrow in X ∗. Let (w, k) be an
arbitrary representative of g. Then by (7), g = {(w, 1)}.{(1, k)}. Since g is
assumed cartesian in X ∗, and {(1, k)} is cartesian by what is already proved,
it follows from Lemma 1.1 that {(w, 1)} is cartesian. Since it is also vertical, it
follows that it is an isomorphism in X ∗, hence w is an isomorphism in X . (And
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this proves the second assertion of the Proposition.) Since k is cartesian in X ,
w−1.k is cartesian as well, and

(w, k) ≡ (1, w−1.k),

so g has a representative of the claimed form.

Proposition 4.3 The functor π∗ : X ∗ → B is a fibration over B

Proof. Let β : A → B be an arrow in B, and let Y ∈ XB . Since X → B is a
fibration, there exists in X a cartesian arrow h over β with codomain Y , and
then the vh span (1, h) represents, by the above, a cartesian arrow in X ∗ over
β.

The argument gives what may briefly be expressed: the Cartesian arrows of
X are the same as the Cartesian arrows of X ∗.

Since X ∗ → B is a fibration, we may ask for its fibrewise dual X ∗∗:

Proposition 4.4 There is a canonical isomorphism over B between X and X ∗∗.

Proof. We describe an explicit functor y : X → X ∗∗. Let us denote arrows in
X ∗ by dotted arrows; they may be presented by vh spans (v, h) in X . We first
describe y on vertical and cartesian arrows separately. For a vertical v in X ,
say v : X → X ′, we have the vh span (v, 1) in X , which represents a vertical
arrow v : X ′ - X in X ∗; thus we have a vh span (v, 1) in X ∗, which in turn
represents a vertical arrow X → X ′ in X ∗∗. This arrow, we take as y(v) ∈ X ∗∗.
Briefly, y(v) = ((v, 1), 1). – For a cartesian h : X ′ → Y (over β, say), we have
a vh span (1, h) in X , which represents a horizontal arrow h : X ′ - Y in
X ∗ (cartesian over β); thus we have a vh span (1, h) in X ∗, hence an arrow in
X ∗∗, from X ′ to Y which we take as y(h) ∈ X ∗∗; briefly, y(h) = (1, (1, h)). The
construction Theorem 3.1 can now be applied; thus for a general f : X → Y in
X , we factor it v.h with v vertical and h cartesian, and put y(f) := y(v).y(h).
We leave to the reader to verify the conditions 3) and 4) of the Theorem, i.e.
that a different choice of v and h gives an equivalent vh span in X ∗, thus the
same arrow in X ∗∗.

Conversely, given an arrow g : X → Y in X ∗∗, represent it by a vh span in
X ∗, (v, h),

X ′ ...................
h

- Y

X

v

?

.................

Since v is vertical, we may pick a representative of v in the form (v, 1) with
v : X → X ′, and since h is cartesian in X ∗, we may pick a representative of it if
the form (1, h), with h : X ′ → Y in X . Then the composite v.h : X → Y makes
sense in X , and it goes by y to the given g.

9



For simplicity of notation and reading, one sometimes assumes that one has
a cleavage for a given fibration X → B, i.e. a choice of Cartesian arrows; for
α an arrow in B and Y an object in X over the codomain of α, the chosen
Cartesian arrow over α is denoted α∗(Y ) → Y . With such a cleavage, each
equivalence class of vh composition pairs has a unique representative with one
of these chosen arrows as h-part; and similarly for vh spans.

5 The codomain fibration, and bundle functors

Recall that if B is a category with pull-backs, then ∂1 : B2 → B is a fibration; the
Cartesian arrows are the pull-back squares. This fibration is called the codomain
fibration. Note that for A ∈ B, the category (B2)A is the slice category B/A.

For simplicity of notation, we assume in this Section a cleavage, which here
amounts to a choice of pull-back diagrams, for any α and y with common co-
domain; then the following uses of the notation α∗ is standard:

· - ·

A

α∗(y)

?

α
- B

y

?

or with slight abuse:

α∗(Y ) - Y

A
?

α
- B.

y

?

Note that we do not assume that α∗(Y ) = y∗(A).
The identity functor idB : B → B is likewise a fibration over B (this does

not depend on B having pull-backs). When viewing B as being fibered over B in
this way, it is sometimes useful to denote it B1, in analogy with B2; all arrows
in B1 are Cartesian.

An important class of functors over B are functors T : B1 → B2. Thus,
the data of such functor amounts to a functor T0 : B → B plus a natural
transformation T : T0 → idB. Such data is called a bundle functor in [12] when
B is the category of smooth manifolds (they require the instances of π to be
submersions). Often, one does not notationally distinguish between T0 and T ,
or one writes T for T0 and π for the natural transformation. An example is
the tangent bundle formation: If A is a smooth manifold, T (A) is the tangent
bundle of A, πA : T0(A) → A (we are disregarding for the moment the fibrewise
vector space structure of the tangent bundle). Naturality of π says that for
α : A → B

T0(A)
T0(α)- T0(B)

A

πA

?

α
- B

πB

?
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commutes. The bundle functor thus described is only Cartesian (i.e. preserves
Cartesian arrows) when all squares of this form are pull-backs. (This square is
clearly not a pull-back when T is the tangent bundle formation, unless α is a
local diffeomorphism.)

6 The fibrewise dual of the codomain fibration

We describe (B2)∗, specializing the description in the Section 4. Explicitly,
for this special case, its objects are likewise arrows in B, and the arrows over
α : A → B, from x : X → A to y : Y → B, may be presented in the form of
commutative diagrams η (“comorphisms” from x to y)

α∗(Y ) - Y

X

v

?
η

A

x

?

α
- B

y

?

(8)

where the rectangle is a pull-back; since we have chosen pull-backs, the presenta-
tion is unique if we insist that the top arrow is a chosen Cartesian, as suggested
by the notation. Note that, given the x and y, as well as α, the information of
the comorphism η resides in the map denoted v.

This kind of pull-back diagram was also considered in [18], under the name
of “pull-back around α, x”. By the general theory of Section 4, the comorphism
η : x - y exhibited in (8) is Cartesian in (B2)∗ iff v is an isomorphism. This
implies that it is a terminal object in the relative commacategory (B2)∗A ↓α y.
We may also ask the dual question: when is η pre-coCartesian, i.e. initial in
the relative commacategory x ↓α ((B2)∗)B ? This is precisely to say that the
diagram is a distributivity pull-back, in the sense of [18]; for, this means by
definition that it is a terminal object in the category of “pull-backs around α,
x” . The reason why our “initial” then is substituted for “terminal” in [18] is
just that, in our set up, the A-fibre of (B2)∗ is dual to B/A. When the functor
α∗ : B/B → B/A has a right adjoint Πα, then the y occurring in (8) is Πα(x),
and the v is the back adjunction α∗Πα(x) → x.

It is worthwhile to reformulate the description of the fibrations B2 → B
and (B2)∗ → B for the case where B is the category of sets, so that an object
ξ : X → A in B2 or in (B2)∗ may be seen as a family {Xa | a ∈ A} of sets: take
Xa := ξ−1(a).
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In this case, a morphism in B2 over α : A → B, from X → A to Y → B, may
be seen as a family of maps {fa : Xa → Yα(a) | a ∈ A}, and a morphism in (B2)∗

(i.e. a comorphism) over α : A → B from X → A to Y → B may be seen as a
family of maps {fa : Yα(a) → Xa | a ∈ A}. Let us write f : X - Y for such
a comorphism, reserving the plain arrows for acual set maps. Composition of
comorphisms is essentially just composition of maps: if f : X - Y , as above,
is a comorphism over α : A → B and g : Y - Z similarly is a comorphism over
β : B → C, the composite of f followed by g is the comorphism h : X - Z
over A → C, given by ha(z) := fa(gα(a)(z)) for z ∈ Zβ(α(a)).

Note that for Y → B and α : A → B, α∗(Y ) is given by the A-indexed
family {Yα(a) | a ∈ A}.

These set-theoretic descriptions do not depend on cleavages; on the contrary,
suitably interpreted, reading a ∈ A etc. as generalized elements (as in [8]), they
describe the universal properties characterizing the objects or maps in question
(even in more general categories). Similarly when reading objects in fibered
categories as “generalized families” (as in [5] Chapter I).

7 Star bundle functors

As in two the previous sections, we consider a category B with pull-backs, so
that we have two fibrations over B, B2 and its fibrewise dual (B2)∗. We also
have the trivial fibration B1 over B. A star bundle functor (terminology from
Kolář, Michor and Slovák, [12]) is now defined to be a functor S over B from
B1 to (B2)∗. By the explicit description in the previous section, this amounts
to the following data: for each A ∈ B, an arrow πA : S0(A) → A, and for each
α : A → B, a pull-back diagram like (8),

α∗S0(B) - S0(B)

S0(A)

v

?

A

πA

?

α
- B.

πB

?

More generally, if X → B is any fibration, a star-bundle functor with values
in X → B is a functor over B from B1 to X ∗.

The formation of cotangent bundles for manifolds is an example, to be de-
scribed in the following Section. It is defined as the “fibrewise linear dual” of
the tangent bundle, viewed as a vector bundle, i.e. as the composite of T with
a “fiberwise duality” functor †, whose categorical status will be described.
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8 Vector bundles, and the cotangent bundle

The full generality of the present Section is probably that of fibrewise symmetric
monoidal closed category, in the sense of [3], [16] et al., but we formulate things
more concretely in terms of the fibered category V → B of vector bundles (over
spaces in a suitable category B of, say, smooth manifolds). Thus VA is the
category of vector space objects in the category B/A. This V comes with a
forgetful functor over B from V to B2.

Again, we assume a cleavage, and the resulting notation like α∗(Y ) for the
chosen pull-back of a vector bundle Y along a smooth map α. We intend here to
clarify the role of the notion of fibrewise linear dual of a vector bundle X → A,
which we denote X† (refraining from using X∗, since the ∗ already has two
meanings: α∗ for pull-backs along α, and Y∗ for the fibrewise dual fibration of a
fibration Y → B). Clearly, this dualization is a contravariant endofunctor on VA,
for each A ∈ B. (For vector spaces, the functor † is the standard contravariant
dualization functor for vector spaces.)

Proposition 8.1 The fibrewise linear dualization functor (−)† : VA → (VA)
op

extends canonically to a functor V → V∗ over B; it is a Cartesian functor.

Proof. Consider an arrow in V over α, meaning a commutative diagram

X
t - Y

A
?

α
- B.

?

with t fibrewise linear, so for each a ∈ A, the map t gives a linear map ta : Xa →
Yα(a), hence a linear t†a : (Yα(a))

† → X†
a. But (Yα(a))

† = (Y †)α(a). Jointly, these

t†a produce a map α∗(Y †) → X† in VA, which is the vertical part of the desired
comorphism; the horizontal part is the arrow α∗(Y †) → Y † in the diagram
defining α∗(Y †). – If the given square is a pull-back, each ta is an isomorphism,
hence so is t†a, so in this case, the vertical part described is an isomorphism;
therefore the comorphism described is Cartesian; this proves the last assertion.

From this perspective, the cotangent bundle construction is a functor (over
B), namely the composite of the two functors

B
T - V

† - V∗;

both T and † are functors over B, hence so is the composite. Here, V and V∗

come with forgetful functors to B2 and (B2)∗, respectively. Composing with the
forgetful functor V∗ → (B2)∗ then gives a functor over B, B1 → (B2)∗, i.e. a
star-bundle functor with values in B2.
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The same argument as for the Proposition gives that the fibrewise linear
dualization functor (−)† : Vop

A → VA extends canonically to a functor V∗ → V
over B; it is likewise Cartesian. (This does not depend on whether V → V †† is
an isomorphism.)

Remark 8.2 A more general description of a cotangent (star-bundle) functor
exists in algebraic geometry, using Kähler differentials; the linear dual of it then
may be used as a more generally applicable notion of tangent bundle. We give
an account of this description, in terms of jet-bundles, in Section 12 below.

9 Strength

Let B be a category with finite limits and let X → B and Y → B be fibrations.
We consider a functor F : X → Y over B (F is not assumed Cartesian). Then
we shall consider a certain kind of structure on such a functor, which we call
fibrational strength, or just strength.

For this, we introduce some notation. If Q ∈ B and X ∈ XM , we have
an object p∗(X) ∈ XQ×M , where p : Q × M → M denotes the projection.
This object in XQ×M we denote Q⊗X. It comes equipped with a (Cartesian)
morphism Q⊗X → X over p.

Example. Let B be a category with finite limits. Then the codomain fibration
∂1 : B2 → B is a fibration, and pull-back squares in B are the Cartesian arrows
in B2. If ξ ∈ B2, say ξ : X → M , and Q ∈ B, it is clear that Q⊗ ξ, as a map in
B, is just Q× ξ : Q×X → Q×M .

Let F : X → Y be a functor over B, a strength on F consists in the following
data: for Q ∈ B and X ∈ XM , one gives a morphism in YQ×M

tQ,M : Q⊗ F (X) → F (Q⊗X),

natural in Q and X, and satisfying a unit- and associativity constraint w.r.to
Q. (Example: for T the tangent bundle functor B → B2, there is a canonical
strength: tQ,X : Q ⊗ T (X) → T (Q × X) is the inclusion of the subbundle of
vertical tangent vectors to Q×X (vertical w.r.to the projection Q×X → X).)

Since F is a functor over B, there is a canonical morphism F (p∗(X)) →
p∗(F (X)), i.e. F (Q⊗X) → Q⊗ F (X) in YM . It is invertible if f is Cartesian;
and for F Cartesian, this inverse will be a strength structure tQ,X on F .

If F : X → Y and G : Y → Z are functors over B, equipped with strengths
t and s, respectively, one constructs out of t and s in an evident way a strength
on the composite functor G ◦ F : X → Z. We obtain a 2-category: objects are
categories fibered over B, arrows are functors over B equipped with strength,
and 2-cells are the vertical natural transformations between parallel functors
over B, compatible with the given strengths.

If B is the category of smooth manifolds, a map h : Q ×M → N in B may
be seen as a smoothly parametrized family of smooth maps h(q,−) : M → N
(with Q as the space of parameters), and a map H : Q ⊗X → X ′ over h may
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be seen as a Q-parametrized family H of maps in X from X to X ′, with the
qth member of this family living over h(q,−) : M → N .

A strength t of F : X → Y gives rise to a process transforming a parametrized
family of maps in X to a similarly parametrized family of maps in Y, as follows.
Given a map h : Q × M → N in B. Then given a map H in X over h, say
H : Q⊗X → X ′, then the composite

Q⊗ F (X)
tQ,X- F (Q⊗X)

F (H)- F (X ′)

is a map in Y over h; so F has transformed the Q-parametrized family H of
maps from X to X ′ into a Q-parametrized family of maps F (X) → F (X ′). This
property of F is called regularity in [12] 18.10.

The identity functor B → B is a fibration, denoted B1; for this fibration,
Q⊗X = Q×X. Recall that a bundle functor is a functor F : B1 → B2 over B,
thus for X ∈ B, the object F (X) in B2 is an arrow of the form F (X) : F0(X) →
X in B, where F0 is the composite of F with the domain formation ∂0 : B2 → B.
A fibrational strength t of such functor gives, for Q and X in M , an arrow tQ,X

in B2 from Q×F (X) to F (Q×X), which amounts to a commutative square in
B (really just a triangle) of the form

Q× F0(X)
t′′Q,M- F0(Q×X)

tQ,X

Q×X

Q× F (X)

?

id
- Q×X

F (Q×X)

?

, (9)

and the top map in this square (asQ andX range over B) equips the endofunctor
F0 : B → B with a tensorial strength t′′ in the sense of [7]. Vice versa, if
such t′′ make the squares like the above commute, these squares will constitute
a fibrational strength t on F . (To say that the squares commute is in turn
equivalent to saying that F , viewed as a natural transformation from F0 to
the identity functor on B, is a strong natural transformation, in the sense of
tensorial strength.)

Let F : B1 → B2 be a bundle functor preserving finite products. Thus
F (Q×B) ∼= F (Q)×F (B) by the canonical map. In particular (since ∂0 : B2 → B
preserves products), F0(Q × B) ∼= F0(Q) × F0(B). An example is where F is
the tangent bundle functor (ignoring the fibrewise linear structure).

A particular bundle functor on B is the diagonal ∆ associating to B ∈ B the
identity map B → B. It terminal among bundle functors B1 → B2.

A section of a bundle functor F is a natural transformation z (over B) from
∆ : B1 → B2 to F , thus to each B ∈ B, zB : B → F0(B) is a section of
F (B) : F0(B) → B. The zero section of a tangent bundle is an example.
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Proposition 9.1 Let F be a finite-product preserving bundle functor equipped
with a zero section. Then F carries a canonical (fibrational) strength.

Proof/Construction. By the above (cf. (9), it suffices to construct in B a map
t′′Q,B : Q×F0(B) → F0(Q×B). This is taken to be the composite of zQ×F0(B) :
Q×F0(B) → F0(Q)×F0(B) with the isomorphism F0(Q)×F0(B) ∼= F0(Q×B).

The notion of (fibrational) strength of a functor F : X → Y over B, in the
sense described here, generalizes the notion of “regularity” of a bundle functor,
[12] 14.21 (and 18.10). The reason we change terminology from “regularity” to
“strength” is to emphasize 1) that, in the abstract setting, it is a structure on
the functor in question, not just a property, and 2) to tie it up with the notion
of (monoidal, or tensorial) strength considered in the context of endofunctors
F on a monoidal category B, as in [7], (or [14], or [10] Section 2 for a recent
account). Such a structure in turn is equivalent to a B-enrichment of F , in case
B is monoidal closed; cf. [7].

If X → B is the fibration, where XB is the category of vector space objects
in B/B (or group objects, or any other algebraic kind of structure), then there
is a faithful forgetful functor X → B2 over B, which is Cartesian, in particular,
it preserves the formation Q⊗X. So if the bundle functor F considered above
factors through X → B2 (a “vector bundle functor”), then the t′′Q,B constructed
above is the underlying arrow of an arrow in X , i.e. is fibrewise linear, and
equippes the vector bundle functor F with a fibrational strength.

This in particular applies to the tangent bundle formation. The cotangent
bundle functor likewise carries a canonical strength, by the following

Proposition 9.2 Let X → B be the category of vector bundles. Then if there
is given a strength on F : B → X , then there is canonically associated a strength
on the star bundle functor F † : B → X ∗.

Proof. This follows since the dualization functor † : X → X ∗ is Cartesian,
and hence carries a canonical strength; and a composite of two functors with
a strength has a strength. Note that the instantiations tQ,B of the strength
described here are (vertical) maps Q ⊗ F †(B) → F †(Q × B) in X ∗, and hence
as vector bundle maps (maps in X ) are maps F †(Q× B) → Q⊗ F †B; for, the
fibre of X ∗

Q×B is (XQ×B)
op.

10 Flow natural transformation

Consider a category B with Cartesian products, and consider an endofunctor
F : B → B with a tensorial strenght t′′Q,B : Q × F (B) → F (Q × B) (for all Q
and B in B). If now D ∈ B is an exponentiable object, so (D ×−) ⊣ (D ⋔ −),
one derives, for all B ∈ B, a map

λD,B : F (D ⋔ B) → D ⋔ F (B),
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namely the exponential transpose of the composite

D × F (D ⋔ B)
t′′D,D⋔B- F (D × (D ⋔ B))

F (ev)- F (B).

If D1 → D2 is a map between exponentiable objects, one gets a map D2 ⋔ B →
D1 ⋔ B (“ ⋔ is contravariant in the first variable ”), and then λ will be natural
in the Di’s, in an evident sense. Also, λ1,B : F (1 ⋔ B) → 1 ⋔ F (B) may be
identified with the identity map on F (B). So if the exponentiable object D is
equipped with a point 0 : 1 → D, one obtains a commutative triangle

π ◦ λD,B = F (π), (10)

where π denotes 0 ⋔ B or 0 ⋔ F (B). So λD,B is a map of bundles over F (B).
(If B is Cartesian closed (or even just symmetric monoidal closed), all objects

D are exponentiable, and therefore one has such a λD,X for all D,X, and this
data encodes strength of F in what may be called the “cotensorial” form of
strength, cf. [6] or [10].)

For the following, we shall assume that B is a model for synthetic differential
geometry, in particular, it contains the category of smooth manifolds, but also
it contains some “infinitesimal objects”, in particular, it contains an object D
with the property that for any manifold M , T (M) = D ⋔ M , and the base
map T (M) → M is “evaluation at 0 ∈ D”, where 0 : 1 → D is a given point
of D. Then for any endofunctor F : B → B with a (tensorial) strength, we
have, by the above construction, λD,M : F (D ⋔ M) → D ⋔ F (M). If F (M)
is a manifold whenever M is, then this map is a map between manifolds, since
manifolds form a full subcategory of B; and λD,M is natural in M (since λ is);
it is the flow natural transformation F (T (M)) → T (F (M)) for F considered in
[12] 39.1 (denoted there ιM ). It originated in a discussion between Kolář and
the present author in the early 1980s, see the “Remarks” at p. 349 in loc.cit.

An application of the flow natural transformation is that it gives a “prolon-
gation procedure” for vector fields on M : to a vector field ξ : M → T (M) on
M , one constructs a vector field ξ̃ : F (M) → T (F (M)) on F (M), namely the
composite

F (M)
F (ξ)- F (T (M))

λD,M- T (F (M)).

11 Jet bundles

The kth order jet bundle of a smooth fibre bundle p : E → B in differential
geometry is another smooth fibre bundle Jk(p) → B (usually just denoted
Jk(E)). The fibre over b ∈ B consist of k-jets at b of sections of E → B, see
[15], or [9] 2.7 (and Remark 7.3.1); in the latter synthetic context, the notion
of k-jet becomes representable, in the sense that there is for every b ∈ B a
subset Mk(b) ⊆ B (with b ∈ Mk(b)), such that a k-jet at b is a map with
domain Mk(b), in particular, a k-jet of a section of p : E → B is a map
s : Mk(b) → E with p ◦ s equal to the inclusion map Mk(b) → B. For fixed B,
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Jk(E) depends in a functorial way on E in the category of smooth fibre bundles
over B; synthetically, if f : E → E′ is a map of bundles over B and s is a
k-jet of a section of E, Jk(f) takes a section s : Mk(b) → E of E to the map
f ◦ s : Mk(b) → E′. Or, in classical set-up, post-composition by f of a partial
section s, representing the given jet, has as k jet at b the desired jet section of
E′.

So for each B ∈ B, we have an endofunctor Jk on the category BB (= the
category of smooth fibre bundles over B). We shall investigate the functorality
properties of Jk as B varies over the category of smooth manifolds.

To simplify the exposition, we shall embed the category of smooth manifolds
into a topos model B of synthetic differential geometry (cf. e.g. [8] or [9]), where
the jet construction works not just for smooth fibre bundles E → B but for
any smooth map E → B, (where B is a manifold), so that for each B, Jk is an
endofunctor Jk

B on B/B.

The description (from [9] Remark 7.3.1) of Jk is given in terms of the locally
Cartesian closed structure of B, as follows: The data of the Mk(b), as b ranges
over B, resides in “the kth neighbourhood of the diagonal3 of B”,

B(k)

c -

d
- B;

and similarly for A. Here, B(k) ⊆ B×B consists of pairs (b, b′) with b′ ∈ Mk(b),
and c and d are the restrictions of the two projections B × B → B. Similarly
for A(k) ⊆ A×A (where we again denote the two projections by c and d). The
map α × α : A × A → B × B restricts to a map α : A(k) → B(k) (equivalently,
any map A → B restricts, for all a ∈ A, to a map Mk(a) → Mk(α(a))). Pulling
back along d : B(k) → B defines a functor d∗ : B/B → B/B(k), and since B is
locally Cartesian closed, this functor has a right adjoint Πd : B/B(k) → B/B.

In these terms, the endofunctor Jk on B/B is just the composite Πd ◦ c∗.

Theorem 11.1 The functors (Jk
B)

op are the fibres of an endofunctor Jk :
(B2)∗ → (B2)∗ over B.

Proof. Since we already have the functor Jk on the individual B/A, (for A ∈ B)
it is possible to prove this using the construction Theorem 3.1; however, since
the categories and functors have so concrete descriptions, it is also informative to
give the construction and proofs ad hoc, using set/family - theoretic descriptions,
as in the Remark at the end of Section 6. The construction amounts to a process
which to a comorphism f over α : A → B from X → A to Y → B associates
a comorphism Jkf over α from JkX to JkY . Recall that in the set theoretic
description (translating (8) into elementwise terms), a comorphism f over α
amounts to a family of maps fa : Yα(a) → Xa, for a ranging over A. Similarly,

3The use of a “kth neighbourhood of the diagonal”, also called “prolongation spaces”,
for the consideration of jet bundles is crucial in [13]; the setting there is that of manifolds
equipped with a structure sheaf of rings (that may contain nilpotent elements), as considered
by Grothendieck and Malgrange.
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the required Jkf is to consist of a family (Jkf)a : (JkY )α(a) → (JkX)a. An

element s in (JkY )α(a) is a partial section s : Mk(α(a)) → Y of Y → B. The
composite

Mk(a)
α- Mk(α(a))

s- Y

is a map Mk(a) → Y over α, or, equivalently, a map Mk(a) → α∗(Y ) over
A, thus an element of (Jk(α∗Y ))a, to which we may apply the map Jkf :
Jkα∗(Y ) → JkX; this means just: post-composing with f : α∗Y → X. Thus,
the element in (JkX)a that we get is the map Mk(a) → X given elementwise as
follows: to input a′ ∈ Mk(a), we get as output fa′(s(α(a′))) ∈ Xa′ . From this
later description, the compatibility of the construction of Jk with composition
of comorphisms is almost immediate.

The functors Jr : (B2)∗ → (B2)∗ are not in general Cartesian.

Remark 11.2 Let us note that if the fibres of Y → B carry some algebraic
structure, say that of vector spaces, then so do the fibres of JkY . This follows,
since Jk = Πd ◦ c∗ is a composite of two right adjoints, so preserves algebraic
structure. So Jk : (B2)∗ → (B2)∗ lifts to a functor V∗ → V∗ over B, where
V → B is the category of vector bundles. Similarly for other kinds of algebraic
structure, e.g. pointed spaces.

Remark 11.3 Let us also remark that the existence of the maps α∗(JkY ) →
Jk(α∗Y ) considered above implies the existence of a fibrational strength of the
functor Jk: just take α to be the projection Q×B → B.

12 Bundle valued 1-forms

The natural setting for the present subsection is the fibration of pointed bundles
(with morphisms preserving the given points); there is a forgetful functor from
the fibration V → B of vector bundles to the codomain fibration B2 → B, and
this functor factors through the fibration of pointed bundles, but in order not to
overload the exposition with too much terminology and notions, the presentation
that we shall give is in terms of the fibration V → B of vector bundles. If E → B
is such a bundle, a 1-jet at b ∈ B of a section, i.e. a partial section s : M1(b) → E
is called an E-valued (cominatorial) cotangent at b if s(b) = 0b. So s and the
zero section agree on b ∈ M1(b), but do not necessarily agree on the whole of
M1(b). Clearly, the set of E-valued cotangents form a sub-bundle of J1(E) → B,
called the bundle of E-valued 1-forms; let us denote it Ω1(E) → B. The functor
E 7→ Ω1(E) is a subfunctor of the functor J1 : V∗ → V∗ over B.

Let R be a fixed vector space (typically, the ground field). There is a functor
B → V over B, assigning to B ∈ B the constant vector bundle B×R → B. This
functor is Cartesian, and hence may equally well be viewed as a functor B → V∗,
since the category of Cartesian arrows in V and V∗ are the same. Composing
with Ω1,

B
−×R- V∗ Ω1

- V∗,

19



we get a vector star bundle functor, i.e. a functor B → V∗; for B the category of
finite dimensional manifolds, it is (isomorphic to) the cotangent bundle functor
T † : B → V∗ described Section 8. In algebraic geometry, one sometimes has to
define the bundle functor T : B → V (tangent bundle) as the composite

B
Ω1

- V∗ † - V.
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