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Outline

Binomial Models
Binomial classification models
Binomial (logistic) regression models

Poisson Models
Poisson classification models
Poisson regression models

Normal models
Normal models with classification structure
Normal regression models

Generalized Linear Models
A simple model with random components
Some Other Models

Non-parametric regression
A Poisson model with random components ...
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Review
Overview of models

Binomial - Proportions

One- way and two-ways classification
Lecture 3: Seed germination under different watering levels and cancer prevalence

Logistic regression
Lecture 4: Leave abscission of Radamachera

Poisson - Counts

One- way and two-ways classification
Deaths by horse kicks

Linear and non-linear regression
CFU of Penicillium verrucosum

Normal (Gaussian) - Continuous varying responses

One- way and two-ways classification
Lecture 7: Seed weights of Dolichos biflorus

Linear and non-linear regression
Lecture 7: Maize response to P
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Binomial one-way classification models
Seed germination example: The data

Watering Level
1 2 3 4 5

22 41 66 82 79
25 46 72 73 68
27 59 51 73 74
23 38 78 84 70

Number of germinated seeds, out of 100 seeds,
For w = 1, . . . , 5 (indexing the watering levels) and r = 1, . . . , 4 (indexing the repetitions)

Saturated model: Ywr ∼ Bi(100, ρwr )
Full model: Ywr ∼ Bi(100, ρw )
Null model: Ywr ∼ Bi(100, ρ)
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Testing homogeneity
Large Model = Saturated Model

Watering Level
Repetition 1 2 3 4 5

1 ρ11 ρ21 ρ31 ρ41 ρ51
2 ρ12 ρ22 ρ32 ρ42 ρ52
3 ρ13 ρ23 ρ33 ρ43 ρ53
4 ρ14 ρ24 ρ34 ρ44 ρ54

Reduced Model = One-way
Watering Level

Repetition 1 2 3 4 5
1 ρ1 ρ2 ρ3 ρ4 ρ5
2 ρ1 ρ2 ρ3 ρ4 ρ5
3 ρ1 ρ2 ρ3 ρ4 ρ5
4 ρ1 ρ2 ρ3 ρ4 ρ5

Probabilities of germination in each box under the saturated (large) and the one-way (reduced) models.

Idea: Compare the saturated model with the one-way binomial model
using the likelihood ratio test

Equivalent to test the null hypothesis

H0 : ”The probability parameters associated with observations with

the same level of the classification variable are all equal”

The log-likelihood ratio statistic for this test is given by Λ = 2 {lL − lS} ,
where lL and lS are the log-likelihood functions of the one-way binomial model and the log-likelihood of
the saturated, both evaluated at their maxima, respectively.

Λ is approximately chi-square distributed with 20− 5 = 15 degrees of
freedom,
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Binomial one-way classification models - Calculations in R
Identifying the cause of the lack of homogeneity for the seed germination data

Box Water Germ fitted.v res.dev

1 1 1 22 0.2425 -0.5307697

2 2 1 25 0.2425 0.1743868

3 3 1 27 0.2425 0.6338446

4 4 1 23 0.2425 -0.2934009

5 5 2 41 0.4600 -1.0067849

6 6 2 46 0.4600 0.0000000

7 7 2 59 0.4600 2.6049858 <--

8 8 2 38 0.4600 -1.6156868

9 9 3 66 0.6675 -0.1589032

10 10 3 72 0.6675 1.1308793

11 11 3 51 0.6675 -3.2480607 <--

12 12 3 78 0.6675 2.4749070 <--

13 13 4 82 0.7800 0.9887183

14 14 4 73 0.7800 -1.1774922

15 15 4 73 0.7800 -1.1774922

16 16 4 84 0.7800 1.5032032

17 17 5 79 0.7275 1.4421817

18 18 5 68 0.7275 -1.0491850

19 19 5 74 0.7275 0.2821216

20 20 5 70 0.7275 -0.6114889
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The likelihood ratio test
Seed germination example: Testing the effect of watering

Large Model

Watering Level
Repetition 1 2 3 4 5

1 ρ1 ρ2 ρ3 ρ4 ρ5
2 ρ1 ρ2 ρ3 ρ4 ρ5
3 ρ1 ρ2 ρ3 ρ4 ρ5
4 ρ1 ρ2 ρ3 ρ4 ρ5

Reduced Model

Watering Level
Repetition 1 2 3 4 5

1 ρ ρ ρ ρ ρ
2 ρ ρ ρ ρ ρ
3 ρ ρ ρ ρ ρ
4 ρ ρ ρ ρ ρ

Probabilities of germination in each box under the large
and the reduced models.
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Binomial two-ways classification models
Example: vegetation composition in four fields
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Binomial two-ways classification models
Example: vegetation composition in four fields
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The two profiles are parallel

=⇒ the differences of the lodds of (any) pair of fields is the same for the two traps
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Binomial two-ways classification models
Example: vegetation composition in four fields

I will consider a range of models

Saturated Model: One lodd per observation

Effect-Modification (Full) Model:
One lodd per combination of field and trap

Additive Model: The lodds are described as the sum of
a quantity depending on the Field and a quantity depending on the trap

No-effect of Field Model: The lodds are the same for all the
observations coming from the same trap

No-effect of Trap Model: The lodds are the same for all the
observations coming from the same field

Null Model: The lodds are the same for all the observations
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Overview:
Binomial models, two-ways classification models

Two classification variables, say T and S
Ytsi the i th repetition of observations classified as t and s

Y111,Y112, . . . independent

Ytsi ∼ Bi(ntsi , ptsi ), for t, s = 1, 2, . . .
with several possibilities for ptsi (yielding different models)

Some possibilities are:
logit(ptsi ) = (T ∗ S)tsi (the saturated model)
logit(ptsi ) = (T ∗ S)ts (interaction model)
logit(ptsi ) = Tt + Ss (additive model)
logit(ptsi ) = Ss (no effect of T )
logit(ptsi ) = Ts (no effect of S)
logit(ptsi ) = k (null model)
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Overview of models

Binomial - Proportions

One- way and two-ways classification
Lecture 3: Seed germination under different watering levels and cancer prevalence

Logistic regression
Lecture 4: Leave abscission of Radamachera

Poisson - Counts

One- way and two-ways classification
Deaths by horse kicks

Linear and non-linear regression
CFU of Penicillium verrucosum

Normal (Gaussian) - Continuous varying responses

One- way and two-ways classification
Lecture 7: Seed weights of Dolichos biflorus

Linear and non-linear regression
Lecture 7: Maize response to P
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Review, Binomial regression
Leave abscission of Radamachera
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Review, Binomial regression models
Logistic regression

Regression model: assume that the probabilities of abscision are a
(continuous) function of the dose of abscisic acid

Y is number of plants with more than 50 % of abscised leaves
out of the 50 plants in each batch

d is the dose (mg/plant)

Y ∼ Bi(50, pd)

We assume

log

(
pd

1− pd

)
= α+ βd

α and β are parameters in the model.
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Review, Binomial regression models
Leave abscision of Radamachera, with two varieties
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Overview of models

Binomial - Proportions

One- way and two-ways classification
Lecture 3: Seed germination under different watering levels and cancer prevalence

Logistic regression
Lecture 4: Leave abscission of Radamachera

Poisson - Counts

One- way and two-ways classification
Deaths by horse kicks

Linear and non-linear regression
CFU of Penicillium verrucosum

Normal (Gaussian) - Continuous varying responses

One- way and two-ways classification
Lecture 7: Seed weights of Dolichos biflorus

Linear and non-linear regression
Lecture 7: Maize response to P
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Overview, Poisson classification models
Example: Horse-kicks

The data are registers of Prussian military persons killed by
kicks of horses.

Ten corps observed (separately) during 20 years: 1875-1894
(4 less representative corps were eliminated)

The table below (next slide) displays the data

The frequencies of number of deaths per year are:
Deaths

0 1 2 3 4 ≥ 5

109 65 22 3 1 0

We are facing a rare event!
(122 occurrences in 20 years 6.1 / year 0.61 per corp year)

We will try to use the Poisson distribution!Department of Mathematics, Aarhus University, Copyright © 2023 by Rodrigo Labouriau, please do not circulate
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Overview, Poisson classification models
One-way Poisson model

We start by analysing the total number of deaths per year
We sum, for each year, the number of deaths occurred in each corp.

The question is whether the number of deaths per year varies.

Yyear number of deaths occurred in this year

Yyear ∼ Poisson

Two possible models:

Common intensity model: Yyear ∼ Po(λ)

Saturated model: Yyear ∼ Po(λyear )
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Overview, Poisson classification models
The complete data of deaths by horse kicks, two ways classification

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 Total

1875 0 0 0 0 1 1 0 0 1 0 3

1876 0 0 1 0 0 0 0 0 1 1 3

1877 0 0 0 0 1 0 0 1 2 0 4

1878 2 1 1 0 0 0 0 1 1 0 6

1879 0 1 1 2 0 1 0 0 1 0 6

1880 2 1 1 1 0 0 2 1 3 0 11

1881 0 2 1 0 1 0 1 0 0 0 5

1882 0 0 0 0 0 1 1 2 4 1 9

1883 1 2 0 1 1 0 1 0 0 0 6

1884 1 0 0 0 1 0 0 2 1 1 6

1885 0 0 0 0 0 0 2 0 0 1 3

1886 0 0 1 1 0 0 1 0 3 0 6

1887 2 1 0 0 2 1 1 0 2 0 9

1888 1 0 0 1 0 0 0 0 1 0 3

1889 1 1 0 1 0 0 1 2 0 2 8

1890 0 2 0 1 2 0 2 1 2 2 12

1891 0 1 1 1 1 1 0 3 1 0 9

1892 2 0 1 1 0 1 1 0 1 0 7

1893 0 0 0 1 2 0 0 1 0 0 4

1894 0 0 0 0 0 1 0 1 0 0 2
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Poisson two ways classification model

Full Model (saturated)

Multiplicative Model

No Effect of Year

No Effect of Corp

Null Model

(p=0.472)

(p=0.152) (p=0.076)

(p=0.076) (p=0.152)

(p=0.056)

log-likelihood (×2)

Λ =171.64

Λ =25.25

Λ =15.58
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Overview of models
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Deaths by horse kicks

Linear and non-linear regression
CFU of Penicillium verrucosum

Normal (Gaussian) - Continuous varying responses
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Lecture 7: Seed weights of Dolichos biflorus

Linear and non-linear regression
Lecture 7: Maize response to P

Department of Mathematics, Aarhus University, Copyright © 2023 by Rodrigo Labouriau, please do not circulate



Binomial Models Poisson Models Normal Models GLM Random Components Other models

Overview, Poisson regression models
Example: Penicillium in soil
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Overview, Poisson regression models
Example: Penicillium in soil

We performed the following experiment:
Make a suspension of the soil;
Take successive dilutions of the suspension;
Plate the dilutions in Petri dishes and count the number of
colonies that appeared after an incubation time.

This technique is called the plating method (Fisher, 1922).

Knowing the amount of soil added, estimate the number of
CFU / g soil

Better method:
Use several amounts of soil and assume that the expected
number of CFU is proportional to the amount of soil added

Department of Mathematics, Aarhus University, Copyright © 2023 by Rodrigo Labouriau, please do not circulate
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Basic assumptions of a Poisson process:

Homogeneous distribution of the CFUs in the suspension.
The number of CFUs in two disjoint portions of the
suspension are independent
The CFUs are not clustered together.

Under these assumptions the counts should be Poisson distributed!
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Example: Penicillium in soil

Saturated Model E(Yg,d ) = λg,d

Full Model (free curve) E(Yg,d ) = λg

Linear model E(Yg,d ) = α + βg

Quadratic model (competition) E(Yg,d ) = βg + γg2

Plating ModelE(Yg,d ) = βg

(p=0.695)

(p=0.491) (p=0.476)

(p=0.028) (p=0.029)

log-likelihood (×2)

Λ =14.11

Λ =1.42

Λ =1.73

Λ =4.79Λ =4.73
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Extended experiment
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Example: Penicillium in soil - Extended experiment

Saturated Model E(Yg,d ) = λg,d

Full Model (free curve) E(Yg,d ) = λg

Linear model E(Yg,d ) = α + βg

Quadratic model (competition) E(Yg,d ) = βg + γg2

Plating ModelE(Yg,d ) = βg

(p=0.710)

(p=0.006)

(p=0.652)

(p<0.001)

log-likelihood (×2)

Λ =19.77

Λ =2.46

Λ =14.47

Λ =29.89
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Overview of models
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Lecture 3: Seed germination under different watering levels and cancer prevalence

Logistic regression
Lecture 4: Leave abscission of Radamachera

Poisson - Counts
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Deaths by horse kicks

Linear and non-linear regression
CFU of Penicillium verrucosum

Normal (Gaussian) - Continuous varying responses

One- way and two-ways classification
Lecture 7: Seed weights of Dolichos biflorus

Linear and non-linear regression
Lecture 7: Maize response to P
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Two-ways ANOVA - comparing three varieties in two fields
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Two-ways ANOVA - comparing three varieties in two fields - Interaction Model

Yvfb is the random variable representing the averaged weight of the

bth batch (b = 1, ...., 50) of the v th variety (v = A,B,C )

from the f th field (f = I , II )

The model assumes that the random variables YAI1, . . . ,YCII50 are:

independent,
normally distributed
have the same variance (say Var(Yvfb) = σ2)

have expectation depending on the combination of variety and
field (say E(Yvfb) = τvf )

In short,

Yvfb ∼ N
(
τvf , σ

2
)
, for v = A,B,C , f = I , II and b = 1, ...., 50,

where YAI1, . . . , YCII50 are independent.
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Two-ways ANOVA - comparing three varieties in two fields - investigating additivity
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Two-ways ANOVA - comparing three varieties in two fields - the additive model

Yvfb is the random variable representing the averaged weight of the bth batch

(b = 1, ...., 50) of the vth variety (v = A,B,C)

from the f th field (f = I , II )

The model assumes that the random variables YAI1, . . . ,YCII50 are:

independent,
normally distributed
have the same variance (say Var(Yvfb) = σ2)

The expectation can be written as a sum of
a quantity depending on the variety
and a quantity depending on the field
(say E(Yvfb) = τv + βf )

In short,

Yvfb ∼ N
(
τv + βf , σ

2
)
, for v = A,B,C , f = I , II and b = 1, ...., 50,

where YAI1, . . . , YCII50 are independent.
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Overview of models

Binomial - Proportions

One- way and two-ways classification
Lecture 3: Seed germination under different watering levels and cancer prevalence

Logistic regression
Lecture 4: Leave abscission of Radamachera

Poisson - Counts

One- way and two-ways classification
Deaths by horse kicks

Linear and non-linear regression
CFU of Penicillium verrucosum

Normal (Gaussian) - Continuous varying responses

One- way and two-ways classification
Lecture 7: Seed weights of Dolichos biflorus

Linear and non-linear regression
Lecture 7: Maize response to P
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Review, Normal linear regression models
Maize response to P
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Review, Normal linear regression models
Maize response to P

Ypr weight of the r -th repetition
subject to the amount p of Phosphorous

We assume that the expected weight depends linearly on the
amount of Phosphorous

In symbols
E (Ypr ) = α+ βp

We assume, moreover, that Ypr is normally distributed
with constant variance and
that the observations are independent
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Review, Normal non-linear regression models
Maize response to P
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Review, Normal non-linear regression models
Maize response to P

Ypr weight of the r -th repetition
subject to the amount p of Phosphorous

We assume that

log (E (Ypr )) = α+ βp

or equivalently,

E (Ypr ) = exp (α+ βp)

We assume, moreover, that Ypr is normally distributed
with constant variance and

that the observations are independent

Department of Mathematics, Aarhus University, Copyright © 2023 by Rodrigo Labouriau, please do not circulate



Binomial Models Poisson Models Normal Models GLM Random Components Other models

Review, Normal non-linear regression models
Maize response to P
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GLM: basic setup

Response variable (continuous or discrete)

A range of explanatory variables:
some continuous and some discrete

Independent observations
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Classic normal linear model

The typical formulation of a (simple normal) linear model is of
the form

Y = Xβ + ϵ

where Y is the response variable
X represents some explanatory variables
β is a vector of parameters
ϵ represents the residuals assumed to be normally distributed
with mean zero and constant variance

It is easy to see that

E (Y ) = Xβ

i.e. the expected value of Y is a linear combination of the
explanatory variables

Department of Mathematics, Aarhus University, Copyright © 2023 by Rodrigo Labouriau, please do not circulate



Binomial Models Poisson Models Normal Models GLM Random Components Other models

We might alternatively define the linear model with three assertions:

Y is normally distributed (with constant variance)
The mean of Y follows the relation

E (Y ) = Xβ

The observations are independent

Generalized linear models are defined also with three assertions:

Y is distributed according to a distribution contained in the
class of the exponential dispersion models
Examples: Normal, Gamma, Poisson, binomial, etc
The mean of Y follows the relation

g {E (Y )} = Xβ

where g is a smooth monotone function
(monotone = increasing or decreasing; smooth = has continuous derivatives of all orders)

The observations are independent
g is called the link function
Xβ is called the linear predictor
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GLM: three basic elements

The distribution
Exponential dispersion models

The linear predictor
The expectation can be described as a function of a linear combination of the explanatory variables

The link function
The function that connects the expectation with the linear predictor
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Exponential Dispersion Models

We introduce now a range of families of probability
distributions that allow a generalization of the model
described:
The ”Exponential Dispersion Models” (EDM)

They include many classic parametric families:
normal, gamma, inverse gaussian, Poisson, negative binomial,
binomial, etc

EDM have many properties in common with the family of
normal distributions

EDM are the basis of Generalized Linear Models:
linear, logistic, Poisson regressions, etc
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Exponential Dispersion Models formal definition (not important at this level)

A family of distributions with density or probability function of
the form:

p(y ; θ, σ2) = exp

[
yθ − b(θ)

σ2
+ c(y , σ2)

]
,

is called an exponential dispersion model (EDM)
(Jørgensen, 1987)
Here θ and σ2 are parameters indexing the family.
If Y is distributed according to an EDM, then

E(Y ) = µ = b′(θ) and Var(Y ) = σ2b′′(θ) = σ2V (µ)

The function V ( · ) characterizes uniquely the EDM!
EDM can be parametrized by the mean µ and the scale σ2.

Y ∼ ED(µ, σ2)

Department of Mathematics, Aarhus University, Copyright © 2023 by Rodrigo Labouriau, please do not circulate



Binomial Models Poisson Models Normal Models GLM Random Components Other models

Examples of continuous EDM:

The normal distribution is an exponential dispersion model
(EDM)
Using the normal distribution and the identity link function
yields the classic normal model

A gamma distribution is an EDM
Gives a model suitable for positive skewed data with constant
coefficient of variation
Classic example: growth

Inverse Gaussian: time for a Brownian motion hits a barrier
Typical example: liquid percolation through a membrane
Meat drip loss
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Some Exponential Dispersion Models
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Figure: Density of some Exponential Dispersion Models
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Examples of discrete EDM:

Binomial → proportions (logistic, probit regressions, ets)

Poisson → counting data

Negative binomial → waiting time for n successes in a
Bernoully essay
Alternative for counting data

Compound Poisson
Positive responses with zeroes
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Example: activity of toposisomerase for detecting malaria

Experiment on activity of Plasmodium topoisomerase in blood

Used to detect malaria
(with hight sensitivity and specificity)

Steps of the laboratory analysis:

Step 1: Extraction of topoisomerase from the blood
Step 2: Series of reactions to form a detectable product
producing a colour in the suspension
Step 3: Measures the absorbance (at a specific colour)

Preliminary study for the article ”Droplet Microfluidics Platform for Highly Sensitive and Quantitative

Detection of Malaria-Causing Plasmodium Parasites Based on Enzyme Activity Measuremet” by Juul,

Nielsen, Labouriau et al. ACS Nano 2012.
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Activity of toposisomerase for detecting malaria:

another preliminary experiment, now for characterising sources of variability

Steps of the laboratory analysis:

Step 1: Sampling and extraction of topoisomerase from the blood
Step 2: series of reactions to form a detectable product
producing a colour in the suspension

Step 3: Measures the absorbance (at a specific colour)

Now we would like to characterise how much of the variability of the final
results (step 3) arises from step 1 and step 2

New (preliminary) experiment:
10 extractions (step 1) of the same blood pool (patient) for two patients
For each extraction 5 separate reactions (step 2) were performed
For each of the 50 combinations of extraction and reactions 5
colorimetric determinations were performed

In total 2x10x5x5=500 observations were generated
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Activity of toposisomerase for detecting malaria: a model with random components

We do not expect large systematic differences in the means of results
obtained with different extractions or reactions from the same patient

The observations are probably not independent, since some samples are
taken from the same blood sample of the same patient . . .

A way to circumvent this problem (dependency) is to insert in the model
two variables representing a common latent effect of the extraction and
the reaction

Two consequences of inserting these variables in the model:

The model then accounts for possible dependencies of the
observations
The total variability can be decomposed in different sources of
variability

Such a model is called a mixed model
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Activity of toposisomerase for detecting malaria: examining the data

> str(PrelMalaria)

’data.frame’: 500 obs. of 4 variables:

$ Patient : Factor w/ 2 levels "1","2": 1 1 1 1 1 1 1 1 1 1 ...

$ Extraction: Factor w/ 10 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 1 1 ...

$ Reaction : Factor w/ 5 levels "1","2","3","4",..: 1 1 1 1 1 2 2 2 2 2 ...

$ Absorbance: num 49.6 50.6 51.7 51.2 51.5 ...
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Activity of toposisomerase for detecting malaria: examining the data

> table(Reaction, Extraction, Patient)

Patient = 1 Patient = 2

Extraction Extraction

Reaction 1 2 3 4 5 6 7 8 9 10 Reaction 1 2 3 4 5 6 7 8 9 10

1 5 5 5 5 5 5 5 5 5 5 1 5 5 5 5 5 5 5 5 5 5

2 5 5 5 5 5 5 5 5 5 5 2 5 5 5 5 5 5 5 5 5 5

3 5 5 5 5 5 5 5 5 5 5 3 5 5 5 5 5 5 5 5 5 5

4 5 5 5 5 5 5 5 5 5 5 4 5 5 5 5 5 5 5 5 5 5

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
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Activity of toposisomerase for detecting malaria: examining the data

> summary(PrelMalaria)

Patient Extraction Reaction Absorbance

1:250 1 : 50 1:100 Min. :34.95

2:250 2 : 50 2:100 1st Qu.:49.46

3 : 50 3:100 Median :52.82

4 : 50 4:100 Mean :53.92

5 : 50 5:100 3rd Qu.:59.35

6 : 50 Max. :76.01

(Other):200
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Activity of toposisomerase for detecting malaria: fitting a suitable model

> library(lme4)

> Fit <- lmer(Absorbance ~ Patient + 0 + (1|Extraction) +

+ (1|Reaction:Extraction))

. Assumptions:

The observations Yperi s are normally distributed
(for patient p = 1, 2, extraction e = 1, . . . , 10, reaction r = 1, . . . , 5 and repetition i = 1, . . . , 5)

Yperi = µp + Xe + Zr,e + Eperi

with Xe ∼ N(0, σ2
e ), Zr,e ∼ N(0, σ2

r ) and Eperi ∼ N(0, σ2) independent

Consequences:
Var(Yperi ) = σ2

e + σ2
r + σ2

Observations from the same extraction and same reaction are correlated!
(therefore not assumed to be independent!)
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Calculation of the variances and covariances
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Activity of toposisomerase for detecting malaria: fitting a model

> library(lme4)

> Fit <- lmer(Absorbance ~ Patient + 0 + (1|Extraction) +

+ (1|Reaction:Extraction))

> summary(Fit)

Linear mixed model fit by REML [’lmerMod’]

Formula: Absorbance ~ Patient + 0 + (1 | Extraction) + (1 | Reaction:Extraction)

...

Scaled residuals:

Min 1Q Median 3Q Max

-2.33789 -0.65969 -0.00224 0.60396 2.56435
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Activity of toposisomerase for detecting malaria: fitting a model

> library(lme4)

> Fit <- lmer(Absorbance ~ Patient + 0 + (1|Extraction) + (1|Reaction:Extraction))

> summary(Fit)

...

Random effects:

Groups Name Variance Std.Dev.

Reaction:Extraction (Intercept) 5.222 2.285

Extraction (Intercept) 12.259 3.501

Residual 16.533 4.066

Number of obs: 500, groups: Reaction:Extraction, 50; Extraction, 10

Fixed effects:

Estimate Std. Error t value

Patient1 49.291 1.182 41.71

Patient2 58.554 1.182 49.55

...
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Activity of toposisomerase for detecting malaria: quantifying the sources of variability

> library(lme4)

> Fit <- lmer(Absorbance ~ Patient + 0 + (1|Extraction) +

+ (1|Reaction:Extraction))

. Assumptions:

Yperi = µp + Xe + Zr,e + Eperi

with Xe ∼ N(0, σ2
e ), Zr,e ∼ N(0, σ2

r ) and Eperi ∼ N(0, σ2) independent

Random effects:
Var(Yperi ) = σ2

e + σ2
r + σ2 = 12.259 + 5.222 + 16.533 = 34.012

Observations from the same extraction and same reaction are correlated!
(therefore not assumed to be independent!)

The variation due to the extraction represented
15.3% of the total variance

The variation due to the reaction represented
36.0% of the total variance
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Activity of toposisomerase for detecting malaria: inferring the fixed effects

> library(lme4)

> Fit <- lmer(Absorbance ~ Patient + 0 + (1|Extraction) +

(1|Reaction:Extraction), REML=FALSE)

> summary(Fit)

...

Fixed effects:

Estimate Std. Error t value

Patient1 49.291 1.182 41.71

Patient2 58.554 1.182 49.55

...
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Activity of toposisomerase for detecting malaria: inferring the fixed effects

> confint(Fit)

2.5 % 97.5 %

.sig01 1.704909 3.063553

.sig02 2.069330 5.731202

.sigma 3.809988 4.342075

Patient1 46.871760 51.710146

Patient2 56.135188 60.973574
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Activity of toposisomerase for detecting malaria: inferring the fixed effects

> library(lme4);library(lmerTest)

> Fit <- lmer(Absorbance ~ Patient + 0 + (1|Extraction) +

+ (1|Reaction:Extraction))

> summary(Fit)

Linear mixed model fit by REML t-tests use Satterthwaite approximations

to degrees of freedom [merModLmerTest]

...

Fixed effects:

Estimate Std. Error df t value Pr(>|t|)

Patient1 49.291 1.182 9.442 41.71 4.99e-12 ***

Patient2 58.554 1.182 9.442 49.55 9.88e-13 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Activity of toposisomerase for detecting malaria: inferring the fixed effects

> library(lme4);library(lmerTest)

> FitO <- lmer(Absorbance ~ Patient + (1|Extraction) +

+ (1|Reaction:Extraction))

> summary(FitO)

...

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 49.2910 1.1817 9.4000 41.71 4.99e-12 ***

Patient2 9.2634 0.3637 449.0000 25.47 < 2e-16 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

...
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Activity of toposisomerase for detecting malaria: testing fixed effects

> anova(Fit)

Analysis of Variance Table of type 3 with Satterthwaite

approximation for degrees of freedom

Df Sum Sq Mean Sq F value Denom Pr(>F)

Patient 1 0.0091619 0.0091619 0.0018 484.98 0.9666
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A Complex Design

	
	
	

The biomass yield was studied using an incomplete block design with six 

blocks; each block was split into two sub-blocks containing two experimental units 

(plots). In each block the control GWT management was applied in the two 

experimental units of one of the sub-blocks and whether the full irrigation or the 

intermediate irrigation regimen was applied to the two experimental units of the other 

sub-block. Repeated measurements at two different times of cut at two different years 

were performed in all the experimental units (keeping the allocation of the GWT 

management constant in each experimental unit).  
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A Complex Design
 

The effects of the GWT management, year and time of cut on the biomass 

yield was modelled using the following Gaussian mixed model. Denote by 𝑀!"#$% the 

biomass yield  the rth repetition (r  = 1,2) of the  cth time of cut (c = 1, 2) at the yth year 

(y = 20015-2016, 2016-2017) at the tth sub-block (t = “none”, “intermediate” , “full”  

irrigation) at the bth block (b = 1, …,6) . According to the Gaussian mixed model 

used, for y = 20015-2016, 2016-2017, c = 1, 2, t = “none”, “intermediate” , “full” , b = 

1, …,6 and r  = 1,2,  

𝑀!"#$% = 𝜇!"# + 𝑌! + 𝐶!"+ 𝐵! + 𝑆!" + 𝑈!!"#  +  𝐸!"!"# , 

where 𝜇!"# is a fixed effect representing the mean biomass yield of the cth time 

of cut at the yth year of an experimental unit subject to the tth GWT management. Here 

𝑌!, 𝐶!", 𝐵!, 𝑆!", 𝑈!!"# and 𝐸!"!"# are Gaussian independent random components 

representing the year, cut time for each year, block, sub-block, experimental unit and 

the residual variation, respectively. The statistical inference of the Gaussian mixed 

model described above was performed using the ‘lme4’ package in R (R Core CRAN, 

2016). 
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A Complex Design
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Initial Example of Non-Gaussian Models - Fungal resistance essay

Several measurements of fungal resistance in a cultivated plant

Three fungal strains: A, B and C.

10 plants, 10 repetitions (leaves) inoculated

Responses:

Lesion size

Different leaves used for the three determinations

We analyse the lesion sizes in detail
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Initial Example of Non-Gaussian Models - Fungal resistance essay
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Initial Example of Non-Gaussian Models - Fungal resistance essay
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Initial Example of Non-Gaussian Models - Fungal resistance essay
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Lesion size, modelling

We will use a GLMM defined with the gamma distributions and a
logarithmic link function

The model will contain a fixed effect representing the effect of the
strains and

a random component representing the plant.
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Lesion size, the Gamma distribution

A probability distribution on the positive real numbers with probability density

of the form, for α > 0 and β > 0,

p(y ;α, β) = yα−1 1

Γ(α)βα
exp (−y/β) , for y > 0,

is said to be a Gamma distribution. Notation X ∼ G(α, β)

The parameters α > 0 and β > 0 are called the shape and the scale parameters,

respectively.
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Lesion size, defining a GLMM

Denote by Yb,t,r the random variable representing the lesion size of the

rth replicate (r = 1, . . . , 10) of the experimental units of the bth plant

(or cluster, b = I , . . . ,X ) that received the tth strain (t = A,B,C).

Suppose that there exist UI , . . . ,UX i.i.d. random variables , with
U1 ∼ N(0, σ2

U) such that, YI ,A,1, . . . ,YX ,C ,10 are conditionally independent
and Gamma distributed given U1, . . . ,UB , and for b = 1, . . . ,X ,
t = A,B,C and r = 1, . . . , 10,

log {E (Ybtr |Ub = u)} = τt + u, for all u ∈ R,

or equivalently,

E (Ybtr |Ub = u) = exp (τt + u) = exp(τt) exp(u), for all u ∈ R.
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Lesion size, Fitting the model in R

> library(GLMMstudy)

> data("FungusResistance")

> D <- FungusResistance

> M <- glmer(LesionSize ~ Strain + 0 + (1|Plant),

+ family = Gamma(link = "log") ,data = D)

> summary(M)
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Lesion size, Fitting the model in R

Random effects:

Groups Name Variance Std.Dev.

Plant (Intercept) 0.2507 0.5007

Residual 0.9753 0.9876

Number of obs: 300, groups: Plant, 10

Fixed effects:

Estimate Std. Error t value Pr(>|z|)

StrainA 1.4698 0.1869 7.864 3.73e-15 ***

StrainB 2.0929 0.1871 11.185 < 2e-16 ***

StrainC 2.6252 0.1869 14.044 < 2e-16 ***

Department of Mathematics, Aarhus University, Copyright © 2023 by Rodrigo Labouriau, please do not circulate



Binomial Models Poisson Models Normal Models GLM Random Components Other models

Three Examples of Non-Gaussian Models - Number of spots, some inference, marginal means

> ( FixedEffects <- M@beta ); exp(FixedEffects);exp(FixedEffects) * exp(0.2507/2)

[1] 1.4698 2.0929 2.6252

[1] 4.348365 8.108395 13.807335

[1] 4.929068 9.191232 15.651238

E (Ybtr ) = EU {E (Ybtr |Ub)} =

∫ ∞

−∞
exp (τt + u) ϕ(u; 0, σ2

U) du

= exp (τt)

∫ ∞

−∞
exp (u) ϕ(u; 0, σ2

U) du = exp (τt) exp
(
σ2
U/2

)
.

Here we can argue that the expectation of a log-normal distribution logN(0, σ2) is exp
(
σ2/2

)
or

that the MGF of N(0, σ2) is exp(σ2/2). Note that exp(0.2507/2) ≈ 1.133545.
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Lesion size, model control

The trombone form of the graph of the raw-residuals against the fitted values is what one expects

for a model based on the Gamma distribution; this pattern is not present in the graph of the

Pearson-residuals against the fitted values
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Three Model Control Techniques

a test of goodness of fit specially designed for Gamma GLMs and GLMMs

If a continuous real random variable Y has cumulative distribution function FY

(that is, FY is the function defined by FY (y) = P(Y ≤ y), for all y ∈ R),

then Z = FY (Y ) ∼ U(0, 1).

We will take advantage of this fact to construct a notion of generalised residuals

The uniform residuals, obtained by applying the cumulative distribution function

of the Gamma distribution to the observations

(different functions will be used for different observations with different means).

We test then whether the uniform residuals follow the

standard uniform distributions.

Department of Mathematics, Aarhus University, Copyright © 2023 by Rodrigo Labouriau, please do not circulate



Binomial Models Poisson Models Normal Models GLM Random Components Other models

Three Model Control Techniques

a test of goodness of fit specially designed for Gamma GLMs and GLMMs
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Mixed Models

Mixed models describe the relationship between a response variable and
some explanatory variables

In this course we considered only categorical (classification)
response variables, called factors with several classification levels

The parameters (coefficients) associated with the classification levels of a
factor are called effects

In mixed models, we define two types of effects:
- fixed: affect the assumed mean of the observations
- random effects: affect the assumed structure of the variance (and covariance)

It is relatively easy to fit mixed models in R, but the definition of the
model and the interpretation might be tricky!
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Population genetic example

Does inbreeding affect human fertility?
How much?

The Danish study based on the cohort of all women born in
Denmark in 1954
who were alive and living in Denmark in 1969
totaling 42,165 women.

The cohort was followed up to the end of 1999.
Fertility: The number of children born to each mother had
between the ages of 15 and 45 years old was determined
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Fertility: The number of children born to each mother
between the ages of 15 and 45 years old was determined

Genetic distance (proxy):

The mean marital radius (MR) associated with each mother in
the cohort was estimated using the distance between the
centroids of the parish where she was born, and the parishes
where the partners with which she had children were born

Classic measure of human genetic proximity (Malecot, etc)

The Spearman correlation between the MR and the fertility in
the cohort was 0.38 (P < 0.0001), indicating a positive
association

Form of the response of fertility to MR: Unknown
Relationship between MR and Inbreeding: exponential
Relationship between inbreeding and Fertility: unknown

Labouriau and Amorim (2008) Genetics 178: 601:606
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The association was further characterized by fitting a
truncated Poisson regression for predicting the number
of children as a fourth degree polynomial function of
the marital radius. A likelihood ratio test for checking
constancy of the expected number of children based on
the regression model above formally confirmed the re-
ported association (P-value , 0.0001). Moreover, visual
inspection of the graph of the expected number of
children as a function of the marital radius (Figures 1
and 2) confirms that fertility and marital radius are
positively associated.

Fertility, measured in a complex population such as
this, can be affected by socioeconomic factors. There-
fore we also performed a conditional analysis involving
three key socioeconomic indicators: education, income,
and urbanicity. We linked the data from the Danish ad-
ministrative social registers (the tax register and the
housing register) in Statistics Denmark with the Danish
Central Personal Register by means of the civil register
number (which is a unique identifier for each person
living in Denmark). This allowed us to determine the
three socioeconomic indices above for each woman in
the cohort in 1994, when they were 40 years old. Edu-
cation was defined as themaximum level attained in the
nuclear family, classified in a graduated scale with four
levels: 0–5 years of study (incomplete basic schooling),
5–10 years of study (complete basic schooling), completed
high school or technical school, and higher education
(university or advanced technical school). Income was
taken as the per capita annual income of the nuclear
family registered in 1994 and urbanicity was defined as
the type of place of residence of each woman in 1994,

classified in an ordered scale with five levels: 1, country-
side with low population density; 2, town with ,20,000
inhabitants; 3, town with 20,000–39,999 inhabitants;
4, city with 40,000–99,999 inhabitants; and 5, city with
.100,000 inhabitants (including the capital and its
surroundings).

The Spearman partial correlation between the number
of children and marital radius conditional on urban-
icity, education, and income is 0.041 (P-value, 0.0001),
indicating that the raw positive association between
fertility and marital radius reported above is not a mere
artifact due to spurious association with these socioeco-
nomic factors.

We take advantage of the theory of graphical models
to extract further relevant aspects of the correlation struc-
ture and the distribution of the information between
fertility, marital radius, and the three socioeconomic in-
dicators. The idea is to represent the multivariate struc-
ture of these variables by a graph constructed in the
following way: each variable is represented by a vertex
(point) in the graph. Pairs of variables for which the
conditional (or partial) correlation given the other vari-
ables is significantly different than zero are joined by an
edge (line). The absence of an edge joining two vari-
ables indicates that the two variables are not significantly
correlated given the other variables. Note that this theory
allows both continuous and discrete variables in the same
graph. Figure 3 displays the graph representing the data
in our study.

According to the theory of graphical models (see
Whittaker 1990; Lauritzen 1996), if two vertices are
connected, the related variables carry information to
each other that is not contained in the other variables in

Figure 1.—Mean number of children (continuous line and
left scale) and percentage of mothers that had more than two
children (interrupted line and right scale) determined for
mothers with marital radiuses contained in different intervals
arranged (in scale) along the horizontal axis.

Figure 2.—Expected number of children as a function of
marital radius (and the limits of a pointwise 95% C.I., inter-
rupted lines), inferred by a truncated polynomial Poisson re-
gression.

602 R. Labouriau and A. Amorim
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Discussion on effect of outbreeding X inbreeding

Interest on estimating effect of MR on fertility for less related
matings

Nonparametric regression

Labouriau and Amorim (2008). Science
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Multivariate

Discussion on effect of outbreeding X inbreeding

Nonparametric regression

Are the effects of MR on fertility socially determined?

The Danish registers contain information on socioeconomic
variables at individual level!

Multivariate analysis: graphical models
Discussion on information distribution
Labouriau and Amorim (2008). Science
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Multivariate - other examples

Worm distribution in soil and soil texture

Very large network: Gene expression in infected pigs
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A Poisson model with random components ...

Couts of Collembola

The data we will analyse in this third example consists of
counts of several species of Collembola or spring tail in soil.
This data was produce by Alessandra D’Annibbale at the Department of Agroecology, Aarhus University

The main interest is to compare and characterise the
abundance of those animals when subject to five different
treatments.
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A Poisson model with random components ...

Couts of Collembola

A naive modelling describing the counts of Collembola as normally
distributed fails to describe the data well and to detect differences
between the treatments, differences that are indeed clearly visible.

Less naive alternative, assuming a Poisson distribution, also fail describe
the data well and to detect differences between the treatments!
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A Poisson model with random components ...
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A Poisson model with random components ...

Model control for a Gaussian Model
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A Poisson model with random components ...

Model control for a Poisson Model

0 5 10 15

0
10

20
30

40
50

60

P−value = 0

Expected
Observed

0 1

2

3
4

5

678
911111

0 10 20 30 40 50

0
10

20
30

40
50

S. curviseta − Adult − Time*TreatConc*Sample+Block

Expected

O
bs

er
ve

d

Department of Mathematics, Aarhus University, Copyright © 2023 by Rodrigo Labouriau, please do not circulate



Binomial Models Poisson Models Normal Models GLM Random Components Other models

A Poisson model with random components ...

Model control for a Negative Binomial Model
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A Poisson model with random components ...

Assume the observations (i.e. the counts) are conditionally Poisson
distributed given two Gaussian random components ζ and ϵ. The
conditional expectations of the observations are then given by ....

log {E (Ytcsbr |ζ = ztcbr , ϵ = etcsbr )} = Itcs + Bb + ztcbr + etcsbr .

The two random components are independent, normally distributed with
ζ ∼ N(0, σ2

u) and ϵ ∼ N(0, σ2).

The random component ζ represents the dependency of the observations
arising from the same unit and the (residual) random component ϵ
represents a possible overdispersion (due to clustering) of the counts.
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Model control for Poisson Model with Random Components
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By the way, the model detects differences between the treatments!
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All these models; does it matter?
Some power calculations: t-test with different distributions
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A Poisson model with random components ...

It has been nice to be in contact with all of you!
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