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General Remark

This material is only for internal use in the course.

Please, do not circulate and do not record.
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Important concepts:

@ Statistical models
@ Parameter in statistical model
@ Point estimation

Likelihood function and Maximum likelihood estimate

e Confidence interval and hypothesis test

@ Likelihood ratio test

One-way and two-ways binomial model.

Binomial regression and binomial covariance analysis models

©

Poisson regression models

/v

Department of Mathematics, Aarhus University



Review Poisson 1-way Poisson 2-way
oeo

Poisson as a law of rare events

@ Suppose that we observe a binomial random variable,
Y ~ Bi(n, p).

(e.g. throw n times a coin with probability p of head)

@ Recall that the probability function of the distribution of Y is

P(Yzy)z(;)py(l—p)"y-

o We show that if p is very small the binomial distribution can
be approximated by a Poisson distribution

(in the sense given below).

/v
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Poisson as a law of rare events

Suppose that n — oo and p — 0 in such a way that np remains
finite and tends to a number A (i.e. , np — ), then

(3o ()

Y. C o A N
1 A" Y

R 5 —exp(—A) = —exp(—=A).

(1= %) " exp(y) r! *p(=A) = Tp exp(=2)

/v
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Example: Horse-kicks

@ The data are registers of Prussian military persons killed by
kicks of horses.

@ Ten corps observed (separately) during 20 years: 1875-1894

(4 less representative corps were eliminated)
@ The table below (nex siide) displays the data

@ The frequencies of number of deaths per year are:
Deaths

0 1 2 3 4 >5

109 65 22 3 1 0

@ We are facing a rare event!
(122 occurrences in 20 years 6.1 / year 0.61 per corp year)

We will try to use the Poisson distribution! /v
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One-way Poisson model

We start by analysing the total number of deaths per year

We sum, for each year, the number of deaths occurred in each corp.

The question is whether the number of deaths per year varies.

@ Y)ear number of deaths occurred in this year

(]

Yyear ~ Poisson

Two possible models:

o Common intensity model: Y., ~ Po()\)

o Saturated model: Yjear ~ Po(Ayear)

/v
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> attach(kicks.data)
> print(kicks.data)
year deaths
1875
1876
1877
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Fitting a Poisson model in R

@ glm(formula= ... , family=poisson(link="log") )
@ glm(formula= ... , family=poisson(link="identity") )
e formula:

response variable ~ explanatory variablel # explanatory variable2 f ...

/v
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Common intensity model: Y,esr ~ Po()\)

> common <- glm(deaths ~ 1 , family=poisson(link=’log’) )
> deviance (common)

[1] 25.25287

> summary (common)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.80829 0.09054  19.97  <2e-16 *xx
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Saturated model: Yjesr ~ Po(Ayear)

> saturated <- glm(deaths ~ factor(year) , family=poisson(link=’log’) )
> deviance(saturated)
[1] -3.108624e-15

> summary (saturated)

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.099e+00 5.774e-01 1.903 0.0571
factor(year)1876 5.428e-17 8.165e-01 6.65e-17 1.0000

factor(year)1877 2.877e-01 7.638e-01 0.377 0.7064

factor(year)1894 -4.055e-01 9.129e-01 -0.444 0.6569

ment of Mathematics,




Common intensity model: Yjear ~ Po(\)
Saturated model: Yjear ~ Po(Ayear)

> # common <- glm(deaths 1 , family=poisson(link=’log’) )
> # saturated <- glm(deaths ~ 0 + factor(year), family=poisson(link=’log’) )
> anova(common, saturated, test="Chisq")
Analysis of Deviance Table
Model 1: deaths ~ 1
Model 2: deaths ~ factor(year)
Resid. Df Resid. Dev Df Deviance P(>|Chil)

1 19 25.2529

2 0 -3.109e-15 19 25.2529 0.1524

Conclusion: No evidence of differences in mortality (by horse kicks) among the years

. . . 5
Question: Which test did we use? /v
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Summarising the analysis performed

Model DF A DF Deviance A Deviance p-value
Full 0 0
Null 19 19 25.24 25.24  0.1524

/v
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Full Model (saturated)

(p=0.1524)

Null Model

Log-likelihood (%x2)

Deviance
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Now we analyse the data with different observations for each year

and corp
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@ Now we analyse the data with different observations for each
year and corp

(i.e. not the sum of the 10 corps)

(]

Y)ear,corp Number of deaths occurred in this year at this corp

@ Yjear,corp ~ Poisson

Several possible models!

Saturated model: Yjear,corp ~ Po(Ayear,corp)

/v
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Several possible models!
@ Saturated model:
erar,corp ~ P O(Ayear,corp)
@ Multiplicative model:
erar,corp ~ P O(Ayear,corp)
|0g(>\year,corp) = Wyear + Vcorp
@ Only year:
erar,corp ~ PO()\year,corp)
|0g()\year,corp) = Myear
@ Only corp:
Yyear,corp ~ P O()\year,corp)
|0g()\year,corp) = Vcorp
@ Null model:

erar,corp ~ P O()\year,corp)
|0g()\year,corp) = /\l
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>

> # Two-ways Poisson model
>

> attach(kicks.dataG)

> str(kicks.dataG)

’data.frame’: 200 obs. of 3 variables:

$ year : int 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 ...
$group : int 1111111111 ...

$ deaths: int 0002020011 ...

> mean.year <- tapply(deaths, factor(year), mean) ; mean.year
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
0.3 0.3 0.4 0.6 0.6 1.1 0.5 0.9 0.6 0.6 0.3 0.6 0.9 0.3 0.8 1.2 0.9 0.7 0.4 0.2

> mean.group <- tapply(deaths, factor(group), mean) ; mean.group
1 2 3 4 5 6 7 8 9 10

0.60 0.60 0.40 0.55 0.60 0.35 0.65 0.75 1.20 0.40
>

/v
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Fitting various models

>

v

v

v

v

v

year <- factor(year); group <- factor(group)

saturated <- glm(deaths ~ year + group + year:group,

family=poisson(link=’1log’))

multiplicative <- glm(deaths ~ year + group , family=poisson(link=’log’))

only.year <- glm(deaths ~ year , family=poisson(link=’log’))

only.group <- glm(deaths ~ group , family=poisson(link=’log’))

null.model <- glm(deaths ~ 1 , family=poisson(link=’log’))




Poisson 2-way
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> anova(multiplicative, saturated, test="Chisq")
Analysis of Deviance Table
Model 1: deaths ™ year + group
Model 2: deaths ™ year + group + year:group
Resid. Df Resid. Dev Df Deviance P(>|Chil)
1 171 171.640

2 0 3.028e-10 171 171.640 0.472

/v
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000000000

> anova(only.year, multiplicative, test="Chisq")
Analysis of Deviance Table
Model 1: deaths ~ year
Model 2: deaths ~ year + group
Resid. Df Resid. Dev Df Deviance P(>|Chil)
1 180 187.218

2 171 171.640 9 15.578 0.076

/v
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> anova(null.model, only.year, test="Chisq")
Analysis of Deviance Table
Model 1: deaths ~ 1
Model 2: deaths ~ year

Resid. Df Resid. Dev Df Deviance P(>|Chil)
1 199 212.471

2 180 187.218 19  25.253 0.152

/v
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> anova(null.model, only.group, test="Chisq")
Analysis of Deviance Table
Model 1: deaths ~ 1
Model 2: deaths ~ group

Resid. Df Resid. Dev Df Deviance P(>|Chil)
1 199 212.471

2 190 196.892 9 15.578 0.076

/v
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> anova(null.model, saturated, test="Chisq")

Analysis of Deviance Table

Model 1: deaths ~ 1

Model 2: deaths ~ year + group + year:group
Resid. Df Resid. Dev Df Deviance P(>|Chil)

1 199 212.471

2 0 3.028e-10 199 212.471 0.244

/v
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> # Alternative (shorter) way to get the same tests

> saturated <- glm(deaths ~ year + group + year:group,
+ family=poisson(link="1log’))

> anova(saturated, test=’Chisq’)

Analysis of Deviance Table

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev P(>|Chil)

NULL 199 212.471

year 19 25.253 180 187.218 0.152
group 9 15.578 171 171.640 0.076
year:group 171 171.640 0 3.028e-10 0.472

ment of Mathematics,
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> saturated <- glm(deaths ~ group + year+ year:group,
+ family=poisson(link="1log’))

> anova(saturated, test=’Chisq’)

Analysis of Deviance Table

Model: poisson, link: log

Response: deaths

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev P(>|Chil)

NULL 199 212.471

group 9 15.578 190 196.892 0.076
year 19 25.253 171 171.640 0.152
group:year 171 171.640 0 3.028e-10 0.472

Department of Mathematics, Aarhus University




Review Poisson 1-way Poisson 2-way

[e]ele] lelelele]e]

8 4
g
@
g
g
g ol
£
S -
S
g
<
g .
< 3
g a
- i
Ll | °
l l —u . s |
\ \ \

Poisson Theoretical Quantiles

Department of Mathematics, Aarhus University




Review Poisson 1-way Poisson 2-way

Summarising the analysis performed

Model DF A DF Deviance A Deviance p-value
Full 0 0

Multiplicative 171 171 171.64 171.64 0.472
No effect of year 190 19 196.89 25.25 0.155
Null 199 9 212.47 15.58 0.076

/v
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(p=0.152)

No Effect of Year

(p=0.076)

log-likelihood (x2)
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Review on 1-way

> # Calculating the expected number 4 deaths, assuming a common intensity
> intensity <- exp(coef(null.model)); intensity
(Intercept)

0.61

> mean(deaths)
[1] 0.61

> prob.of.4 <- dpois(4, lambda=intensity); prob.of.4
[1] 0.003134646

> n.obs <- length(deaths); n.obs
[1]1 200

> expected.4s <- n.obs * prob.of.4; expected.4s
[1] 0.6269291

> # Calculating the expected number 3 deaths, assuming a common intensity
> prob.of.3 <- dpois(3, lambda=exp(coef(null.model))); prob.of.3
[1] 0.02055505

> expected.3s <- n.obs * prob.of.3; expected.3s
[1] 4.111011

> # Calculating the expected number 2 deaths, assuming a common intensity
> prob.of.2 <- dpois(2, lambda=exp(coef (null.model))); prob.of.2
[1] 0.1010904

> expected.2s <- n.obs * prob.of.2; expected.2s /
[1] 20.21809 7
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Review on 1-way

> # Calculating the expected number 1 deaths, assuming a common intensity

> prob.of.1 <- dpois(1, lambda=exp(coef (null.model))); prob.of.1
[1] 0.331444

> expected.ls <- n.obs * prob.of.1; expected.ls
[1] 66.2888

> # Calculating the expected number O deaths, assuming a common intensity
> prob.of.0 <- dpois(0, lambda=exp(coef(null.model))); prob.of.0
[1] 0.5433509

> expected.Os <- n.obs * prob.of.0; expected.Os
[1] 108.6702
>
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> Expected <- c(expected.Os, expected.ls, expected.2s, expected.3s, expected.4s)

> Expected
[1] 108.6701738 66.2888061 20.2180859 4.1110108  0.6269291

> Observed <- table (deaths) ; Observed
deaths

0 1 2 3 4
109 65 22 3 1

> Chi.square.comp <- (Observed-Expected) 2 /Expected ; Chi.square.comp
deaths

0 1 2 3 4
0.00100106 0.02505734 0.15704840 0.30025341 0.22200573

> cbind(Observed, Expected, Observed-Expected, Chi.square.comp)

Observed Expected Chi.square.comp
0 109 108.6701738 0.3298262 0.00100106
1 65 66.2888061 -1.2888061 0.02505734
2 22 20.2180859 1.7819141 0.15704840
3 3 4.1110108 -1.1110108 0.30025341
4 1 0.6269291 0.3730709 0.22200573
> Chisq.statistic <- sum(Chi.square.comp) ; Chisq.statistic

[1] 0.7053659

> pchisq( Chisq.statistic , df= 5-1, lower.tail=F)

[1] 0.9506656 /
\ 4
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The glm function in R

@ The glm function fits Generalized Linear Models,
a large class of models.

@ Examples of Generalized Linear Models:
Binomial one/two/three ... way models, Binomial regressions, Poisson models, log-linear models
(contingency tables), normal linear regression, normal anova, analysis of covariance models, gamma

models, inverse gaussian models, some survival models, etc.

o Call: glm (formula=, family=, ...)
Two important parts: formula and family

/v
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Generalized Linear Models

@ Generalized Linear Models is a class of statistical models.

@ A response variable, Y and
a collection of explanatory variables, Xi, ..., Xk.

@ The model specifies that Y follows a given probability laws
and that the expectation of Y is related to the explanatory
variables by

g(E(Y))=a+ Xt + -+ BiXe,

here g is a given function called the link function. e

Department of Mathematics, Aarhus University
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[e]e] lelele]e]

Specification of the family in glm

@ The "family” parameter in glm specifies two characteristics of the
generalized linear model:
The class of probability laws and the link function.

@ Common used distributions: Normal, Poisson, Binomial, Gamma, etc.
@ Link function.
g(E(Y))=a+ Xt + - + BiXk,

Common link functions: identity, log, inverse, logit, probit, etc.

identity: E(Y) = a+ Bi1Xq + -+ + B Xk
log: log (E(Y)) = a + BiXq + -+ + BeXx

inverse: gy = @+ BiXy+ - + BiXe

/v
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[e]e]e] lelele)

Some common family specifications:

binomial(link = "logit")

binomial (link = "probit")

binomial(link = "cloglog")
gaussian(link = "identity")

Gamma (link = "inverse")
inverse.gaussian(link = "1/mu”~2")
poisson(link = "log")

Can specify your own family

(but we will not do that at this stage)
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The formula in glm

e glm (formula=, family=, ...)

@ The formula specifies the response variable, the explanatory
variables

and the way the explanatory variables act on the expectation of the response variable.
@ The general form is:
Y ~ Xif .. X

Here Y is the response variable (or matrix)
X1, ..., Xk are the explanatory variables
fi are "operators’ connecting the variables

o Possibilities for the operator £ : "+", "*" and "." /v
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e Convention: y response variable, A and B factors.

@ Single classification analysis of variance model of y, with classes
determined by A.
y ~ A
@ Single classification analysis of variance model of the logarithm
transformed vy, i.e. log(y), with classes determined by A.
log(y) ~ A
@ Single classification analysis of variance model of the square-root
transformed variable y, i.e. sqrt(y), with classes determined by A.

sqrt(y) ~ A
@ Two factor additive model of y on A and B.
y “A+B
@ Two factor non-additive model of y on A and B.

y = A*B /
y " A+ B+ A:B b
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The formula in glm defining models with continuous explanatory variables

@ Convention: y response variable, A and B factors, x, z, and y
numeric variable.
@ Simple linear regression model of y on x.
y " x or y~1+x
@ Simple linear regression of y on x through the origin (that is, without an
intercept term).
y " 0+x or y~ -1+x or y~ x-1
@ Multiple regression of the transformed variable, log(y), on x1 and x2
(with an implicit intercept term).
log(y) ~ x1 + x2
@ Single classification analysis of covariance model of y, with classes
determined by A, and with covariate x.
y ~A+x
@ Separate simple linear regression models of y on x within the levels of A.
y ~ A xx /v
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