Basic Statistical Analysis

Rodrigo Labouriau

Aarhus University Department of Mathematics

Module 2, Day 4 - Binomial Models - 2024 (regression and covariance analysis structures)

1
${ }^{1}$ Copyright (c) 2024 by Rodrigo Labouriau.
This material is only for internal use in the course. Please, do not circulate and do not record.

General Remark

This material is only for internal use in the course.
Please, do not circulate and do not record.

Outline

Review

Logistic binomial regression

Logistic binomial multiple regression

Logistic binomial multiple regression (further aspects)

Summing-up and the idea of generalised linear models

Review:

Important general concepts

- Statistical models
- Parameter in statistical model
- Point estimation
- Likelihood function and Maximum likelihood estimate
- Confidence interval and hypothesis test
- Likelihood ratio test
- One-way and two-ways binomial model.
- We will study today binomial regression and binomial covariance analysis models

Binomial one-way classification models

Seed germination example: The data

Watering Level				
1	2	3	4	5
22	41	66	82	79
25	46	72	73	68
27	59	51	73	74
23	38	78	84	70

Number of germinated seeds, out of 100 seeds, for five different levels of available water (columns) and four repetitions (rows)

Binomial one-way classification models

Seed germination example: The problem and the steps of the construction of a model

- Question:

Does the amount of available water affect the germination rate ?

- We will develop step by step a mathematical model for this experiment
- Three steps:
(1) We model what happens in each single box
(2) Describe separately the results of each of the five watering levels
(3) We consider a model that takes into account simultaneously the data with the five watering levels
- One-way classification model
("One-way ANOVA-like model")

Review:

Binomial models, one-way classification models

- One classification variable, say T $Y_{t i}$ the $i^{t h}$ repetition of observations classified as t
- Y_{11}, Y_{12}, \ldots independent
- $Y_{t i} \sim \operatorname{Bi}\left(n_{t i}, p_{t}\right)$, for $t=1,2, \ldots$
- Equivalently
$Y_{t i} \sim B i\left(n_{t i}, p_{t i}\right)$, for $t=1,2, \ldots$
where $\operatorname{logit}\left(p_{t i}\right)=T_{t}$

Binomial one-way classification models - Calculations in R

Seed germination example: preparing for the calculations in R

> \# We fit a one-way binomial model
>
> \# We create the response, a matrix with the numb. of success in the first
> \# column and the number of failures in the second column
>
> resp <- cbind(Germ, N-Germ)
> print(resp)
Germ
$[1] \quad 2278$,
$[2] \quad 2575$,
$[3]$,
2773

Binomial one-way classification models - Calculations in R

Seed germination example: preparing for the calculations in R

```
> # We fit a one-way binomial model
> OneWayModel <- glm(resp ~ Water - 1, family=binomial(link="identity"))
>
> coefficients(OneWayModel)
Water1 Water2 Water3 Water4 Water5
0.2425 0.4600 0.6675 0.7800 0.7275
>
> # Or equivalently in short
> coef(OneWayModel)
Water1 Water2 Water3 Water4 Water5
0.2425 0.4600 0.6675 0.7800 0.7275
```


Binomial one-way classification models

Another way to parametrize

- Probabilities are numbers between 0 and 1

During the maximisation process we wight get values out of this range

- Idea: replace the probability by $\operatorname{logit}(p)=\log \left(\frac{p}{1-p}\right)$
- $\operatorname{logit}^{-1}(L)=\frac{\exp (L)}{1+\exp (L)}$

Binomial one-way classification models - Calculations in R

 Parametrising by the logits```
> # Here we define a function that transforms a probabilities into lodds.
> logit <- function(p){
+ return(log}(p/(1-p))
+ }
> # Next we test some values
> logit(1/2)
[1] 0
```


## Binomial one-way classification models - Calculations in R

## Parametrising by the logits

```
> # We can also transform lodds in probabilities by the formula
> # exp(lodds)/(1+exp(lodds)).
> # Here I define a function that transforms probabilities into lodds,
> # called the inverse of the logit.
> ilogit <- function(lodds){
+ return(exp(lodds)/(1+exp(lodds)))
+ }
> # Next I calculate some values
> ilogit(0)
[1] 0.5
ilogit(1)
```


## Binomial one-way classification models - Calculations in R

## Parametrising by the logits



## Binomial one-way classification models - Calculations in R

## Parametrising by the logits

> fit2 <- glm(resp $\sim$ Water -1, family=binomial (link="logit"))
$>$ \# Please observe the difference between the call and the results for the
> \# model defined with the probabilities instead of the lodds
$>\quad$ fit1 <- glm(resp ~ Water - 1, family=binomial (link="identity"))
> coefficients(fit1)
Water1 Water2 Water3 Water4 Water5
0.24250 .46000 .66750 .78000 .7275

## Binomial one-way classification models - Calculations in R

## Parametrising by the logits



## Review:

Binomial models, two-ways classification models

- Two classification variables, say $T$ and $S$
$Y_{t s i}$ the $i^{t h}$ repetition of observations classified as $t$ and $s$
- $Y_{111}, Y_{112}, \ldots$ independent
- $Y_{t s i} \sim B i\left(n_{t s i}, \rho_{t s i}\right)$, for $t, s=1,2, \ldots$
with several possibilities for the $\rho_{t s i} \mathrm{~S}$ (yielding different models)
- Some possibilities are:
- $\operatorname{logit}\left(\rho_{t s i}\right)=\theta_{t s i}$
- $\operatorname{logit}\left(\rho_{t s i}\right)=\gamma_{t s}$
- $\operatorname{logit}\left(\rho_{t s i}\right)=\tau_{t}+\beta_{s}$
- $\operatorname{logit}\left(\rho_{t s i}\right)=\beta_{s}$
- $\operatorname{logit}\left(\rho_{t s i}\right)=\tau_{t}$
- $\operatorname{logit}\left(\rho_{t s i}\right)=k$
(the saturated model)
(effect modification model) (additive model)
(no effect of $T$ )
(no effect of $S$ ) (null model)


## Example: Leave abscission

- Experiment of leave abscission in Radamachera sp.
- Several doses of a chemical similar to the abscisic acid were applied to batches of 50 plants. Doses (mg/plant): 0, 0.1, 0.3, 0.4. 0.5, 0.6, 0.7
- Counted how many plants presented more than $50 \%$ of abscised leaves after 24h.
- 10 repetitions
(all in all 70 observations).
- Data contained in the data-frame "Ch3.Radamachera.simple"


## Example: Leave abscission



## Example: Leave abscission



## Logistic regression

- Regression model: assume that the probabilities of abscission are a (continuous) function of the dose of abscisic acid
- $Y$ is number of plants with more than $50 \%$ of abscised leaves out of the 50 plants in each batch
- $d$ is the dose ( $\mathrm{mg} / \mathrm{plant}$ )
- $Y \sim B i\left(50, p_{d}\right)$
- We assume

$$
p_{d}=\frac{\exp (\alpha+\beta d)}{1+\exp (\alpha+\beta d)}
$$

- Or equivalently,

$$
\log \left(\frac{p_{d}}{1-p_{d}}\right)=\alpha+\beta d
$$

- $\alpha$ and $\beta$ are parameters in the model.


## Logistic regression

- Probability of an event: $p$

Odds of an event: $\frac{p}{1-p}$
Lodds of an event: $\log \left(\frac{p}{1-p}\right)$

- Logistic function converts probabilities in lodds

$$
\operatorname{logit}(p)=\log \left(\frac{p}{1-p}\right)
$$

- Inverse logistic converts lodds in probabilities

$$
\operatorname{logit}^{-1}(\text { lodds })=\frac{\exp (\text { lodds })}{1+\exp (\text { lodds })}
$$

## Logistic function



## Inverse logistic function



## Logistic regression

- The inverse logistic function is S-shaped taking value 0 at the probability $1 / 2$ negative values for $p<1 / 2$ positive values for $p>1 / 2$ asymptotic to 0 and 1 .
- It is advantageous to work with in the lodds scale since lodds are not bounded (as probabilities are)
- Logistic regression says that the lodds depend linearly on the explanatory variables.

$$
\operatorname{logit}\left(p_{d}\right)=\log \left(\frac{p_{d}}{1-p_{d}}\right)=\alpha+\beta d
$$

```
Logit <- function(p){
 return(log(p/(1-p)))
}
```

ILogit <- function(lodds) \{
return(exp(lodds)/(1+exp(lodds)))
\}



- The logistic regression says that the lodds depend linearly on the explanatory variables.

$$
\operatorname{logit}\left(p_{d}\right)=\log \left(\frac{p_{d}}{1-p_{d}}\right)=\alpha+\beta d
$$

- To fit a logistic regression in R use the function glm with family=binomial(link="logit") and use a numeric explanatory variable
- R output for the leave abscission example:

```
> resp<-cbind(abscised, nplants-abscised)
> fit1 <- glm(resp ~ dose, family=binomial(link="logit"))
> fitted.coef <- coef(fit1); fitted.coef
(Intercept) dose
 0.429748 3.198821
```

- Here $\alpha$ and $\beta$ are estimated as 0.4297480 and 3.1988212 respectively

| > fit1 <- glm( resp ~ dose, family=binomial(link="logit")) |
| :---: |
| > summary (fit1) |
| Call: |
| glm(formula = resp ~ dose, family = binomial (link = "logit")) |
| Deviance Residuals: |
| $\begin{array}{llll}\text { Min } & \text { 1Q Median } & \text { 3Q }\end{array}$ |
| $\begin{array}{lllll}-2.07373 & -0.69993 & -0.00877 & 0.76434 & 2.04812\end{array}$ |
| Coefficients: |
| Estimate Std. Error z value $\operatorname{Pr}(>\|z\|)$ |
| (Intercept) $0.42975 \quad 0.06913 \quad 6.216 \quad 5.1 \mathrm{e}-10$ *** |
| dose $3.198820 .1973916 .206<2 \mathrm{e}-16$ *** |
| --- |
| Signif. codes: $0{ }^{\prime * * *}$, $0.001^{\prime * *}$, $0.01{ }^{\prime *}$, 0.05 , , 0.1 , 1 |
| (Dispersion parameter for binomial family taken to be 1) ... |

## Output continued:

```
 Null deviance: 358.360 on 69 degrees of freedom
Residual deviance: 67.451 on 68 degrees of freedom
AIC: 326.69
Number of Fisher Scoring iterations: 4
```

```
Drawing the logistic adjusted logistic curve
grid.points <- seq(from=min(dose), to=max(dose), by=0.001)
eta <- fitted.coef[1] + (fitted.coef[2] * grid.points)
pred.prob <- ILogit(eta); pred.prob
pdf(file="Figure-Ch3-67.pdf")
n<-length(dose)
plot(dose+0.03*(runif(n)-0.5), abscised/nplants, cex=1.5 ,
 xlab="Dose",
 ylab="Proportion abscised",
 pch=19, col='blue')
points(grid.points, pred.prob, type='l', lwd=2, col='red')
dev.off()
```



## Fitting a regression and a "free curve" model

```
> resp<-cbind(abscised, nplants-abscised)
> fit1 <- glm(resp ~ dose, family=binomial(link="logit"))
> fit2 <- glm(resp ~ 0+factor(dose), family=binomial(link="logit"))
> coef(fit1)
(Intercept) dose
 0.4297480 3.1988212
> deviance(fit1)
[1] 67.45137
```


## Fitting a regression and a "free curve" model

```
> fit1 <- glm(resp ~ dose, family=binomial(link="logit"))
> fit2 <- glm(resp ~ 0+factor(dose), family=binomial(link="logit"))
> coef(fit2)
```

    factor(dose)0 factor(dose)0.1 factor(dose)0.3 factor(dose)0.4 ...
    \(\begin{array}{llllll}0.4305291 & 0.7537718 & 1.3862944 & 1.7190001 & 1.9924302\end{array}\)
    > deviance(fit2)
[1] 67.3003

## The free curve model does not assume any form for the response to doses!

Will use the free-curve model to check some assumptions

## Testing the homogeneity assumption

Test the homogeneity assumption by comparing, by the likelihood ratio test, the free-curve model and the saturated model.

```
> deviance(fit2)
[1] 67.3003
> length(dose); length(coef(fit2))
[1] 70
[1] 7
> pchisq(deviance(fit2), df=70-7, lower.tail=F)
[1] 0.3322087
> deviance(fit2)/63
[1] 1.068259
> # Uffa! passed the homogeneity test.
```


## Testing the adequacy of the logistic regression curve

Test the adequacy of the logistic regression curve used by comparing, by the likelihood ratio test, the logistic regression model and the free-curve model.


## Drawing some plots

## We make some plots that allow us to visualize what is going on.

```
> # Ploting the observed proportions and the predicted for the two models
> grid.points <- seq(from=min(dose), to=max(dose), by=0.0001)
> eta <- fitted.coef[1] + (fitted.coef[2] * grid.points)
> pred.prob <- ILogit(eta)
> n<-length(dose)
> plot(dose+0.03*(runif(n)-0.5), abscised/nplants, cex=1.5 ,
+ xlab="Dose", ylab="Proportion abscised", pch=19, col='blue')
> points(grid.points, pred.prob, type='l', lwd=3, col='red')
> free.lodds <- ILogit(coef(fit2))
> points(levels(factor(dose)), free.lodds , type='p', cex=2, col='yellow', pch=19)
```



## Testing homogeneity and regression curve adequacy simultaneously

```
> # Testing the homogeneity assumption and the appropriatness of the regression
> # curve SIMULTANEOUSLY!
> deviance(fit1)
[1] 67.45137
> length(dose) # 70 observations
[1] 70
> length(coef(fit1)) # 2 parameters in the free-curve model
[1] 2
> pchisq(deviance(fit1), df=70-2, lower.tail=F)
[1] 0.4959817
> deviance(fit2)/68
[1] 0.9897103
> # Again passed the two tests simultaneously!
```


## Summarising the analysis performed



## Example: Leave abscission

- Experiment of leave abscission in Radamachera $s p$.
- Several doses of a chemical similar to the abscisic acid were applied to batches of 50 plants. Doses (mg/plant): 0, 0.1, 0.3, 0.4. 0.5, 0.6, 0.7
- Counted how many plants presented more than $50 \%$ of abscised leaves after 24 h .
- 10 repetitions
(all in all 70 observations).
- Two varieties: 1,2

The previous analysis was restricted to variety 1

## Example: Leave abscission (continued)

| > attach(Ch3.Radamachera.simple) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| > summary (Ch3.Radamachera.simple) |  |  |  |  |  |  |  |  |  |  |
| Obs | repetition |  | dose |  | variety |  | abscised |  | nplants |  |
| Min. : 1.00 | Min. | $: 1.0$ | Min. | :0.0000 | Min. | :1.0 | Min. | :11.00 | Min. | : 50 |
| 1st Qu.: 35.75 | 1st Qu | : 3.0 | 1st Qu.:0.1000 |  | 1st Qu.: 1.0 |  | 1st Qu.:30.00 |  | 1st Qu.:50 |  |
| Median : 70.50 | Median | : 5.5 | Median : 0.4000 |  | Median :1.5 |  | Median :37.00 |  | Median :50 |  |
| Mean : 70.50 | Mean | : 5.5 | Mean | :0.3714 | Mean | :1.5 | Mean | :35.58 | Mean | : 50 |
| 3rd Qu.: 105.25 | 3rd Qu | : 8.0 | 3rd | :0.6000 | 3 rd | :2.0 | 3 rd | :42.25 | 3 rd | : 50 |
| Max. $\quad 140.00$ | Max. | $: 10.0$ | Max. | :0.7000 | Max. | :2.0 | Max. | :49.00 | Max. | : 50 |

## Example: Leave abscission (continued)

```
> dose1 <- dose[variety==1] ; abscised1 <- abscised[variety==1] ; nplants1 <- nplants[variety==1]
> dose2 <- dose[variety==2] ;abscised2 <- abscised[variety==2]; nplants2 <- nplants[variety==2]
> n <- length(dose1)
> plot(dose1+0.03*(runif(n)-0.5), abscised1/nplants1, cex=1.5 , xlab="Dose",
+ ylab="Proportion abscised", pch=19, col='blue', ylim=range(abscised/nplants))
> prop <-tapply(abscised1, factor(dose1),sum)/ tapply(nplants1, factor(dose1),sum)
> points(levels(factor(dose1)), prop, type='b', lty=2, lwd=2.5, pch=19, col='blue')
n <- length(dose2)
> points(dose2+0.03*(runif(n)-0.5), abscised2/nplants2, cex=1.5 , xlab="Dose",
+ ylab="Proportion abscised", pch=19, col='red')
> prop <- tapply(abscised2, factor(dose2),sum)/ tapply(nplants2, factor(dose2),sum)
> points(levels(factor(dose2)), prop, type='b', lty=2, lwd=2.5, pch=19, col='red')
```


## Example: Leave abscission



## Example: Leave abscission (continued)

```
> Logit <- function(p){return(log(p/(1-p)))}
> plot(dose1+0.03*(runif(n)-0.5), Logit(abscised1/nplants1), cex=1.5 ,
+ xlab="Dose", ylab="Logistic transformed proportion abscised",
+ pch=19, col='blue', ylim=range(Logit(abscised/nplants)))
> prop <-tapply(abscised1, factor(dose1),sum)/ tapply(nplants1, factor(dose1),sum)
> points(levels(factor(dose1)), Logit(prop), type='b', lty=2, lwd=2.5, pch=19, col='blue')
> n <- length(dose2)
> points(dose2+0.03*(runif(n)-0.5), Logit(abscised2/nplants2), cex=1.5 , xlab="Dose", ylab="Proportion
> prop <- tapply(abscised2, factor(dose2),sum)/ tapply(nplants2, factor(dose2),sum)
> points(levels(factor(dose2)), Logit(prop), type='b', lty=2, lwd=2.5, pch=19, col='red')
```


## Example: Leave abscission



## Multiple logistic regression

- Regression model: assume that the probabilities of abscission are a (continuous) function of the dose of abscisic acid
- $Y$ is number of plants with more than $50 \%$ of abscised leaves out of the 50 plants in each batch
- $d$ is the dose ( $\mathrm{mg} / \mathrm{plant}$ )
- $Y \sim \operatorname{Bi}\left(50, p_{d}\right)$
- We assume for variety $i$

$$
p_{d i}=\frac{\exp \left(\alpha_{i}+\beta_{i} d\right)}{1+\exp \left(\alpha_{i}+\beta_{i} d\right)}
$$

- Or equivalently,

$$
\log \left(\frac{p_{d i}}{1-p_{d i}}\right)=\alpha_{i}+\beta_{i} d
$$

- $\alpha_{1}, \alpha_{2}, \beta_{1}$ and $\beta_{2}$ are the parameters in the model.


## Fitting (simultaneously) a separate logistic regression for each variety

```
> response <- cbind(abscised , nplants-abscised)
> diff.slopes <- glm(response ~ factor(variety) * dose, family=binomial(link='logit'))
```


## Fitting (simultaneously) a separate logistic regression for each variety

| > summary (diff.slopes) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\cdots$ |  |  |  |  |  |
| Estimate Std. Error z value $\operatorname{Pr}(>\|z\|)$ |  |  |  |  |  |
| (Intercept) | 0.42975 | 0.06913 | 6.216 | $5.1 \mathrm{e}-10$ | *** |
| factor(variety)2 | -1.04317 | 0.09539 | -10.936 | $<2 \mathrm{e}-16$ |  |
| dose | 3.19882 | 0.19739 | 16.206 | $<2 \mathrm{e}-16$ | *** |
| factor(variety) 2: dose | -0.15745 | 0.25420 | -0.619 | 0.536 |  |
| (Dispersion parameter for binomial family taken to be 1) |  |  |  |  |  |

Fitting (simultaneously) a separate logistic regression for each variety (Different parametrisation)


Fitting (simultaneously) a separate logistic regression for each variety (Different parametrisation)

| > summary (diff.slopes) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\ldots$ |  |  |  |  |  |
| Coefficients: |  |  |  |  |  |
| Estimate Std. Error z value $\operatorname{Pr}(>\|z\|)$ |  |  |  |  |  |
| factor(variety)1 | 0.42975 | 0.06913 | 6.216 | $5.1 \mathrm{e}-10$ | *** |
| factor(variety)2 | -0.61342 | 0.06572 | -9.333 | $<2 \mathrm{e}-16$ | *** |
| dose | 3.19882 | 0.19739 | 16.206 | $<2 \mathrm{e}-16$ | *** |
| factor(variety) 2: dose | -0.15745 | 0.25420 | -0.619 | 0.536 |  |

Fitting (simultaneously) a separate logistic regression for each variety (Different parametrisation)


Fitting (simultaneously) a separate logistic regression for each variety (Different parametrisation)

| > summary (diff.slopes) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| . . |  |  |  |  |  |
| Coefficients: |  |  |  |  |  |
| Estimate Std. Error z value $\operatorname{Pr}(>\|z\|)$ |  |  |  |  |  |
| factor(variety)1 | 0.42975 | 0.06913 | 6.216 | $5.1 \mathrm{e}-10$ |  |
| factor(variety)2 | -0.61342 | 0.06572 | -9.333 | $<2 \mathrm{e}-16$ | *** |
| factor(variety) 1: dose | 3.19882 | 0.19739 | 16.206 | < 2e-16 | *** |
| factor(variety)2:dose | 3.04138 | 0.16018 | 18.988 | < 2e-16 | *** |

GLM and Exercises OOOOOOO

## Fitting a parallel model

| $>$ \# Fitting a parallel model. That is different intercepts and common slope |
| :--- |
| $>$ \# in the lodds scale |
| > |
| > parallel <- glm(response ~ factor(variety) + dose, |
| $+\quad$ family=binomial(link='logit') |
| + |
| $>$ |

GLM and Exercises 0000000

## Fitting a parallel model



## Fitting a parallel model (other parametrization)

| > \# Using another parametrization |
| :--- |
| $>$ |
| $>$ parallel <- glm(response $\sim 0+$ factor(variety) + dose, |
| $+\quad$ family=binomial(link='logit') |
| + |
| $>$ |

## Fitting a parallel model (other parametrization)



## Fitting a "free curve model"

$\square$

## Fitting a "free curve model"

```
 summary(free.curve)
```

| . . |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Coefficients: |  |  |  |  |  |
|  | Estimate Std. Error $z$ value $\operatorname{Pr}(>\|z\|)$ |  |  |  |  |
| factor(variety)1 | 0.430529 | 0.091523 | 4.704 | $2.55 \mathrm{e}-06$ | *** |
| factor(variety)2 | -0.610260 | 0.093639 | -6.517 | $7.17 \mathrm{e}-11$ |  |
| factor(dose)0.1 | 0.323243 | 0.132543 | 2.439 | 0.0147 | * |
| . . |  |  |  |  |  |
| factor(dose) 0.7 | 2.286086 | 0.206801 | 11.055 | < 2e-16 | *** |
| factor(variety) 2:factor(dose)0.1 | -0.002999 | 0.185756 | -0.016 | 0.9871 |  |
| . . |  |  |  |  |  |
| factor(variety) $2:$ factor(dose) 0.7 | -0.032405 | 0.257424 | -0.126 | 0.8998 |  |

GLM and Exercises 0000000

## Testing homogeneity

```
> # Testing the homogeneity assumption
> deviance(free.curve)
[1] 106.1639
> length(dose) # 140 observations
[1] }14
> length(coef(free.curve)) # 14 parameters
[1] }1
> pchisq(deviance(free.curve), df=140-4, lower.tail=F)
[1] 0.9725822
> # Uffa! Passed this test!
```


## Testing the form of the regression curve



## Testing homogeneity AND the form of the regression curve



GLM and Exercises 0000000

## Testing additivity




## Summarising the analysis performed



## Example: Bulls' Fertility

- Large experiment on bulls' seminal viability (492 samples of semen )
- Treatment involving several doses of a drug: $1,2,3,4,5$, and 6 ppm
- The semen was collected from bulls of two breeds (denoted by " J " and " H ")
- Analysis using a flow-cytometer, which counted a large number of spermatozoa (in mean 7504 cells were counted per sample) and classified each cell as alive or not using a colouring indicator of cell respiration.
- The total numbers of cells counted for each sample are registered in the variable " N " and the total of alive cells are registered in the variable "Alive".
- Question: Does the viability (i.e. the proportion of alive sperm cells) decay with the dose? Is the decay the same for the two breeds?


## Example: Bulls' Fertility



## Example: Bulls' Fertility




## Example: Bulls' Fertility

| $>$ resp <- cbind(Alive, N-Alive) |
| :--- |
| > resp[1:5, ] |
| Alive |
| $[1] \quad 7474 \quad 109$, |
| $[2] \quad 7045 \quad 382$, |
| $[3] \quad 61661388$, |
| $[4] \quad 38453901$, |
| $[5] \quad 14276051$, |
| $>$ |
| $>$ fit1 <- glm(resp ~ Breed*factor(Dose), |
| $+\quad$ family=binomial(link="logit")) |

## Bulls' Fertility: The corner point parametrisation

| Coefficients: E | Estimate St | Error z | $z$ value $\operatorname{Pr}$ | \|z|) |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| (Intercept) | 4.37864 | 0.01631 | 268.488 | $<2 \mathrm{e}-16$ | *** |
| BreedJ | -2.73346 | 0.01703 | -160.525 | <2e-16 | *** |
| factor(Dose)2 | -1.47700 | 0.01822 | -81.082 | <2e-16 | *** |
| factor(Dose)3 | -2.93148 | 0.01694 | -173.038 | $<2 \mathrm{e}-16$ | *** |
| factor(Dose)4 | -4.37452 | 0.01670 | -261.916 | $<2 \mathrm{e}-16$ | *** |
| factor(Dose)5 | -5.83317 | 0.01694 | -344.244 | $<2 \mathrm{e}-16$ |  |
| factor(Dose)6 | -7.27526 | 0.01821 | -399.628 | <2e-16 | *** |
| BreedJ: factor(Dose)2 | 20.03308 | 0.01921 | 1.722 | 0.0851 | . |
| BreedJ: factor(Dose)3 | $3 \quad 0.04544$ | 0.01816 | 2.503 | 0.0123 | * |
| BreedJ: factor(Dose) 4 | $4 \quad 0.03615$ | 0.01891 | 1.911 | 0.0560 | . |
| BreedJ: factor(Dose) 5 | $5 \quad 0.03421$ | 0.02291 | 1.493 | 0.1354 |  |
| BreedJ: factor(Dose)6 | 60.05500 | 0.03494 | 1.574 | 0.1155 |  |

## Bulls' Fertility: Raw residuals



## Bulls' Fertility: Pearson residuals

- Raw-residuals: For $i=1, \ldots, 462$,
$R_{i}=y_{i}-n_{i} \hat{p}_{i}$,
where $R_{i}$ is the raw-residual of the $i$ th observation,
$y_{i}$ and $n_{i}$ are the number of successes and the number of trials and
$\hat{p}_{i}$ is the predicted probability of success (fitted values)
- $\operatorname{Var}\left(R_{i}\right)=n_{i} \hat{p}_{i}\left(1-\hat{p}_{i}\right)$
- Pearson residuals:
$P_{i}=\frac{y_{i}-n_{i} \hat{p}_{i}}{\sqrt{n_{i} p_{i}\left(1-\hat{p}_{i}\right)}}$


## Example: Bulls' Fertility



## Example: Bulls' Fertility: Testing homogeneity

```
> deviance(fit1)
```

```
[1] 482.0306
```

> n.observations <- length(N) ; n.observations
[1] 492
> n.parameters.fit1 <- length(coef(fit1)); n.parameters.fit1
[1] 12
> n.df.fit1 <- n.observations - n.parameters.fit1; n.df.fit1
[1] 480
> pchisq(deviance(fit1), df=n.df.fit1, lower.tail=F)
[1] 0.4653527

## Bulls' Fertility: Fitting two logistic curves

| > summary (fit2) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| glm(formula $=$ resp $\sim 0+$ Breed - Dose + Breed:Dose, family = binomial) |  |  |  |  |  |
| Deviance Residuals: |  |  |  |  |  |
| Min | 1Q | Median | 3Q | Max |  |
| -3.14096 | -0.64440 | $0.00531 \quad 0$. | 66139 | 2.95600 |  |
| Coefficients: |  |  |  |  |  |
| Estimate Std. Error z value $\operatorname{Pr}(>\|z\|)$ |  |  |  |  |  |
| BreedH | 5.806178 | 0.008187 | 709.2 | <2e-16 * | *** |
| BreedJ | 3.093313 | 0.005635 | 548.9 | <2e-16 * | *** |
| BreedH: Dos | e -1.451377 | 0.001999 | -726.0 | <2e-16 * | *** |
| BreedJ: Dos | se -1.446014 | 0.002202 | -656.6 | <2e-16 * | *** |
| --- |  |  |  |  |  |

## Bulls' Fertility: Fitting two logistic curves



GLM and Exercises OOOOOOO

## Bulls' Fertility

| > summary (fit3) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Call: |  |  |  |  |  |
| glm(formula $=$ resp $\sim 0+$ Breed + Dose, family = binomial) |  |  |  |  |  |
| Deviance Residuals: |  |  |  |  |  |
| Min | 10 | Median | 3Q | Max |  |
| -3.0629 | -0.6416 | 0.0149 | 0.6890 | 3.0331 |  |
| Coefficients: |  |  |  |  |  |
| Estimate Std. Error z value $\operatorname{Pr}(>\|z\|)$ |  |  |  |  |  |
| BreedH | 5.796643 | 0.006239 | 929.1 | <2e-16 | *** |
| BreedJ | 3.100214 | 0.004141 | 748.6 | <2e-16 | *** |
| Dose - | -1.448959 | 0.001480 | -978.9 | <2e-16 * | *** |

Multiple-logistic-II 0000000000

GLM and Exercises OOOOOOO

## Bulls' Fertility



Multiple-logistic-II 0000000000

GLM and Exercises OOOOOOO

## Bulls' Fertility

```
 anova(fit3, fit2, test="Chisq")
Analysis of Deviance Table
Model 1: resp ~ Breed + Dose
Model 2: resp ~ 0 + Breed - Dose + Breed:Dose
 Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 489 493.21
2488 489.96 1 3.2502 0.07141.

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 , ' 1
```

Multiple-logistic-II 8000000000

GLM and Exercises 0000000

## Bulls' Fertility



Multiple-logistic-II $0000000000{ }^{\circ}$

GLM and Exercises 0000000

## Bulls' Fertility

| > anova(fit5, fit3, test="Chisq") |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Analysis of Deviance Table |  |  |  |  |  |
| Model 1: resp ~ Dose |  |  |  |  |  |
| Model 2: resp ~ Breed + Dose |  |  |  |  |  |
| Resid. Df Resid. Dev Df Deviance $\operatorname{Pr}(>C h i)$ |  |  |  |  |  |
| 1 | 490 | 659408 |  |  |  |
| 2 | 489 | 493 | 1658915 | < $2.2 \mathrm{e}-16$ | *** |
| --- |  |  |  |  |  |
| Signif. codes: 0 '***' 0.001 '**' $0.01{ }^{\prime}{ }^{\prime}$, 0.05 '.' 0.1 , 1 |  |  |  |  |  |

Multiple-logistic-II 0000000000

GLM and Exercises 0000000

## Bulls' Fertility

```
> fit6 <- glm(resp ~ 1, family=binomial)
> anova(fit6, fit3, test="Chisq")
Analysis of Deviance Table
Model 1: resp ~ 1
Model 2: resp ~ Breed + Dose
 Resid. Df Resid. Dev Df Deviance Pr(>Chi)
\begin{tabular}{lrrr}
\hline 1 & 491 & 2497923 \\
\hline 2 & 489 & 493 & 2
\end{tabular} \(2497430<2.2 e^{-16}{ }^{* * *}\)
```

[^0]```
Signif. codes: \(0{ }^{\prime * * *} 0.001^{\prime * *} 0.01^{\prime *} 0.05\) '.' \(0.1^{\prime}, 1\)
```

Multiple-logistic-II 0000000000

GLM and Exercises 0000000

Bulls' Fertility

Example: Bulls' Fertility

The glm function in R

- The glm function fits Generalized Linear Models, a large class of models.
- Examples of Generalized Linear Models:

Binomial one/two/three ... way models, Binomial regressions, Poisson models, log-linear models (contingency tables), normal linear regression, normal anova, analysis of covariance models, gamma models, inverse gaussian models, some survival models, etc.

- Call: glm (formula=, family=, ...) Two important parts: formula and family

Generalized Linear Models

- Generalized Linear Models is a class of statistical models.
- A response variable, Y and a collection of explanatory variables, X_{1}, \ldots, X_{k}.
- The model specifies that Y follows a given probability laws and that the expectation of Y is related to the explanatory variables by

$$
g(E(Y))=\alpha+\beta_{1} X_{1}+\cdots+\beta_{k} X_{k}
$$

here g is a given function called the link function.

Specification of the family in glm

- The "family" parameter in glm specifies two characteristics of the generalized linear model:
The class of probability laws and the link function.
- Common used distributions: Normal, Poisson, Binomial, Gamma, etc.
- Link function.

$$
g(E(Y))=\alpha+\beta_{1} X_{1}+\cdots+\beta_{k} X_{k},
$$

Common link functions: identity, log, inverse, logit, probit, etc.
identity: $E(Y)=\alpha+\beta_{1} X_{1}+\cdots+\beta_{k} X_{k}$
$\log : \log (E(Y))=\alpha+\beta_{1} X_{1}+\cdots+\beta_{k} X_{k}$
inverse: $\frac{1}{E(Y)}=\alpha+\beta_{1} X_{1}+\cdots+\beta_{k} X_{k}$

Some common family specifications:

```
binomial(link = "logit")
binomial(link = "probit")
binomial(link = "cloglog")
gaussian(link = "identity")
Gamma(link = "inverse")
inverse.gaussian(link = "1/mu^2")
poisson(link = "log")
```

Can specify your own family
(but we will not do that at this stage)

The formula in glm

- glm (formula $=$, family $=, \ldots$)
- The formula specifies the response variable, the explanatory variables
and the way the explanatory variables act on the expectation of the response variable.
- The general form is:

$$
Y \sim X_{1} \sharp \ldots \sharp X_{k}
$$

Here Y is the response variable (or matrix) X_{1}, \ldots, X_{k} are the explanatory variables \sharp are "operators" connecting the variables

- Possibilities for the operator $\sharp: "+", " * "$ and ":"

The formula in glm: defining models with discrete explanatory variables

- Convention: y response variable, A and B factors.
- Single classification analysis of variance model of y, with classes determined by A.

$$
\mathrm{y} \sim \mathrm{~A}
$$

- Single classification analysis of variance model of the logarithm transformed y, i.e. $\log (y)$, with classes determined by A.
$\log (y)$ ~ A
- Single classification analysis of variance model of the square-root transformed variable y, i.e. sqrt(y), with classes determined by A. sqrt(y) ~ A
- Two factor additive model of y on A and B.

$$
y \sim A+B
$$

- Two factor non-additive model of y on A and B.

$$
\begin{aligned}
& y \sim A * B \\
& y \sim A+B+A: B
\end{aligned}
$$

The formula in glm: defining models with continuous explanatory variables

- Convention: y response variable, A and B factors, x, z, and y numeric variable.
- Simple linear regression model of y on x .

$$
y \sim x \quad \text { or } \quad y \sim 1+x
$$

- Simple linear regression of y on x through the origin (that is, without an intercept term).

$$
\mathrm{y} \sim 0+\mathrm{x} \text { or } \mathrm{y} \sim-1+\mathrm{x} \text { or } \mathrm{y} \sim \mathrm{x}-1
$$

- Multiple regression of the transformed variable, $\log (\mathrm{y})$, on x 1 and x 2 (with an implicit intercept term).

$$
\log (y) \sim x 1+x 2
$$

- Single classification analysis of covariance model of y , with classes determined by A , and with covariate x .

$$
\mathrm{y} \sim \mathrm{~A}+\mathrm{x}
$$

- Separate simple linear regression models of y on x within the levels of A.

Exercises and tutorials

- Please, run (critically) and discuss the tutorial Tutorial-12-SimpleBinomialRegression
- Exercises: 3.4
- Additional exercises: 3.5 and 3.6
(there I am not guiding step by step, you are free ...)

[^0]: ---

