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Chapter 3

Binomial models

R.Labouriau 1

Draft - Please do not circulate. 2

This chapter covers a range of statistical models based on the binomial

distribution. First we introduce a very simple example where the binomial

distribution is used to estimate and compare proportions. The complexity of

the models will increase along the chapter, culminating with a non-standard

multiple regression binomial model. We will treat in the way classical models

used in bio-statistics like: one and two-ways classification binomial models,

logistic, probit and complementary log-log binomial regressions and the whole

class of dose-response models.

3.1 Binomial models with discrete explana-

tory variables

The following example will serve as a motivation for introducing the binomial

models with discrete explanatory variables and will be retaken and enlarged

along of this and the next section.

1Applied Statistics Laboratory, Department of Mathematics, Aarhus University.
2Last revised: February, 2022. Copyright c© 2021 by Rodrigo Labouriau.
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3.1.1 Simple binomial experiments

Example 1 (Seed germination) In this example we study a data arising

from an experiment on seed germination. Five treatments, corresponding to

five different levels of amount of available water, are reported. For each of

these watering levels four identical boxes were sown with 100 seeds each. The

numbers of germinated seeds after two weeks were recorded and are displayed

in the table bellow.

Watering Level

1 2 3 4 5

22 41 66 82 79

25 46 72 73 68

27 59 51 73 74

23 38 78 84 70

The question here is whether the watering level affects the proportion of

germination. We will develop step by step a mathematical model for this

experiment following the sequence below: first we model what happens in

each single box; then this model is extended to describe separately the results

of each of the five watering levels; and finally we consider a model that takes

into account simultaneously the data with the five watering levels.

The seed germination in one box can be modelled in the following way.

First we identify a basic binomial trial with two possible results (success or

failure). Here the basic binomial trial corresponds to observing a single seed,

which can germinate (success) or not (failure). Let us assume that the prob-

ability of each seed in the box to germinate is the same, say ρ, and that the

events describing whether each seed germinated or not are independent. Un-

der these assumptions3, the number of germinated seeds in each box can be

described by a binomial distribution, as mentioned in chapter 2 and studied

bellow. tu

3That might be unrealistic in some cases, but are used very often.



Binomial Models - R. Labouriau - Draft 80

Motivated by the last example we introduce the binomial distributions.

These distributions are appropriate to model counts of dichotomous (or bi-

nary) experiments and will be the basis for all the models considered in this

chapter.

As we saw in chapter 2 a basic binary trial is a simple experiment in

which there are two possible outcomes termed ”success” and ”failure”. The

choice of what is success and what is failure is completely arbitrary and will

not essentially affect the models we will construct. What is considered ”suc-

cess” is just a matter of convention. An experiment consisting in repeating

independently n times a binomial trial with fixed probability of success ρ is

called a binomial experiment with n repetitions and probability (of success)

ρ. Sometimes we just refer to such experiment simply by a ”binomial exper-

iment”. The number of successes occurred in a binomial experiment with n

repetitions and probability ρ is a random quantity following a probability dis-

tribution called the binomial distribution with n repetitions and probability

ρ. We will briefly study this distribution next.

Let us consider a random variable Y representing the results of a binomial

experiment with n repetitions and probability ρ. Clearly, Y can take only

the values 0, 1, . . . , n. The law of probability of Y is specified by assigning a

probability for each of the possible values that Y can assume. It is easy to

show that the probability that Y takes the value n is

P ([Y = n]) = ρn , (3.1)

because the event [Y = n] (i.e. the event ”Y takes the value n”) is equivalent

to observing n independent success, each of them with probability ρ. The

probability that Y takes the value 0 is

P ([Y = 0]) = (1− ρ)n , (3.2)

because [Y = 0] is equivalent to n independent failures, each of them with

probability 1− ρ. We show next that the probability that Y takes the value

1 is

P ([Y = 1]) = n ρ (1− ρ)n−1 . (3.3)
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First note that Y takes the value 1 if we observe a success in the first trial and

failure in the other n− 1 trials. The probability of this result is ρ(1− ρ)n−1,

because the probability of one success is p and the probability of n−1 failures

is (1 − ρ)n−1. But Y can takes the value 1 also if we observe success in the

second trial and failure in all the other trials (including also the first trial).

Again, this result has probability ρ(1 − ρ)n−1. Proceeding in this way we

can show that Y can take the value 1 in n different ways, each of them

corresponding to observing a success in one of the n trials. Furthermore,

the probability of each of these results is ρ(1− ρ)n−1. We conclude that the

probability of Y takes the value 1 is n times ρ(1−ρ)n−1, as stated in formula

(3.3).

The general formula for specifying the probability function of Y is

P (Y = y) =

 n

y

 ρy(1− ρ)n−y where y = 0, . . . , n . (3.4)

The equation above can be proved by imitating the argument used to justify

the equation (3.3), as done below. If we observe successes in the first y trials

and failure in the remaining n−y trials (y is an integer number between 0 and

n), then Y takes the value y. The probability of this result is ρy(1 − ρ)n−y.

Permuting the position of the n basic experiments in the previous result (ie,

y successes followed by n− y failures) we obtain the n

y

 =
n!

y!(n− y)!
(3.5)

possible results for which Y takes the value y.

We can state then a formal definition of the binomial distribution. A

random variable Y taking values in {0, . . . , n} with probability function given

by (3.4) is said to be binomially distributed. In this case the distribution of

Y is called the binomial distribution and we write

Y ∼ Bi(n, ρ) .

The number ρ is sometimes referred as the probability parameter.
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A binomially distributed random variable Y ∼ Bi(n, ρ) has mean and

the variance given by

E(Y ) = nρ (3.6)

and

Var(Y ) = nρ(1− ρ) . (3.7)

4

Example 2 (Seed germination, continuation) Let us use the notions and

the notation introduced above to summarize our previous discussion on what

happens in one box. Representing the number of germinated seeds in one

box by the random variable Y , we only said up to now that Y is binomially

distributed with 100 repetitions and unspecified probability parameter ρ. In

short Y ∼ Bi(100, ρ). tu

4Optional exercise: Prove that.
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3.1.2 One-way classification binomial models

Up to now we considered the simple situation where independent binomial

distributed random variables with the same probability parameter observed.

We turn now to the situation where we observe independent binomial dis-

tributed variable with probability parameter not necessarily constant, but

depending on a classification variable taking a given number of values. This

situation is illustrated in the following example.

Example 3 (Seed germination, cont.) Let us retake the example 1 given

at the very beginning of this chapter. From the previous discussions of the

example, it is reasonable to describe the number of germinated seeds in the

four boxes submitted to the watering level 1 as a sample from a binomial

distribution with 100 repetitions and a certain fixed probability parameter (i.e.

germination probability). That is, according to our construction, we observed

four independent random variables, Y11, Y12, Y13 and Y14, corresponding to the

four repetitions. Note that we used two subindexes for labelling the results, the

first indicating the watering level and the second the repetition. We assumed

that

Y11 ∼ Bi(100, ρ), . . . , Y14 ∼ Bi(100, ρ),

where ρ was a parameter to be estimated.

The same argument used to construct a model for the number of germi-

nated seeds in the boxes submitted to the watering level 1 can be applied to

construct a statistical model describing the number of germinated seeds in the

boxes submitted to each watering level. That is, for each fixed value of wa-

tering level, say w (with w = 1, 2, 3, 4 and 5), we observed four independent

random variables, Yw1, Yw2, Yw3 and Yw4, corresponding to the four repeti-

tions (i.e. the first subindex indicates the watering level and the second the

repetition). Moreover, we assumed that

Yw1 ∼ Bi(100, ρw), . . . , Yw4 ∼ Bi(100, ρw),



Binomial Models - R. Labouriau - Draft 84

where ρw is the germination probability of seeds submitted to the watering

level w.

A statistical model for the experiment is specified by saying that the results

from the rth box (repetition, r = 1, . . . , 4) of the wth watering level (w =

1, . . . , 5) is a realization of a random variable Ywr with distribution given by

Ywr ∼ Bi(100, ρw) . (3.8)

Moreover, the random variables Y11, . . . , Y14, Y21, . . . , Y54 are assumed to be

independent. This scenario can be represented by the following scheme:

Watering Level

Rep. 1 2 3 4 5

1 Y11 ∼ Bi(100, p1) Y21 ∼ Bi(100, p2) Y31 ∼ Bi(100, p3) Y41 ∼ Bi(100, p4) Y51 ∼ Bi(100, p5)
2 Y12 ∼ Bi(100, p1) Y22 ∼ Bi(100, p2) Y32 ∼ Bi(100, p3) Y42 ∼ Bi(100, p4) Y52 ∼ Bi(100, p5)
3 Y13 ∼ Bi(100, p1) Y23 ∼ Bi(100, p2) Y33 ∼ Bi(100, p3) Y43 ∼ Bi(100, p4) Y53 ∼ Bi(100, p5)
4 Y14 ∼ Bi(100, p1) Y23 ∼ Bi(100, p2) Y34 ∼ Bi(100, p3) Y43 ∼ Bi(100, p4) Y54 ∼ Bi(100, p5)

tu

The general formulation of the binomial one-way classification model

The example above illustrates a typical situation encountered in practice:

samples of binomial variables, with probability parameter depending on a

classification variable (usually called treatments) are observed. We give bel-

low a more precise definition and set the necessary notation.

Suppose that we have a classification variable T taking t different values.

The classification variable T , called a factor, will indicate the different pos-

sibilities of a ”treatment” and we refer to those values as levels of the factor

For each level τ of the classification variable T , we observe rτ independent

binomial distributed random variables with the same probability parameter,

but not necessarily with the same number of repetitions. We denote by Yτr

the value of the binomial random variable corresponding to the rth repetition

at the τth level of T . The results can be arranged in a matrix, as bellow,

Y11, . . . , Y1r1 (3.9)

Y21, . . . , Y2r2
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...
...

Yt1, . . . , Ytrt ,

where each line corresponds to a level of the classification variable T . We

assume that the random variables above (i.e. in (3.9)) are independent and

binomial distributed in the following way,

Yτr ∼ Bi(nτr, ρτ ) for τ = 1, . . . , t and for r = 1, . . . , rτ .

Note that we allow the number of repetitions of the binomial distribution to

depend on both, the level τ of T and on r. On the other hand, the probability

parameter depends only on the level τ of the classification variable T .

The model described above will be referred as the one-way binomial

model. This name comes from a straightforward analogy with the classical

one-way analysis of variance model. Note that we consider the numbers of

repetitions, nτr, of the binomial random variables, Yτr, as known. Therefore,

with the notation used here, the one-way binomial model is parametrized by

t parameters (the number of levels of the classification variable T ).

Maximum likelihood estimation under the binomial one-way clas-

sification model∗

5 The maximum likelihood estimation in the one-way binomial model is very

simple. Indeed, the likelihood function for the parameters based on the

observed values y11, . . . , y1r1 , . . . , yt1, . . . , ytrt can be written, due to indepen-

dency, as the product

L(ρ1, . . . , ρt) =
t∏

τ=1

rτ∏
r=1

 nτr

yτr

 ρyτrτ (1− ρτ )nτr−yτr =
t∏

τ=1

L(ρτ ),

where

L(pτ ) =

 nτr

yτr

 ρyτrτ (1− ρτ )nτr−yτr ,

5Optional reading.
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coincides with the likelihood of a model where only the observations where

the classification variable T is equal to τ are taken into account. Taking

logarithms we obtain the log-likelihood becomes

l(p1, . . . , pt) =
t∑

τ=1

l(pτ ) ,

where l(pτ ) = log{L(pτ )} is the log-likelihood of a model containing only the

observations at the level τ of T . Differentiating l(p1, . . . , pt) with respect to

each of the t parameters and equating it to zero, yields t equations, each of

them corresponding to one of the levels of T . The solution of these equations,

which give the maximum likelihood estimators, was already calculated in the

last section and is given by

p̂τ =

∑rτ
r=1 yτr∑rτ
r=1 nτr

.

Example 4 (Seed germination, cont.) We used an one-way binomial model

for modelling example 1. Here T is a variable indicating the five watering

levels (i.e. t = 5), for each level of watering we have 4 repetitions (i.e.

r1 = . . . = r5 = 4 ) and the numbers of binary trials defining each binomial

distribution involved in the model are all equal to 100 (i.e. for τ = 1, . . . , 5

and r = 1, . . . , 4, nτr = 100).

The maximum likelihood estimators for the proportion of germinated seeds

for each level of watering are:

p̂1 = 97/400 = 0.2425

p̂2 = 184/400 = 0.4600

p̂3 = 267/400 = 0.6675

p̂4 = 312/400 = 0.7800

p̂1 = 291/400 = 0.7275

tu
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Comparing the probability parameter of two or more binomial dis-

tributed variables and the likelihood ratio test

Note that under the one-way binomial model we allow the probability pa-

rameter to take different values for the different levels of the classifying vari-

able, however they might take the same values as well. We turn now to the

question of deciding whether the probability parameters indeed take different

values or whether they could be collapsed in one single value representing the

probability parameter. If the levels of the classification variable T represent

different treatments, the question addressed here is whether the treatments

affect the distribution of the response variable. We will use the likelihood

ratio test, introduced below, to answer this question.

The idea behind the likelihood ratio test is the following. First we iden-

tify two models: In the first model, termed here the ”large model”, we allow

the probability parameters p1, . . . , pt to take different values. In the sec-

ond model, referred as the ”reduced model”, the probability parameters are

assumed to take a common value p, i.e. p1 = . . . = pt = p. The ”large

model” has t parameters and therefore is more complex than the ”reduced

model”, which has only one parameter. The likelihood ratio test is designed

to test whether it is possible to reduce the ”large” and more complex model

to the simpler ”reduced” model. The idea is that such a reduction is reason-

able when the ”reduced model” fits the data as well as the ”large model”.

This is done in the following way: The ratio of the likelihood function of

the ”reduced model” and the likelihood function of the ”large model”, both

evaluated at their respective maxima, measures the discrepancy between the

two models. Values of this ratio close to 1 indicate that the two models are

not ”in disagreement”, on the other hand, large values of this ratio point

to ”disagreement” between the two models. Equivalently, one might look at

the logarithm of the ratio of the two likelihood, which is the log-likelihood

of the ”large model” minus the log-likelihood of the ”reduced model”. This

positive quantity can be used to test whether there are differences among the
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values of the probability parameters. That is, consider the quantity

Λ = 2 {lR(p̂)− lL(p̂1, . . . , p̂t)} = 2 {lR − lL} ,

where lR(p̂) = lR and lL(p̂1, . . . , p̂t) = lL are the log-likelihood functions

of the ”reduced” and the ”large model” evaluated at their maxima (p̂ and

(p̂1, . . . , p̂t) ), respectively. The quantity Λ is called the log-likelihood ratio

statistic.

It can be shown that, if p1 = . . . = pt, then Λ is approximately chi-square

distributed (for values of n large enough). The number of degrees of freedom

d of the referred chi-square distribution is given by the difference between

the number of parameters of the ”larger model” , dl, minus the number of

parameters of the ”reduced model”, dr, i.e. d = dl − dr. Therefore, the

quantity Λ can be used to test the null hypothesis

H0 : p1 = p2 = . . . = pt,

at a level of significance α, by using the rejection rule

” Reject H0 when Λ > χ2
d(1− α) ”.

Here χ2
d(1 − α) is the (1 − α)- quantil of a chi-square distribution with d

degrees of freedom.

Example 5 (Seed germination, cont.) The log-likelihood (apart from a

common constant) of the ”large” and the ”reduced model” evaluated at their

maxima for the one-way model for the seed germination experiment are -

1196.9843 and -1363.4059, respectively. That is

Λ = 2(−1196.9843 + 1363.4059) = 2.166.4216 = 332.8432.

Since the large model has 5 parameters and the reduced model has 1 param-

eter (i.e. dl = 5 and dr = 1), Λ is distributed according to a chi-square

distribution with 4 degrees of freedom (i.e. d = 4), under the null hypothesis

H0 : p1 = p2 = p3 = p4 = p5. The probability of a chi-square distributed
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random variable with 4 degrees of freedom taking values equal or superior

332.8432 is smaller than 0.0001, therefore we reject the null hypothesis of

equality of the germination proportion for the different watering levels, and

conclude that the data available supply evidence that the proba-

bility of germination is not the same for all the watering levels.

tu

Checking homogeneity and the notion of deviance

One of the basic assumptions of the one-way binomial model is that the

observations related with the same level of the classification variable are

realizations of binomial random variables with the same probability parame-

ter. This will be called the homogeneity assumption of the one-way binomial

model. We will show bellow how to test the homogeneity assumption by

using the likelihood ratio test.

Let us define a new model that allows the probability parameters to take

different values for the different repetitions at the same level of the classi-

fication variable. This model attributes one different probability parameter

for each observation and is called the saturated model. Now we compare the

saturated model with the one-way binomial model (the one that attributes

the same value of the probability parameter for the observations with the

same classification) by using the likelihood ratio test. This is equivalent to

test the null hypothesis

H0 : ”The probability parameters associated with observations with

the same level of the classification variable are all equal”.

The log-likelihood ratio statistic for testing the hypothesis above is given by

Λ = 2 {lL − lS} , (3.10)

where lL and lS are the log-likelihood functions of the one-way binomial model

and the log-likelihood of the saturated, both evaluated at their maxima, re-

spectively. The log-likelihood ratio statistic Λ is approximately chi-square
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distributed with degrees of freedom given by the difference of the number of

observations minus the number of levels of the classification variable (i.e. the

number of parameters of the saturated model minus the number of parame-

ters of the one-way binomial model).

The log-likelihood ratio statistic Λ given by (3.10) is called the deviance

of the one-way binomial model. The deviance plays a fundamental rule in

generalized linear models, as it will be clear from the rest of these notes.

A general informal interpretation of the deviance is as follows: Since the

saturated model has the same number of parameters and observations, it has

the best achievable fit to the current data with the models we are using (i.e.,

binomial distributions in the case in discussion). If we assume that at least

one of the models in the class of models we are using, fits well the data, then

the saturated model certainly does also. However, the saturated model is

not an interesting model, since it is as complex as the raw data. A reduction

of the saturated model is therefore desirable. Note that the deviance is the

log-likelihood statistics of a likelihood ratio test for checking whether the

current model is equivalent to the saturated model. If the current model is

equivalent to the saturated model, then we may reduce the saturated model

to the current model, and, since the saturated model fits the data well, we

have an evidence that the current model fits the data well also (provided

at least one model in the class of models we are using fits the data). This

argument is completely informal, and it is advisable to always check the

interpretation of the deviance in the specific model in use. Here the deviance

is the test statistic used to verify the homogeneity assumption, and therefore

has a very clear interpretation, but unfortunately this will not always be the

case (we will return to this point many times in these notes).

Example 6 (Seed germination, cont.) The saturated model in the exam-

ple 1 is a model that attributes one germination probability to each box. More

precisely, if the results from the jth box (repetition, j = 1, . . . , 4) of the t’th

watering level (t = 1, . . . , 5), are represented by Ytj, then the saturated model
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assumes that

Ytj ∼ Bi(100, ptj) , for t = 1, . . . , 5 and j = 1, . . . 4 . (3.11)

In contrast, under the one-way binomial model we have

Ytj ∼ Bi(100, pt) , for t = 1, . . . , 5 and j = 1, . . . 4 . (3.12)

Note that in (3.11) (the saturated model) the germination probability ptj de-

pends on both t and j, and in (3.12) (the one-way binomial model) the ger-

mination probability pt depends only on t.

The log-likelihood evaluated at their maxima for the one-way binomial

model (given by (3.12) and for the saturated model (given by (3.11) are

1196.9843 and 1177.5676, respectively. Therefore the deviance is given by

2(1196.9843 − 1177.5676) = 38.8334. Since there are 20 observations and

5 parameters in this one-way binomial model, its deviance is approximately

chi-square distributed with 15 degrees of freedom. The probability of a chi-

square distributed random variable with 15 degrees of freedom takes values

equal or superior to 38.8385 is approximately 0.000677432, indicating that

the homogeneity assumption does not hold in this example! (note that this

invalidates the test and estimation procedures used previously!). Indeed, an

inspection of the data shows that the 3th box submitted to watering level 3

(51% germinated seeds, when the mean from this water level is 66%) and the

3th box submitted to watering level 2 (59% germinated seeds, when the mean

from watering level 2 is 46%) contribute very much to the hight value of the

deviance. Indeed, if these two observations are eliminated from the data the

deviance becomes 15.3796 now with 13 degrees of freedom. The probability of

observing a value equal or superior than 15.3796 out of a chi-square distri-

bution with 13 degrees of freedom is 0.28426. That is the test of homogeneity

has a p-value of 0.28426, therefore we do not have evidence to reject the

hypothesis of homogeneity with the new data set.

tu
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The discussion of the example above raises an interesting use of the de-

viance: it can be used in the one-way binomial model to detect the presence

of lack of homogeneity. Hight values of the deviance indicate that the homo-

geneity assumption fails, but does not inform why it fails. The homogeneity

assumption can fail because we have different populations or we are not con-

trolling an important factor in the experiment. Another reason for failing

the homogeneity assumption is that there was an error in the determination

of the value of one (or a few) observation(s). In this case a single (or a few)

observation(s) will contribute to inflate the value of the deviance. In fact, it

is possible to calculate the deviance as a sum over the observations. Each

parcel of this sum is the contribution that this observation gave to the de-

viance. These parcels are called the deviance residuals and can be calculated

in most of the software for generalized linear models.

Example 7 (Seed germination, cont.) The deviance residuals for the ex-

ample 1 are listed below together with the number of germinated seeds and

the expected proportion under the one-way binomial model.
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box water germ. predicted deviance

level seeds value residual

1 1 22 0.2425 -0.53077

2 1 25 0.2425 0.17439

3 1 27 0.2425 0.63384

4 1 23 0.2425 -0.29340

1 2 41 0.4600 -1.00678

2 2 46 0.4600 0.00000

3 2 59 0.4600 2.60499

4 2 38 0.4600 -1.61569

1 3 66 0.6675 -0.15890

2 3 72 0.6675 1.13088

3 3 51 0.6675 -3.24806

4 3 78 0.6675 2.47491

1 4 82 0.7800 0.98872

2 4 73 0.7800 -1.17749

3 4 73 0.7800 -1.17749

4 4 84 0.7800 1.50320

1 5 79 0.7275 1.44218

2 5 68 0.7275 -1.04918

3 5 74 0.7275 0.28212

4 5 70 0.7275 -0.61149

Note that 3th boxes of watering level 2 and 3 give the larger contribution to

the deviance. They present also a large discrepancies between the observed

number of germinated seeds and the expected proportions.

tu

3.1.3 Two-ways binomial classification models

We study now a model suitable for the situation where two classification vari-

ables are supposed to affect the response of a binomial distributed variable.
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Let us consider first two examples.

Example 8 (Cancer incidence) This example refers to the occurrence of

a certain type of cancer. The table bellow shows the incidence of the cancer

in two towns, classified into six age categories. The age categories are: from

15 to 24, from 25 to 34, from 35 to 44, from 45 to 54, from 55 to 64 and

from 65 to 74 years. The two towns will be referred as: ”town 0” and ”town

1”. The two classification variables in this example will be referred as ”age”

and ”town”. The table presents also the population of each town, classified

also according to the age.

Town 0 Town 1

Age Number Population Age Number Population

categories of cases (P ) categories of cases (P )

15-24 1 172675 15-24 4 181343

25-34 16 123065 25-34 38 146207

35-44 30 96216 35-44 119 121374

45-54 71 92051 45-54 221 111353

55-64 102 72159 55-64 259 83004

65-74 130 54722 65-74 310 55932

We will denote the number of cases of cancer and the population of the

town t at the age category a by Xta and Nta, respectively.

These data can be modelled by assuming the number of cases Xta in the

town t at the age a binomially distributed with a certain probability parameter

(the probability of having the cancer at the respective age in the respective

town) and with a number of trials equal to the population Nta. That is, for

each town t and age category a,

Xta ∼ Bi(Nta, pta) .

Note that we assumed here that the probabilities pta of having cancer depend

on both the town and the age category. This model has one parameter (the

12 probability parameters) for each observation (the 12 combinations of town
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and age category). Therefore it is called the saturated model. The idea is

to study the possibility of simplifying this basic model, i.e. construct a model

with less parameters.

tu

Example 9 (Seed germination, extended) The example 1 presented in

the beginning of this chapter was indeed only partial results of an experiment.

The seed germination experiment described there was performed in two dif-

ferent ways: covering the box or not. We refer to that as the box treatment.

For each of the box treatments 5 watering levels were used. For each combi-

nation of box treatment and watering level 4 repetitions were observed. The

data analyzed in the example 1 just the results for the covered box. The ta-

ble bellow presents the results of the whole experiment. Note that one of the

repetitions of the watering level 5 of the uncovered boxes is missing (this was

indicated by using the symbol ”.”, which indicates that these value was not

observed).

Box treatment

Covered Not Covered

Watering level Watering level

1 2 3 4 5 1 2 3 4 5

22 41 66 82 79 45 65 81 55 31

25 46 72 73 68 41 80 73 51 36

27 59 51 73 74 42 79 74 40 45

23 38 78 84 70 43 77 76 62 .

Clearly, we have in this example two classification variables (the box treat-

ment and the watering level) and a response that can be reasonably modelled

by using the binomial distribution. Here the saturated model, specifies that

for each watering level w, each box treatment t, and each repetition r, the

number of germinated seeds (out of 100 seeds placed in the box) is binomially

distributed as specified bellow:

Ywtr ∼ Bi(100, pwtr) .
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A simpler and more interesting model assumes that the probability parameters

are equal for the observations with the same watering level and the same box

treatment, i.e. for each watering level w, each box treatment t, and each

repetition r,

Ywtr ∼ Bi(100, pwt) .

This model is called the full two-ways binomial model.

tu

The examples 8 and 9 above illustrate a situation were we have two classi-

fying variables (with a certain number of levels) possibly affecting the prob-

ability parameter of a binomially distributed variable. We call this model

the two-ways classification binomial model or simply the two-ways binomial

model. Let us introduce some notation for the two-way classification model.

Suppose that there are two classification variables, A and B, taking a and

b values respectively. For each value α (α = 1, . . . , a) of A and each value

β (β = 1, . . . , b) of B we observe Rαβ independent realizations of a bino-

mially distributed variables with the same probability parameter. That is,

for α = 1, . . . , a, β = 1, . . . , b and r = 1, . . . , Rαβ, we observe the random

variable Yαβr distributed as

Yαβr ∼ Bi(nαβr, pαβ) . (3.13)

This model has a.b parameters and will be referred as the full two-ways

binomial model or the two-ways binomial model with interactions. 6

The maximum likelihood estimate for the probability parameters of the

two-ways binomial model are the observed proportions, i.e for α = 1, . . . , a

and β = 1, . . . , b, the maximum likelihood estimate p̂αβ of pαβ is

p̂αβ =

∑Rαβ
r=1 Yαβr∑Rαβ
r=1 nαβr

. (3.14)

6Optional exercise: Please, identify the elements of this general definition in the exam-

ples 8 and 9. More precisely, specify that one of the classification variables is A and the

other is B, then find out what is ”a, b, Rαβ , nαβr and pαβ”.
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The argument to this is just a variation of the procedure we have already

done in the one-way binomial model and is left as an exercise. 7

We assumed that the observations corresponding to the same levels of the

classification variables are realizations of binomial variables with the same

probability parameter. This is called the homogeneity assumption and is anal-

ogous to the homogeneity assumption used in the one-way binomial model.

As in the case of the one-way binomial model, this assumption can be tested,

provided there are repetitions. The idea is essentially the same: define a

saturated model and use the likelihood ratio test for testing the possibility of

reducing the saturated model to the full two-way classification model. The

details are given below.

The saturated model is a statistical model that attributes one specific (not

necessarily equal) probability parameter for each observation. This can be

expressed precisely in the context of the two-ways binomial model as follows.

For α = 1, . . . , a, β = 1, . . . , b and r = 1, . . . , Rαβ,

Yαβr ∼ Bi(nαβr, pαβr) . (3.15)

Note that the difference between (3.13) and (3.15) is that in the first the

probability parameters does not depend on the subindex r and in the second

they do depend. We will use the saturated model as a reference model for

testing the homogeneity assumption. For that we will use a likelihood ratio

test. The log-likelihood statistic for this test is called the deviance. More

precisely, the deviance is defined as

D = 2(lF − lS) , (3.16)

where lF and lS are respectively the log-likelihood functions of the full two-

way binomial and the saturated model, both evaluated at their respective

7Optional exercise: Use the expression (3.14) to give the maximum likelihood estimate

for the parameters of the full model for the examples 8 and 9. Give an argument to show

that the maximum likelihood estimate for pαβ is like given in (3.14) (hint: you do not

need to explicitly calculate the score function and solve the score equation; try to use an

argument using the results we have already obtained before).
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maxima. According to the theory of likelihood ratio test, the deviance is

approximately distributed according to a chi-square distribution with the

number of degrees of freedom given by the difference of the number of pa-

rameters of the two models, that is {∑a
α

∑b
β Rαβ} − a.b. 8

In the case were there is only one repetition for each combination of

the classification variables A and B (as in the example 8), then the full

model coincides with the saturated model and the test described above is

meaningless. Indeed the test cannot be done, since the deviance provided by

(3.16) is zero. 9

We consider next some simpler alternative models to the full two-ways bi-

nomial model. First we can think that the probability parameter changes in-

dependently according to the classification with respect to each classification

variables. In mathematical terms this situation can be described in the fol-

lowing way. Suppose that for α = 1, . . . , a, β = 1, . . . , b and r = 1, . . . , Rαβ,

Yαβr distributed as

Yαβr ∼ Bi(nαβr, pαβ) , (3.17)

where

pαβ = Aα +Bβ . (3.18)

That is, the probability of success pαβ can be then expressed as a sum of two

quantities: one depending only on the classification according to the classifi-

cation variable A (namely Aα) and one depending only on the classification

according to the classification variable B (namely Bβ). Here A1, . . . , Aa,

B1, . . . , Bb are parameters (we have then a + b parameters and a.b observa-

tions). This model is called the additive two-ways binomial model.

8Optional exercise: Please, describe the test referred here in details. That is, write

explicitly the null hypothesis, the alternative hypothesis and the rejection rule (i.e. a rule

saying explicitly when to reject the null hypothesis) for the likelihood ratio test described

here. Hint: Just mimic what we did in the one-way binomial model.
9Optional exercise: Please, try to write what would be the null and the alternative

hypothesis of a test like the test for the homogeneity assumption.
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Example 10 (Seed germination, extended) We describe the example 9

in a suitable way for specifying the additive model. The full two-ways bino-

mial model states that for each watering level w, each box treatment t, and

each repetition r,

Ywtr ∼ Bi(100, pwt) . (3.19)

The additive two-ways binomial model assumes that the probability pa-

rameters used in (3.19) can be written in the form

pwt = Ww + Tt , for w = 1, . . . , 5 and t = 1, 2, (3.20)

where W1, . . . ,W5, T1, T2 are parameters. Note that (3.20) implies a restric-

tion in the model, as compared to the full two-ways model. Indeed, the ad-

ditive model has 5 + 1 = 6 parameters and the full model has 5.2 = 10

parameters.

tu

10

There are two important hypothesis tests that can be done with the

additive two-ways binomial model: we can test the model reduction from

the full model to the additive model, or we can test the model reduction

directly from the saturated model to the additive model. Both tests can be

done by using a suitable likelihood ratio test, but they have very different

interpretations. We discuss both tests below.

Testing the model reduction from the full model to the additive model

corresponds to test the special pattern in the probability parameter defined

by the additive model, given the full model. That, is assuming the full model,

we test the reduction to the additive model. This test can be done by looking

to the log-likelihood ratio statistic of a likelihood ratio test, given by

Λ = 2(lA − lF ) ,

10Optional exercise: Please, describe the additive two-ways binomial model for the

example 8 in similar way as we did for the example 9 in example 10.
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where lF and lA are respectively the log-likelihood functions of the full two-

ways binomial and the additive two-ways binomial model, both evaluated

at their respective maxima. The quantity Λ is approximately distributed

according to a chi-square distribution with a.b− (a+ b) degrees of freedom.

On the other hand, testing the model reduction from the saturated model

to the additive corresponds to test simultaneously the homogeneity assump-

tion and the pattern imposed by the restrictions of the additive two-ways

binomial model. This test can be done by a likelihood ratio test using the

following log-likelihood ratio statistic

DS = 2(lA − lS) . (3.21)

Here lA and lS are respectively the log-likelihood functions of the additive

two-way binomial and the saturated model, both evaluated at their respective

maxima. The quantity D defined in (3.21) is called the deviance of the

additive two-way binomial model. The deviance is approximately distributed

according to a chi-square distribution with the number of degrees of freedom

given by the difference of the number of parameters of the two models, that

is {∑a
α

∑b
β Rαβ} − (a+ b).

The deviance of the full and the additive two-ways binomial models, to-

gether with their respective related degrees of freedom, are supplied by most

of the modern statistical software that can treat generalized linear models.

This information is enough to test the model reduction from the full to the

additive model. To see that, note that the difference of degrees of freedom

associated with the two models gives precisely the difference of number of

parameters the two models. Moreover,

DS −D = 2(lA − lS)− 2(lF − lS)

= 2(lA − lS − lF + lS) = 2(lA − lF ) = Λ ,

i.e., the log-likelihood ratio statistic Λ is equal to the the deviance of the full

minus the deviance of the additive model. We then construct the following

table which is analogue to the classic ANOVA table.
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Table of deviance
Source DF Deviance χ2

Full model DFF D -

Additive model DFA DA D −DA = Λ

Here DFF and DFA are the degrees of freedom associated with the deviance

of the full and the additive model (i.e the difference between the number of

observations and the number of parameters of the respective models). This

table is used to summarise the results of a statistical analysis and will be

extended when we consider further models in this section. We will call this

table (and its extensions) the table of deviance.

Example 11 (Seed germination, extended, cont.) The table of deviance

for the example 9

Table of Deviance

Source DF Deviance χ2

Full model 29 63.3093 -

Additive model 33 325.4153 262.11

Note that Λ = 262.11 is chi-square distributed with 4 degrees of freedom under

the additive model. Since this value is too high, we reject the null hypothesis

of equality of the additive and the full model and conclude that the full model

cannot be reduced to the additive model. Figure 3.1 illustrates the absence of

additivity detected in the test above. 3.1.

tu

In the last example we could not simplify further the full two-ways bi-

nomial model. An analogous procedure would yield the same conclusion to

the case of the case of the example 8. That is, the two classification factors

do not act additively on the probability parameters. However, as we will

show, it is possible to simplify the full model in the example 8! The idea is
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Figure 3.1: Proportion and logistic transformed proportion of seed germina-

tion for covered and not covered box and different levels of watering.
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to transform (i.e. apply a certain function to) the probability parameters.

In some cases one can have a good surprise by doing that and obtain that

the two classification variables act additively in the new transformed param-

eters, yielding a substantial simplification of the model. We will define next

a model that will give this simplification to the example 8, but not to the

example 9.

The additive logistic two-way binomial model is defined as follows. For

α = 1, . . . , a, β = 1, . . . , b and r = 1, . . . , Rαβ, Yαβr distributed as

Yαβr ∼ Bi(nαβr, pαβ) , (3.22)

where

logit(pαβ) = log

(
pαβ

1− pαβ

)
= Aα +Bβ . (3.23)

Here A1, . . . , Aa, B1, . . . , Bb are parameters. Note that, although we used the

same notation, these parameters have a completely different interpretation

when compared to the the parameters used in (3.18) to define the additive

two-ways binomial model. The interpretation of the logit transformation

used above is the following: given an event with probability p the odds of

this events are p/(1−p), that is, the probability p of the event happens divide

by the probability (1−p) that the event does not happen. Large values of the

odds indicate that the event is likely to happen. The lods are given by the

logarithm of the odds, and have a similar interpretation as the odds (i.e. they

are just the odds expressed in another scale). The equation (3.23) says that

the effect of the classification variables are additive in the lods scale instead

of in the probability scale as before). The function ”logit( · ) = log
{

( · )
1−( · )

}
”

is called the link function of the model. Other functions could be used (but

this would result in other models).

The way of estimating the parameters, defining deviance and testing re-

ductions to nested models is completely similar to the way we proceeded in

the previous models.
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Example 12 (Cancer incidence, cont.) In the example 8, using the ad-

ditive logistic two-way binomial model we obtain the following table of de-

viance:

Table of Deviance

Source DF Deviance χ2

Full model 0 0 -

Additive model 5 3.21 3.21

The probability of a chi-square distributed random variable with 5 degrees of

freedom assumes a value greater or equal 3.21 is 0.6672. Therefore we have no

evidences for rejecting the reduction from the full model to the additive logistic

two-way binomial model. This confirms what we see in figure 3.2 where the

logistic transformed incidences are shown for the two towns and the different

age categories. The two connected ”curves” (connecting the observations in

successive age categories made in the same town) are parallel. This illustrates

the kind of restriction we do by assuming the additive model. Note that this

parallelism is not observed in the pure additive two-ways binomial model, as

illustrated in figure 3.2.

tu



Binomial Models - R. Labouriau - Draft 105

●
●

●

●

●

●

20 30 40 50 60 70

0.
00

0
0.

00
2

0.
00

4
0.

00
6

Age

P
re

va
le

nc
e

● ●
●

●

●

●

Town 0
Town 1

●

●

●

●

●

●

20 30 40 50 60 70

−
12

−
10

−
8

−
6

Age

Lo
gi

t t
ra

ns
fo

rm
ed

 p
re

va
le

nc
e

●

●

●

●

●

●

Figure 3.2: Prevalence and logistic transformed prevalence of cancer in the

two towns classified by age .
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3.2 Binomial models with continuous explana-

tory variables

We considered in the last section models for binomial responses where the

explanatory variables taking a finite number of values. In this section we

will study models for binomial responses where the explanatory variables are

continuous. The following example illustrates this kind of models.

Example 13 (Mice convulsion) The table below reports partial result of

an experiment with mice (from Hemmingsen and Krogh, 1926). Several doses

of insulin were applied to a number of mice. The main questions here is

whether the different amounts of insulin given affect the proportion of animals

with convulsion.

Number with Total number

Dose convulsion observed

8.5 14 37

10.5 18 40

13.0 21 37

18.0 23 31

21.0 30 37

28.0 27 30

Denote the number of mice for which we applied the dose D of insulin

(D = 8.5, 10.5, . . . , 28.0) by ND and the number of animals presenting con-

vulsions by YD. It is natural to assume that the number of mice with con-

vulsion, for which a certain doses D of insulin was applied, is binomially

distributed with ND repetitions and probability parameter (i.e. probability of

having convulsions) depending (at least in principle) on the insulin doses, say

pD. More precisely, we assume that for D = 8.5, 10.5, . . . , 28.0,

YD ∼ Bi(ND, pD) .
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Figure 3.3: Proportion of mice with convulsion against the doses of insulin.

The circles represent the observed proportions, the smooth curve drawn with

a standard technique for drawing smooth curves (kernel estimator of a non-

parametric regression, i.e. no specific form is assumed a priori).

The proportion of mice with convulsion under the several doses of insulin

is represented in Figure 3.3. It is clear from the table and Figure 3.3 that the

proportion of mice presenting convulsion increased with the doses of insulin.

Moreover, the figure suggests that the proportion of animals presenting con-

vulsion increases in a smooth way as a function of the doses. One way to

express this idea is to imagine that there is a smooth function that associates

each dose with a probability of having convulsion. We cannot observe all the

possible doses (that can be thought as varying continuously in an interval),

but only some of them (the ones we used in the experiment). However, if

the number of observed doses is large enough, then we will be able to observe

some regularity: the points in a plot of the probabilities against the doses

will be disposed along a smooth curve (the graph of the function). There is

a further complication: we cannot observe probabilities. But we can use the

proportion as a first approximation to the probability (we will present better

ways to do that latter), keeping in mind that there is a random variation in
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the proportions. Therefore, the pattern observed in the plot of the observed

proportions of animals with convulsion against the doses (figure 3.3) indicates

that it is reasonable to model the dependence of the probability of convulsion

on the doses by saying that there is a smooth function associating the doses to

the probabilities. We will study along this section several attempts to specify

such a function.

It will be convenient to consider the logarithm of the insulin doses, instead

of the doses themselves. The proportion of animals with convulsion plotted

against the logarithm of the doses are shown in Figure 3.4 For simplicity
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Figure 3.4: Proportion of mice with convulsion against the logarithm of the

doses of insulin.

we refer to the logarithm of the insulin doses as the log-doses and use the

symbol L = log(D) to represent this (deterministic) variable. The idea of the

models will discuss in the rest of this section is to represent the probability of

an animal having convulsion as a continuous and increasing function of the

log-doses plus a constant. This function will be called the response function.

Several choices for the response function will be considered. This idea can be

expressed in symbols as, for each possible value D of the doses,

pD = g (α + β log(D)) = g(α + βL), (3.24)
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where g is a given function, the response function. Here α and β are parame-

ters of of the model that must be estimated. In order to specify the model one

has to specify the response function g. For example, specifying that the re-

sponse function is given by the identity function g( · ) = ( · ) (i.e. the function

that associates each number to it self) gives

pD = α + βL, (3.25)

which says that the probability of convulsion depends linearly on the log-doses.

Note that when we specify in (3.24) the dependence of the probability of

convulsion pD on the explanatory variable L = log(D), nothing is said about

the values that L (or equivalently D) are taking in the particular data in play.

That is, (3.24) should hold for any (reasonable) value of L, in particular the

values present in the data set in study, but also for any other value of L.

This is essentially different than the models with classification explanatory

variables studied in the last section.

The linear model defined above can only be a rough approximation, since

the probability pD must be a number between 0 and 1 and α + β log(D) is

not bounded (provided β 6= 0). A simple inspection of Figure 3.4 should

convince the reader that indeed the probabilities pD do not depend linearly on

the log-doses. We need then to consider other candidates for the response

function.

One natural (and often used in practice) response function for binomial

models is the logistic function given by

logist( · ) =
exp( · )

1 + exp( · )
.

The logistic function is a S-shaped function ranging between 0 and 1. Using

the formula (3.24) with g equal the logistic function yields

pD = logist(α + βL) =
exp {α + βL}

1 + exp {α + βL}
. (3.26)

This is the so called logistic model. Since the range of the logistic function are

the numbers between 0 and 1, the logistic model does not have the problems
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of range of probabilities presented by the linear model. That is, the right side

of (3.25) is unbounded (which shows that the linear model can only hold in a

narrow interval of variation of the explanatory variable L) and, on the other

hand, the right side of (3.26) is always between 0 and 1 (which shows that

the logistic model is not incompatible with a relative large range of variation

of the explanatory variable L).

Even though the logistic model is not incompatible with the range of vari-

ation of the explanatory variable, it might not reflect the dependence of the

proportions of mice with convulsion on the insulin doses in a correct way.

One way to verify the adequacy of the logistic response function is to trans-

form the probabilities pD by the inverse of the logistic function, called the logit

function, and check whether the logit transformed probabilities are a linear

function of the explanatory variable (log(D)) (see figure 3.5). More precisely,

define the logit function by

logit( · ) = log

{
( · )

1− ( · )

}
.

It is easy to see that the logit function is the inverse of the logistic function.

That is, logit{logist(p)} = p and logist{logit(p)} = p.

Using the logit function we can re-express the logistic model in the follow-

ing way:

logit(pD) = logit {logist(α + βL)}
= α + βL .

That is, the logistic model assumes that the logit transformed probabilities of

convulsion depend linearly on the explanatory variable L. Moreover, since

the logit transformed probabilities are the logarithmic transformed odds 11,

the lodds, the logistic model assumes that the lodds of convulsion increase

11Recall that the odds of an event with probability p is defined as p/(1− p), that is the

probability of the event occurs divided by the probability of the event does not occur. The

lodds are just the logarithm of the odds.
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Figure 3.5: Logit transformed proportion of mice with convulsion against the

logarithm of the doses of insulin.

proportionally to the explanatory variable L. An alternative interpretation of

the logistic model will be discussed when we study the dose-response models.

A third model can be obtained by using the response function

f( · ) = 1− exp {− exp( · )} .

Like the logistic function, this is a S-shaped function with range of variation

between 0 and 1. The model obtained by using this function as response

specifies that the dependency of the probabilities of convulsion on L is in the

form

pD = f(α + βL) = 1− exp {− exp(α + βL)} .

The inverse of the response function f is

CLL( · ) = log {− log(1− · )} .

Therefore, the model can be characterized alternatively by

CLL(pD) = α + βL .
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The quantity CLL(pD) is called the complementary log-log transformation of

the probability pD, since 1−pD is the complementary of pD, in the sense that

1 − pD is the probability of not observing convulsion. The model described

above says that the increase in the complementary log-log transformed proba-

bility of having convulsion when a certain dose of insulin is applied is propor-

tional to the dose applied. Therefore this model is called the complementary

log-log model. Figure 3.6 displays a plot of the complementary log-log trans-

formed proportion of mice presenting convulsions against the log-dose. Note

that the points in the plot are approximately disposed along a straight line,

indicating that the complementary log-log model is reasonable for modelling

the present data. We will return to this point latter.
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Figure 3.6: Complementary log-log transformed proportion of mice with con-

vulsion against the logarithm of the doses of insulin.

Many other models could be proposed for modelling the effect of the doses

of insulin in the proportion of convulsion. Naturally, some of these many

models will describe reasonably the data, and some will not fit at all. It is

important to remark that there is no uniformly better model. Indeed, there will

be always a range of models that are indistinguishable from the statistical point

of view, for a certain data. Choosing a good model between many reasonable
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models, or sometimes just finding an acceptable model, is an art that often

involves knowledge and experience in both statistics and the theory behind the

phenomena in study. tu

The example above motivates us to introduce a class of models, called

binomial regression models for describing the dependence of a binomial dis-

tributed variable on a continuous explanatory variable.

More precisely, suppose that we observe k independent binomial dis-

tributed variables Y1, . . . , Yk with known numbers of repetitions n1, . . . , nk

respectively. This is a typical output of an experiment where one counts the

occurrence of a certain phenomenon out of a known number of trials. More-

over, assume that we observe together with each variable Yi a continuous

variable, Li (i = 1, . . . , k) that supposedly affects the probability parameter

of the binomially distributed variable Yi. Here L1, . . . , Lk are assumed to be

deterministically known, i.e. they are not random variables (!). Typically

the variables Lis represent treatments with continuous variation and can be

ordered. We call the variable taking values Li the explanatory variable. More

precisely, for i = 1, . . . , k,

Yi ∼ Bi(ni, pi) .

Additionally, it is assumed that there is a function g, called the response

function, such that

pi = g (α + βLi) . (3.27)

It is convenient to introduce the inverse of the response function g, de-

noted h = g−1, 12 and called the link function. We can alternatively charac-

terize the dependence of the probability parameters pi, for i = 1, . . . , k, as

bellow:

h(pi) = α + βLi . (3.28)

12That is, h(g( · )) = ( · ) and g(h( · )) = ( · ). The existence of the inverse is ensured by

the strict monotonicity of the response function.
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That is, the binomial regression model assumes that the probability param-

eters transformed through the link function, h(pi)s, depend on the values of

the explanatory variable in a linear form.

For completely characterizing the binomial regression model it is neces-

sary to specify the response function or equivalently the link function. The

table bellow shows some choices of response functions and the correspondent

link functions (i.e. the inverses)

Response Link

Model function function

Linear g( · ) = ( · ) h( · ) = ( · )

Logistic g( · ) = exp( · )
1+exp( · ) h( · ) = log

{
( · )

(1− · )

}

Probit g( · ) = Φ( · ) h( · ) = Φ−1( · )

Complementary g( · ) = 1− exp {− exp( · )} h( · ) = log {− log(1− · )}
log-log

13

The table above lists only some classic alternatives for the response func-

tion for binomial regression models. In principle any smooth (at least dif-

ferentiable with continuous derivative) and strictly monotone (i.e. strictly

increasing or decreasing) function can be used as a response function. Most

13Here the function Φ is the accumulative distribution function of the standard normal

distribution, i.e. if X is a normally distributed with mean 0 and variance 1, then for each

real number t, Φ(t) is the probability of X being less or equal t.
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of the software for generalized linear model allow the user to specify your

own link and response function.

Once defined the binomial regression model we might use the standard

likelihood based procedures for studying the model, similarly to the way we

studied the binomial models with classification explanatory variables. That

is, we might define a likelihood function depending on the models param-

eters, α and β, calculate the log-likelihood, calculate the score function by

differentiating the log-likelihood with respect to each of the parameter and

find the maximum likelihood by equating the score function to zero (or by

using some iterative numerical algorithm). We do not need to treat these

calculations in details here. What is important here is to realize that all the

quantities related to the maximum likelihood estimation that we used be-

fore for the binomial models with classification explanatory variables can be

calculated here also in an analogous way (but involving some slightly more

complicated calculations). We can talk about maximum likelihood estimate

of the parameters α and β, the value of the log-likelihood at the maximum,

use likelihood ratio tests for sub models, etc.

Let us discuss now the notion of residuals for the binomial regression

models. Roughly speaking the residuals are the differences between what we

observe and what we would expect under the current model. The residuals

are used to verify the adequacy of the model. The details are as follows: Once

estimated the parameters α and β by the maximum likelihood estimate, say

α̂ and β̂, we may estimate the probability parameter for the ith observation

(for i = 1, . . . k) by

p̂i = g (α̂ + β̂Li) ,

and the expected value that this observation would have (under the binomial

regression model) by

E(Yi) = ni p̂i = ni g (α̂ + β̂Li) .

We can then define the i the raw residual by

Ri = Yi − ni g (α̂ + β̂Li) = Yi − ni p̂i .
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Note that, for a fixed sample (i.e. given the observed data) g (α̂ + β̂Li) is a

constant. Moreover, under the binomial regression model with the parame-

ters α and β set at their maximum likelihood estimates, α̂ and β̂, E(Yi) = nip̂i

and V ar(Yi) = nip̂i(1− p̂i). Hence

E(Ri) = 0 and V ar(Ri) = nip̂i(1− p̂i) .

Next we will standardize the residuals, obtaining a quantity that has constant

variance. This is convenient for checking the model. The way of standardiz-

ing the raw residuals is to divide them by the square root of their variances.

This residuals are called the Pearson residuals and are defined in precise

terms as, for i = 1, . . . , k,

Pi =
Yi − ni p̂i√
V arYi

=
Yi − ni g (α̂ + β̂Li)√

nip̂i(1− p̂i)
.

Clearly,

E(Pi) = 0 and V ar(Pi) = 1 . (3.29)

We can use the Pearson residuals to verify the model. Indeed, a plot of

the Pearson residuals against the predicted values should present a scatter

of points showing no clear patterns, indicating that the variance of the raw

residuals behaves as we might expect under the binomial regression model.

Moreover, the plot of the Pearson residuals against the explanatory variables

should not show any kind of pattern. The advantage of the Pearson residu-

als over the raw residuals is that Pearson residuals are automatically made

smaller in the places were the variance would be expected to be larger due to

the proprieties of the binomial distribution. Therefore the Pearson residuals

would have less tendency to show false patterns due to the large variance.

Example 14 (Mice convulsion, cont.) The plot of the Pearson residuals

against the log-dose for the binomial regression models presented in example

13 are presented in the Figures: 3.7 for the linear model, 3.8 for the logistic

model and 3.9 for the complementary log-log model.
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Figure 3.7: Pearson residuals against the log-dose for the linear model.
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Figure 3.8: Pearson residuals against the log-dose for the logistic model.
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Figure 3.9: Pearson residuals against the log-dose for the complementary

log-log model.

In both the linear model (Figure 3.7) and the logistic model (Figure 3.8)

the residuals present a clear pattern when plotted against the log-dose. In the

linear model the ”central” observations tend to produce increasing residuals

when the log-dose increase. In the logistic model the residuals tend to dispose

along an asymmetric U-shaped curve. In the case of the complementary log-

log model the reader should make considerable efforts to imagine patterns

in the plot of the residuals against the log-dose, even though this is always

possible with so few observations. We will use the complementary log-log

model in the rest of this section. Indeed the data presented here are part of

a larger data set which we will analyze latter in this chapter. There the (at

least apparently) absence of patterns in the residuals will allow us to advocate

the choice of the complementary log-log model as better model for describing

the data.

tu

Let us discuss now the notion of deviance for the binomial regression

models. Once estimated the parameters α and β by the maximum likeli-



Binomial Models - R. Labouriau - Draft 119

hood estimate, say α̂ and β̂, we may calculate the value of the log-likelihood

function evaluated at its maximum, say l(α̂, β̂). Proceeding in a analogously

as we did before, we may define a saturated model, which is a model that

says that each observation is binomially distributed with its own probability

parameter. That is, for i = 1, . . . , k,

Yi ∼ Bi(ni, pi) ,

and no additional restrictions are imposed. In other words, the saturated

model just specifies that the observations are binomially distributed (with

their respective known number of repetitions) and nothing more is said. Any

model specified by imposing additional restrictions on the probability param-

eters are particular cases of the saturated model; in particular the binomial

regression model which uses the further restriction that pi = g (α+βLi) given

in (3.27). Since the binomial regression model is contained in the saturated

model, it makes sense to define a likelihood ratio test for testing the reduc-

tion from the saturated model to the binomial regression model. This test is

performed by using the log-likelihood ratio statistic which is defined as twice

the difference of the log-likelihood of the binomial regression model and the

saturated model. As before, this quantity is called the deviance. Comparing

the value of the deviance with the quantiles of a chi-square distribution with

k−2 degrees of freedom (k is the number of observations and 2 is the number

of parameters in the binomial regression model) gives the decision rule of for

test referred.

Let us describe this test in more formal terms next. Consider the null

hypothesis:

”H0 : Yi ∼ Bi(ni, pi), with pi = g(α + βLi),

for i = 1, . . . , k, for some α and β” ,

which is to be tested against the alternative hypothesis:

”HA : Yi ∼ Bi(ni, pi), with pi 6= g(α + βLi),

for i = 1, . . . , k, for any α and β” .
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The interpretation of this test is the following: It is tested whether given

that the data is binomially distributed (each observation with their respec-

tive number of repetitions), the structure assumed on the set of probability

parameters by using the binomial regression model holds or not. The log-

likelihood statistic for a likelihood ratio test for the hypotheses system above

is,

D = 2
{
lS − l(α̂, β̂)

}
,

where lS is the value of the log-likelihood function of the saturated model

evaluated at its maximum 14. The quantity D is called the deviance of the

binomial regression model. An asymptotic (i.e. valid for large samples) test

with level ζ is given by the rule:

”Reject H0 when D ≥ χ2
k−2(1− ζ)” ,

where χ2
k−2(1 − ζ) is the (1 − ζ)-quantile of a chi-square distribution with

k − 2 degrees of freedom.

We turn now to the question of how to study possible reductions of the bi-

nomial regression model. For example, suppose that we want to test whether

the parameter β in the binomial regression model is equal to zero. In fact

this will test whether the explanatory variable affects the probability pa-

rameter. We can then define a sub-model of the binomial regression model

(i.e. a model that is contained as a particular case of the binomial regression

model) obtained by setting β equal to 0. That is, define a models given by,

for i = 1, . . . , k,

Yi ∼ Bi(ni, pi), with pi = g (α + 0Li) = g (α) ,

which is a sub-model of the binomial regression model which assumes that

Yi ∼ Bi(ni, pi), with pi = g (α + βLi) .

14There is one maximum, believe me!
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The idea is to use the likelihood ratio test to test the null hypothesis:

”H0 : Yi ∼ Bi(ni, pi), with pi = g(α),

for i = 1, . . . , k, for some α” ,

against the alternative:

”HA : Yi ∼ Bi(ni, pi), with pi = g(α + βLi),

for i = 1, . . . , k, for some α and β 6= 0” .

Sometimes we write the two hypotheses above in a shorter form as below:

”H0 : β = 0” ,

and

”HA : β 6= 0” .

Here it is implicit the context of the binomial regression model.

The log-likelihood ratio statistic testing H0 against HA is given by

Λ = 2
{
l(α̂, β̂)− l(α̂)

}
, (3.30)

where l(α̂, β̂) and l(α̂) are the values of the log-likelihood function of the bi-

nomial regression model and the sub-model of the binomial regression model

(obtained by setting β = 0) evaluated at their respective maxima. The

required (asymptotic) test with level ζ is given by the rejection rule:

”Reject H0 when Λ ≥ χ2
1(1− ζ)” ,

where χ2
1(1 − ζ) is the (1 − ζ)-quantile of a chi-square distribution with 1

degree of freedom.

We can calculate the log-likelihood ratio statistic above alternatively us-

ing the notion of deviance as follows. First we can define also the deviance

of the sub-model of the binomial regression model as

D0 = 2 {lS − l(α̂)} ,
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where lS and lS − l(α̂) are the values of the log-likelihood functions of the

saturated model and the sub-model of the binomial regression model evalu-

ated at their maxima15. The log-likelihood ratio test defined in (3.30) can

be calculated, alternatively, as follows:

Λ = 2
{
l(α̂, β̂)− l(α̂)

}
(summing and subtracting lS )

= 2
{
l(α̂, β̂)− lS − l(α̂) + lS

}
(rearranging)

= 2 {l(α̂)− lS} − 2
{
l(α̂, β̂)− lS

}
(using the definition of deviance)

= D0 −D .

That is, for testing whether the parameter β is equal to zero we use the differ-

ence of the deviances of the binomial regression model and the deviance of a

sub-model of this model obtained by setting β equal to zero. This difference

of deviances is compared with the quantiles of a chi-square distribution with

the number of degrees of freedom given by the difference of the degrees of

freedom associated to these deviances. The mechanics of this test and the in-

terpretation of the deviance are exactly as in the case of the binomial models

with classification explanatory variable, even though the likelihood functions,

the maximum likelihood functions and the deviances are not equivalent (but

are analogous). 16

Example 15 (Mice convulsion, cont.) We consider next the complemen-

tary log-log model for the example 13.The deviance is 0.1117 with 4 degrees

of freedom (6 observations minus 2 parameters). Then, we have no evidences

15Exercise: Interpret the deviance D0 in terms of a likelihood ratio test as we did for

the binomial regression model. That is, write down the relevant null and alternative

hypotheses of the pertinent likelihood ratio test, write the log-likelihood ratio statistic of

this test and the rejection rule and finally interpret the test.
16Exercise: describe a likelihood ratio test for verifying whether the parameter α in the

binomial regression model is equal to zero.
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for rejecting a reduction of the saturated model (the one that assumes that

the the observations are binomially distributed each of them with their own

probability parameters) to the binomial regression model. Note that we have

too few observations, so the validity of this asymptotic test is questionable.

The maximum likelihood estimator of the parameters of the complemen-

tary log-log regression model are: α̂ = −3.724 and β̂ = 1.3745.

The deviance of a sub-model of the binomial regression model that as-

sumes the parameter β equal to zero is 34.4374 with 5 degrees of freedom (6

observations minus 1 parameter). That is the log-likelihood ratio statistic for

testing the hypothesis that β is equal to zero is

Λ = 34.4374− 0.1117 = 34.3257 ,

which should be compared with the quantiles of a chi-square distribution with

5−4 = 1 degree of freedom. Clearly the p-value of this test is very small (less

than 0.0001) and therefore we reject the hypothesis that β is equal to zero at

any reasonable level of significance. We come then to the brilliant conclusion

that the insulin affects the probability of convulsion. Since the estimate of

β is positive, we conclude that increasing the dose of insulin increases the

probability of convulsion, moreover, the model allow us (at least in principle)

to estimate the probability of convulsion even when using doses of insulin

different of the doses used in the experiment (at least as long we believe on

estimation made with only 6 observations). However, one must be careful

with extrapolations of regression models (as the one we developed) specially

for extrapolations outside the rage of doses used in the experiment.

tu
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3.3 Exercises

Exercise 3.1 In this exercise we will analyse an experiment on the effect of

different methods of scarification on the germination of Calotropis procera L.

Six different scarification treatments were applied to batches of seeds (1g of

seeds or approximately 26 seeds, varying from batch to batch). Each batch

was put to germinate on filter paper in a Petry dish. There were 20 batches

(or Petry dishes) per treatment, all in all 120 Petry dishes and 3169 seeds!

The main question is whether different scarification treatments affect the ger-

mination rate. A subsidiary question is whether these data is compatible with

the two basic assumptions of the one-way binomial model. 17

Here are some steps for analysing these data. As usual, there are many

possible ways to analyse the data, but please follow these steps in this exercise

(you will have opportunity to make ”free” analyses latter in this course).

a- Calculate the proportion of germination for each batch (i.e., each Petri

dish). Make a scatter plot representing the proportions against the treat-

ment (here each point of the scatter plot will represent one batch). 18

Calculate the proportion of germination for each treatment and repre-

sent that in the scatter plot.

b- Fit a one-way binomial model that attributes one germination probabil-

ity for each treatment. 19 Calculate the parameter estimates from the

model and compare them with the proportions of germinated seeds per

treatments. Why do the estimates coincide with the proportions?

17The data frame ”Ex3.1” (see the work-page) contains the data for this experiment.

There are 3 variables denoted ”Treat”, ”Germ” and ”total”. ”Treat” represents the scar-

ification treatment, ”Germ” is the number of germinated seeds and ”total” is the total

number of seeds in the batch (Petri dish).
18Hint to R users: convert the variable Treat to numeric before plotting by using the

function as.numeric( ) and convert to factor again after plotting by using the function

factor().
19Hint: Construct a response matrix using the function cbind(). Use the function glm()

with the function parameter ”family” set as binomial(link=”identity”)
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c- Fit a logistic model that attributes one lodds for germination for each

treatment. 20 Compare the parameter estimates obtained with this

model to the parameter estimates obtained in the previous item. Con-

vert the lodds estimated to probabilities and compare with the propor-

tions of germinated seeds per treatments. Calculate the deviance of this

model and compare with the previous. How many parameters does this

model have?

d- Fit a logistic model that attributes the same lodds for all the observa-

tions. Calculate the deviance of this model. How many parameters has

this model?

e- Use the results of the item c and d to make a likelihood ratio test to

test the hypothesis of differences of germination rates for different treat-

ments.

f- Test the hypothesis of homogeneity. 21

g- Is the assumption of independence of the results between the Petri dishes

reasonable? Is the assumption of independency between the germination

probabilities for seeds in the same Petri dish reasonable? Discus these

two assumptions and whether you can verify them.

Exercise 3.2 The data of this exercises comes from a study of vegetation

composition in four fields. Samples of pollen were collected in each field and

it was determined the proportion of pollen from graminea plants (grass). The

main question was whether the proportion of graminea (flowering) differ from

field to field.

Details: The experiment was slightly more complex. In fact, two types

of pollen traps were placed in each of the four fields, which could in princi-

ple yield different counts. The pollen in each trap was washed and fixed in

20Hint to R users: set the parameter family of the function glm as binomial(link=”logit”)

.
21Hint: you do not need to fit a saturated model, since the deviance of the saturated

model is known! Use the results of item e.
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microscope glass plates. For each plate 30 microscope fields (random chosen

via the microscope table coordinates) were observed for determining the to-

tal number of pollen grains and the number of gaminea pollen grains. Here

subsidiary questions are whether the type of pollen trap yield different pro-

portions of graminea pollen and the whether the suppositions of a two-ways

binomial model are reasonable.
22

a) Calculate the proportion of graminea pollen for each observation (i.e.,

counts of a microscope field). Make a scatter plot representing the

proportions against the fields, separately for each trap type (here each

point of the scatter plot will represent one observation, i.e., microscope

fields). 23 Calculate the proportion of graminea for each combination

of the factors Trap and Field and represent that in the scatter plot also.

b) Repeat the item a) using lodds instead of proportions. 24

c) Fit a (full) two-way binomial logistic model 25 that attributes one germi-

nation probability for each combination of Trap and Field. 26 Calculate

22The data frame ”Ex3.2” contains the data for this experiment. There are 6 columns

denoted ”Obs.num”, ”Trap”, ”Field”, ”Repetition”, ”n.gram” and ”n.grains”, following

the obvious name convention.
23Hint to R users: convert the variables Trap and Field to numeric before plotting by

using the function as.numeric( ) and convert to factor again after plotting by using the

function factor().
24Hint to R users: Use the function

Logit < −function(p){return(log(p/(1− p)))}

to transform probabilities (or proportions) in lodds and the function

ILogit < −function(lodds){return(exp(lodds)/(1 + exp(lodds)))}

to transform lodds in probabilities (or proportions).
25Hint: set the parameter family of the function glm as binomial(link=”logit”) .
26Hint: Construct a response matrix using the function cbind().
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the parameter estimates from the model and compare them with the pro-

portions (remember to transform lodds in probabilities). Calculate the

deviance of this model. 27

d) Fit an additive logistic model (for the two factors in play). Compare

the parameter estimates obtained with this model to the parameter es-

timated lodds calculated in item b).

Convert the lodds estimated to probabilities and compare with the pro-

portions obtained in item a).

e) Calculate the deviance of the additive logistic model fit in item d) and

compare with the deviance of the model fit in item c). How many pa-

rameters each of these model have? Perform a likelihood ratio test to

reduce the full model to the additive model. What is the interpretation

of the result of this test in terms of the graph drawn in item b)?

f) Fit a logistic model that include only the factor Field as explanatory

variable. Perform a likelihood ratio test to reduce the additive model

(fit in item d)) to this model. What do you conclude from this test?

g) Fit a logistic model that include only the factor Trap as explanatory

variable. Perform a likelihood ratio test to reduce the additive model

(fit in item d)) to this model. What do you conclude from this test?

h) Fit a logistic model that include only the intercept as explanatory vari-

able (i.e. not including the factor Field nor the factor Trap). Perform

a likelihood ratio test to reduce the additive model (fit in item d)) to

this model. What do you conclude from this test?

i) Perform a likelihood ratio test comparing the saturated model with the

logistic additive model (fit in item d). 28 Interpret this test in terms of

the homogeneity assumption.

27Hint to R users: Use the function deviance(), if you are in doubt type ?deviance in

the prompt of R.
28Hint: you don’t need to fit the saturated model! But, if you want to do that anyway
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j) End the exercise by drawing conclusions in terms of the basic questions

raised in the background description.

Exercise 3.3 The data of this exercises comes from a study of the effect of

phosphorous fertilization (i.e. phosphatation, a common practice fertilization

in acid tropic soils) on the development of mycorrhiza in manioc plants (i.e.

Manihot esculenta, a plant from the family Euphorbiaceae used to alimenta-

tion). The aim is to verify if the level of infestation of mycorrhiza is affected

by phosphatation and to quantify this effect (if any).

Details: An experiment involving 20 manioc fields and seven levels of

phosphatation (0, 100, 200, 300, 400, 500, 600 Kg phosphate per ha) was set

up. In each combination of field and phosphate dose (i.e. each plot) a range of

samples (up to 15, min=9, median=14) were collected and each of them was

analysed and determined whether the roots of manioc (present in the sample)

contained mycorrhiza or not (the samples were taken in a standardized way,

close to manioc plants ...). The number of positive samples in each plot was

recorded.
29

a) Calculate the proportion of (mycorrhiza) positive samples for each plot

(i.e. combination of field and P dose). Make a scatter plot representing

the proportions against the P dose. Calculate the proportion of (myc-

orrhiza) positive samples for each P dose and represent them also in

the scatter plot.

b) Repeat the item a) using lodds instead of proportions.

c) Fit a binomial logistic regression model. 30 What is the deviance of this

model? How many parameters this model has? How do you interpret

the parameters of this model?

(just for fun) use a factor defined by the variable Obs.num. You would have to convert

this variable to a variable of type factor. Use the function factor().
29The data is presented in the data frame ”Ex3.3”. There are 5 columns denoted ”Obs”,

”field”, ”P”, ”mycor”, ”nsamples”, following the obvious name convention.
30Hint: set the parameter family of the function glm as binomial(link=”logit”) .
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d) Fit a binomial one-way model using the P dose as a factor (i.e. a classi-

fication variable). 31 What is the deviance of this model? Compare this

deviance with the deviance of the previous model. How many parame-

ters this model has? Test, using the likelihood ratio test, the reduction

of this model to the model previous model. I claim that this test is a

test of the adequacy of the form of the regression curve used. Why?

e) Compare, using the likelihood ratio test, the model fit in the item d)

to the saturated model. I claim that this test verifies the homogeneity

hypothesis. Why? 32

f) Compare, using the likelihood ratio test, the model fit in the item c) to

the saturated model. I claim that this test verifies simultaneously the

homogeneity hypothesis and the assumed (logistic) form of the regres-

sion. Why? 33

g) End the exercise by drawing conclusions in terms of the basic questions

raised in the background description of this exercise.

Exercise 3.4 The data of this exercises comes from a study of the effect of

phosphorous fertilization (i.e., phosphatation, a common practice fertiliza-

tion in acid tropic soils) on the development of mycorrhiza in of the gender

Manihot (including the manioc plants i.e. Manihot esculenta), a gender of

the family Euphorbiaceae. The aim is to verify if the level of infestation of

mycorrhiza is affected by phosphatation and to quantify this effect (if any) in

different for three species: Manihot esculenta (species 1), Manihot brasilien-

sis (species 2) and Manihot glaziovi (species 3).

Details: An experiment involving 20 manioc fields and seven levels of

phosphatation (0, 100, 200, 300, 400, 500, 600 Kg phosphate per ha) and the

three species was set up. In each combination of field, species and phosphate

31Hint: Convert P to a factor using the function factor().
32Hint: Formulate the null and the alternative hypothesis.
33Hint: Combine the conclusions of item e) and f).
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dose (i.e. each plot) a range of samples (up to 15 samples per plot) were

collected and each of them was analysed and determined whether the roots

of manioc (present in the sample) contained mycorrhiza or not (the samples

were taken in a standardized way, close to manioc plants ...). The number

of positive samples in each plot was recorded. 34

a) Calculate the proportion of (mycorrhiza) positive samples for each plot

(i.e. combination of field, species and P dose). Make a scatter plot

representing the proportions against the P dose for each of the species

(you might superpose the plots and use different colours for the different

species). Calculate the proportion of (mycorrhiza) positive samples for

each combination of species and P dose and represent them also in the

scatter plot.

b) Repeat the item a) using lodds instead of proportions.

c) (optional) Follow the steps of exercise 3.3 separately for each species

(you have probably done for the species 1 already in the exercise 3.3).

Fit a binomial logistic regression model.

d) In the next 5 steps (from step e) to i) )we restrict the analyses to species

1 and 2 (leaving the species 3 for the moment out of the analyses). So,

prepare the data leaving the observations corresponding to the species 3

out. 35

e) Fit a model that uses one regression per species. 36

34The data is presented in the data frame ”Ex3.4”. There are 6 columns denoted ”Obs”,

”field”, ”P”, ”spec”, ”mycor”, ”nsamples”, following the obvious name convention.
35Hint: detach the file with the data, use the function subset (e.g. restricted data ¡-

subset(original.data, spec != 3) and attach the new data.
36Hint: Including an interaction of the factor spec (defining the species) and the (non-

factor) P will define the model required. The call for the function glm will then be

something like ”glm( response.matrix ∼ spec*P, family=binomial ...)”.
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f) Fit a model assigning one probability (or lodds) to each combination of

P level and species. 37

g) Compare the model defined in item f) to a saturated model using a like-

lihood ratio test, which is equivalent to test the homogeneity assumption

(why?) Then compare the model defined in item e) to the model defined

in item f), which is equivalent to test the form of the regression curves

used (why?). Now compare the model defined in item e) to a satu-

rated model, which is equivalent to test simultaneously the homogeneity

hypothesis and the regression form (why?).

h) Fit a model where the regression lines are parallel (in the logistic scale)

and compare with the model fit in the item e). What is your conclusion?

i) Fit a model containing one single regression curve (common to the

species) and compare, using a likelihood ratio test, it to the model fit in

f). What do you conclude?

j) Repeat the analysis of item e) to item i) now including the three species.

What changes in the analysis? Relate your conclusions with the plots

made in item b).

k) End the exercise by drawing conclusions in terms of the basic questions

raised in the background description of this exercise.

37Hint: A call like ”glm( response.matrix ∼ spec*factor(P), family=binomial ...)” will

fit the required model. Note that the difference is that here we converted the numeric

variable P to a factor.
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Exercise 3.5 In this exercise a data on sampled number of weeds is stud-

ied. The total number of plants and the number of a weed was counted by

sampling (throwing a ring) in four places. In each place two topographic po-

sitions Position, 1 = low, 2 = high) were studied separately (there are several

repetitions for each position at each place). The question is whether the soil

type and/or the topographic position affects the prevalence of weeds. 38

Exercise 3.6 Here a data on fish mortality is to be studied. Six doses of

antibiotics were applied in different tanks of fish suffering from a epidemic

bacterial infection. There are two fish ecotypes in the experiment. The num-

ber of dead fish out of a given number of fish was recorded. The general

question is whether the antibiotic has an effect on the mortality and whether

this effect (if any) is the same for the two ecotypes. 39

38The data-frame ”Ex3.5” (contained in the collection of data-frames of the course)

contains the of this experiment.
39The data-frame ”Ex3.6” (contained in the collection of data-frames of the course)

contains the of this experiment.


