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Statistical Models and

Inference - Draft

R.Labouriau 1

Draft - Please do not circulate. 2

2.1 Parametric statistical models

In this section we illustrate and then define the important notion of statistical

model. Emphasis will be given in parametric models, but we will describe

also non-parametric models. We start with four simple examples.

Example 1 (Binary trials) In the example of the binomial experiment we

introduced the random variable Y representing the number of ”successes”

observed in two independent binary trials with probability of success p. The

distribution of the discrete variable Y has probability function given by

fY (y) =


(1− p)2, if y = 0,

2p(1− p), if y = 1,

p2, if y = 2 .

(2.1)

1Applied Statistics Laboratory, Department of Mathematics, Aarhus University.
2Last revised: February, 2022. Copyright c© 2022 by Rodrigo Labouriau.
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That is, each value of p determines a distribution (using the formula (2.1)

above), which has a clear interpretation in terms of the experiment that gen-

erated Y . The class of all such distributions is what we call a parametric

statistical model and p is a parameter indexing this model. That is, we de-

duced that the distribution of Y is contained in a certain class of distributions

(the binomial distributions with two trials), using the very basic properties

of the experiment. These properties allowed us only to determine a family

of distributions containing the distribution of Y , not the distribution of Y .

Now, to completely determine the probability law of Y we must find which

element of this class of distributions is the distribution of Y (or is the best

candidate in the class to represent the distribution of Y ). This is equivalent

to say that we want to determine, or to estimate, the unknown value of the

parameter p that indexes the parametric model. This estimation is usually

based on observations of executions of the experiment.

Example 2 (Counts of alpha-particles) In a classic experiment Ruther-

ford and Geiger (1910) counted the number of alpha-particles emitted by the

radioactive decay of a source of polonium, registered in time-intervals of 72

seconds. The first observed counts were: 2, 1, 3, 5, 3, 5, 3, 4, . . . . The

results of 10, 097 counts performed by Rutherford and Geiger are displayed

in Table 2.1 and Figure 2.1.

Table 2.1: Frequency of 10,097 counts of alpha-particles emitted by the ra-

dioactive decay of a source of polonium, registered in time-intervals of 72

seconds.

Counts: 0 1 2 3 4 5 6 7

Frequency: 57 203 383 525 532 408 273 139

Counts: 8 9 10 11 12 13 14 + 15

Frequency: 45 27 10 4 0 1 1 0
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Figure 2.1: Counts of alpha-particles and the expected number of counts

under a Poisson distribution with λ = 3.87.

This data has been classically modelled using a Poisson distribution. In-

deed, it is possible to prove that if this experiment fulfil three rather basic

assumptions, then the number of counts should be Poisson distributed. The

basic assumptions are: 1) The time of arrival of a particle in the counter is

homogeneously distributed in the observation interval; 2) The number of par-

ticles that arrive in two disjoint intervals are independent; 3) The particles

do not arrive at the same time (i.e., the probability of two or more particles

arrive in the counter in a short interval divided by the probability that only

one particle arrives in this interval tends to zero as the length of the interval

approaches zero). That is, under these assumptions it can be shown that3 the

probability of observing, say k particles (for k = 0, 1, 2, 3, . . .) is given by the

formula

e−λλk

k!
for a λ > 0 . (2.2)

Here k! = k · (k − 1) · . . . · 1 and 0! = 1. Note that the formula (2.2) above

depends on the constant λ which is only assumed to be positive up to now.

3We come back to this point, for the moment let us just believe in this result.
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Changing the value of λ, changes the probability law described in (2.2). In

fact, without specifying the value of λ, equation (2.2) is only saying that the

observed number of particles is Poisson distributed. That is, we just specified

a collection (or family) of possible distributions for the number of particles;

this collection of distributions is called a statistical model. Since there is a

parameter that label uniquely the distributions in the statistical model, namely

λ, we say that the statistical model in question is a parametric model and we

refer to λ as the parameter of the model. Just as in example 1, the probability

law describing the observed number of particles in the present experiment is

specified in two steps: First we determine a collection of possible probability

distributions for the observed results (i.e., we determine the statistical model,

in this case we deduced it from simple basic assumptions of the data), and

secondly, we (will) determine which of those possible distributions well de-

scribe the results (a process that is called estimation and will be discussed

below).

Example 3 (Weights of batches of seeds) In this example we consider

the data of seed weights of Dolichos biflorus (a bean) obtained with an auto-

matic weighting device. The data consisted of the individual weights of the

seeds of 50 batches, each batch containing 50 seeds, all in all we have the

weights of 2, 500 seeds. The histograms and the normal Q-Q plots displayed

in Figure 2.2 suggest that the individual weights of the seeds are clearly not

normally distributed; however, it is reasonable to assume the total weight of

the batch to be normally distributed. This is in agreement with the central

limit theorem (see chapter 1). To see that, note that the weight of the batch

is the sum of the weight of 50 individual weights of seeds, and if we assume

that the 50 weights of seeds in each batch are independent, identically dis-

tributed (i.e., the batches are homogeneous) and have a finite variance, then

we might evoque the central limit theorem and conclude that the total weight

of the batches are approximately normal distributed (here we assume also that

number of observations in each batch, i.e., 50, is large enough to ensure that

the approximation to the normal distribution is good enough). It is then rea-
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sonable to model the 50 total weights the batches as (approximately) normally

distributed. Formally, we might represent the data by 50 random independent

and identically distributed random variables, say X1, X2, . . . , X50, with,

X1 ∼ N(µ, σ2) . (2.3)

Here µ and σ2 are not specified (yet); µ might be any real number (although

it would not be reasonable to use a negative value for µ) and σ2 might be any

positive number. Again, changing the values of µ and σ2 changes the proba-

bility law that is used to describe the data; therefore, equation (2.3) defines

a collection of probability distributions, which we say that is a parametric

(statistical) model. Here the model is said to be parametric because there is a

finite number of parameters, namely µ and σ2, that index all the distributions

in the model.

Example 4 (∗Weights of individual seeds) 4 As discussed in the exam-

ple 3 above, it is not reasonable to use the normal distribution to describe

the individual weights of the seeds (see Figure 2.2). Working with a normal

model for the total weight of the batches might suffice for most of the practi-

cal purposes, but there are other alternatives. One of those alternatives is to

assume that the distribution of the individual weights of the seeds is a (un-

specified) continuous symmetric distribution (i.e., a continuous distribution

with symmetric probability density). The collection of all continuous sym-

metric distributions would be then the statistical model. Note that this model

is much larger than the normal distribution model used in example 3. Indeed,

the normal distributions are symmetric (with symmetry around the expecta-

tion, µ in the notation of the formula (2.3)), and there are other symmetric

distributions. This model cannot be indexed by a finite number of parameters

(but the prove of this statement is tricky); therefore we say that this model

is non-parametric. This type of model is behind a range of non-parametric

tests as the Wilcoxon test and Kruscal-Walis test.

4Optional reading.
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Figure 2.2: Histogram and normal Q-Q-plot (i.e., theoretical quantiles for a

normal distribution plotted against the observed quantiles, the points should

lie in a strait line, if the data is normally distributed) for the individual

weights of the seeds (above, 2, 500 seeds) and for the batch total weights

(below, 50 batches).
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In general, the probability law of the random quantity in study, say Y ,

is unknown and we determine it in two steps: First, we choose a class of

distributions that are good candidates for being the distribution of Y (or

for well approximate the probability law of Y ). This class of distributions is

called the statistical model . If the statistical model can be indexed by a finite

number of parameters (as in the examples 1, 2 and 3) we say that we have

a parametric statistical model or simply a parametric model. 5The next step

is to determine the best candidate in the parametric model for representing

the probability law of Y , on the basis of observations of the experiment.

This general procedure is called parametric point estimation or simply point

estimation . The theory of point estimation is rather developed in modern

statistics and there are many general techniques for deriving good point

estimates. We will concentrate here in one classical general technique called

maximum likelihood estimation. This technique produces good estimators

in many cases (but, not always!) and is by far the most popular estimation

method.

2.2 Likelihood function and maximum likeli-

hood estimation

We will introduce here the basic notions of likelihood function, maximum

likelihood estimation and other related notions. These is the kernel of the

classic techniques for estimation. We will introduce these notion using the

examples 1 and 2 but please keep in mind that these techniques are quite

general and can be easily extended for much more complex models.

Example 5 (Binary trials - continued) Let us discuss a bit more the sim-

plest example we studied, namely, the binary trial where we observe the results

5In non-parametric statistics the statistical models are very large families of distribu-

tions. They are so large that it is not possible to index them with a finite number of

parameters. One example is the class of symmetric continuous distributions. This family

can not be indexed by a finite number of parameters (but this is not easy to prove!).
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of a trial with two possible outcomes: success or failure (e.g., tossing a coin

and observing whether the result is a tail). Suppose that the probability of

success in the is trial is the number p contained in the interval (0, 1) (e.g.,

p = 1/2, if the coin in the previous example is fair). Now, consider the situa-

tion where we perform this binary trial four times independently and register

the four result. We use four random variables to represent this situation, say

X1, X2. X3 and X4, which will denote the result of the first, the second, the

third and the fourth binary trial, respectively. We use the convention that X1

takes the values 0 or 1 if we observe a failure or a success in the first trial,

respectively (i.e., X1 is the number of successes in the first trial). An analo-

gous convention is used for the other three random variables. Now, these four

random variables are independent (because the four trials are assumed to be

independent) and identically distributed (since we assume that the probability

of success is constant, namely equal to p). These two assumptions will be

used strongly in the calculations below.

For example, suppose that we observe X1 = 0, X2 = 1. X3 = 0 and

X4 = 0 (i.e., we observe the results 0, 1, 0 and 0). The probability of obtaining

this result is

P (X1 =0, X2 =1, X3 =0, X4 = 0) = (by independency)

=P (X1 =0)P (X2 = 1)P (X3 =0)P (X4 =0)

= (1− p).p.(1− p)(1− p)
= p(1− p)3. (2.4)

The probability calculated above depends on the parameter p. Figure 2.3

shows how the probability of observing the results 0, 1, 0 and 0 changes when

the value of p varies. Analogous calculations yield the same probability for

the results X1 = 1, X2 = 0, X3 = 0 and X4 = 0 or X1 = 0, X2 = 0, X3 = 1

and X4 = 0 or even X1 = 0, X2 = 0, X3 = 0 and X4 = 1 (the order of the

factors in the second equality of the expression (2.4) are just permuted for

the different results). That is, in each these cases the probability of observing

the result is just p(1− p)3.
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Figure 2.3: Probability of the results X1 = 0, X2 = 1, X3 = 0 and X4 = 0

as a function of the parameter p (where p is the probability of success in one

binary trial). Note that this function has a maximum at p = 1/4.

The probability of observing the result X1 = 1, X2 = 1, X3 = 0 and

X4 = 0 or X1 = 0 is

P (X1 =1, X2 =1, X3 =0, X4 = 0) =P (X1 =1)P (X2 = 1)P (X3 =0)P (X4 =0)

= p.p.(1− p)(1− p)
= p2(1− p)2. (2.5)

Figure 2.4 shows how the probability of observing the results 1, 1, 0 and 0

changes when we change the value of p. Analogous calculations yield the

same probability for all the results for which exactly two success are observed

(and therefore two failures are also observed). Continuing in this way we can

calculate the probability of any possible result of the four binary trials. To do

so, denote by k the number of successes observed in the four binary trials.

Clearly, k can only take the values 0, 1, 2, 3 or 4.

Using a procedure similar to the calculations presented in (2.4) and (2.5)

it is not difficult to see that the probability of observing any result that yields
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Figure 2.4: Probability of the results X1 = 1, X2 = 1, X3 = 0 and X4 = 0

as a function of the parameter p. Note that this function has a maximum at

p = 1/2, marked as an interrupted line; for comparison, a dotted line marks

the maximum of the probability of observing X1 = 0, X2 = 1, X3 = 0 and

X4 = 0 viewed as a function of p.

exactly k, for k = 0, 1, 2, 3 or 4, is

P (”observing a result with k successes”) = pk(1− p)4−k. (2.6)

Note that the probabilities given in (2.6) are always a function of the param-

eter p (see Figure 2.5). In this way, the probability of any possible result

of the experiment ”perform four independent binary trials with probability p

of success in each trial and register the number of successes” can always be

expressed as a function of p. Now, once we have performed the experiment

and observed a certain result we can think on the probability function for the

sample as a fixed function of the parameter p. This function is called the

likelihood function for the parameter p based on the observations. I stress

that the likelihood function depends on the observations in the sense that if

we had observed another result (i.e., another value of k), then the function

would be different. It is reasonable to estimate the parameter by choosing the

value of the parameter that maximizes the likelihood function, i.e., estimate

the parameter by the value that is associated to the distribution that attributes
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the larger probability to the observed sample (among the distributions in the

statistical models). This estimator is called the maximum likelihood estimate

of p based on the observations. In the particular example we consider the

likelihood function takes the form, for k = 0, 1, 2, 3 and 4,

L(p) = pk(1− p)4−k. (2.7)

The likelihood function has the a maximum at, 0, 1/4, 2/4, 3/4 and 1 when

k is equal to 0, 1, 2, 3 and 4, respectively. That is, when we observe a result

that yields k successes, the value of p that maximises the likelihood function

is p̂ = k/4 and we estimate the parameter p by this value (see Figure 2.5).

∗ Some details on the maximisation of the likelihood function 6

Direct maximisation of the likelihood function is feasible, however, in

many situations it is easier to maximize the logarithm of the likelihood func-

tion, called the log-likelihood function. (since the maximum of a positive

function coincides with the maximum of its logarithm). 7 The many prod-

ucts always present in the likelihood function (due to the independence of the

observations) are transformed into sums in the log-likelihood function, since

the logarithm transforms products in sums. We will denote the log-likelihood

by l.

The log-likelihood functions of the example considered, performing four

iid binary trial and counting the number k of successes, are given by, for

k = 0, 1, 2, 3 and 4,

l(p) = log [L(p)] = log
[
pk(1− p)4−k

]
= k log(p) + (4− k) log(1− p) .

Figure 2.5 displays the graphs of the log-likelihood function for the example

in play.

6Optional reading.
7There are other theoretical reasons for justifying the maximisation of the log-likelihood

function, instead of the likelihood function, but we will not go into such mathematical

details here.
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Figure 2.5: Probability of all the possible results of four independent bi-

nary trials as a function of the parameter p. Note that these functions have

maxima at different points marked with vertical interrupted lines.
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Since the derivative of a smooth function 8equals to zero at the maximum

of the function, 9we can then find the maximum of the log-likelihood functions,

by differentiating it with respect to the parameter p and equating the derivative

to zero. This is an old trick!

In the case of the experiment ”observe the number of successes of four in-

dependent binary trials” which we are discussing, likelihood function is given

by

L(p) = pk(1− p)4−k ,

the log-likelihood function is

l(p) = log [L(p)] = log
[
pk(1− p)4−k

]
= k log(p) + (4− k) log(1− p) .

In the case that k is equal to zero or 4 the likelihood (and the log-likelihood)

function has maximum at 0 and 1, since the likelihood function keeps increas-

ing when it reaches the boundary of the interval between 0 and 1 (see Figure

2.5). We study next the cases where k is different than 0 and 1.

Differentiating the expression above with respect to p yields the score func-

tion

S(p) =
∂

∂p
[k log(p) + (4− k) log(1− p)] =

k

p
− (4− k)

(1− p)
.

Equating the score function to zero (to find its maximum) yields the score

equation, which is given by

k

p̂
− (4− k)

(1− p̂)
= 0 , which is equivalent to

k

(4− k)
=

p̂

(1− p̂)
. (2.8)

It is easy to see that the solution for equation (2.8) is p̂ = k/4 (just make a

substitution).

8You may think on the inclination of the tangent of the graph of the function at the

point, if you are not acquainted with derivatives.
9Try to make a plot, if you doubt of this result.



Chapter 2 - Lecture Notes Draft - R. Labouriau 53

0.0 0.2 0.4 0.6 0.8 1.0

−
15

−
10

−
5

0

k =  0

p

Lo
g−

lik
el

ih
oo

d 
fu

nc
tio

n

0.0 0.2 0.4 0.6 0.8 1.0

−
14

−
12

−
10

−
8

−
6

−
4

−
2

k =  1

p

Lo
g−

lik
el

ih
oo

d 
fu

nc
tio

n

0.0 0.2 0.4 0.6 0.8 1.0

−
9

−
8

−
7

−
6

−
5

−
4

−
3

k =  2

p

Lo
g−

lik
el

ih
oo

d 
fu

nc
tio

n

0.0 0.2 0.4 0.6 0.8 1.0

−
14

−
12

−
10

−
8

−
6

−
4

−
2

k =  3

p

Lo
g−

lik
el

ih
oo

d 
fu

nc
tio

n

0.0 0.2 0.4 0.6 0.8 1.0

−
15

−
10

−
5

0

k =  4

p

Lo
g−

lik
el

ih
oo

d 
fu

nc
tio

n

0.0 0.2 0.4 0.6 0.8 1.0

−
15

−
10

−
5

0

All Possible Results

p

Lo
g−

lik
el

ih
oo

d 
fu

nc
tio

n

Figure 2.6: The five possible forms of the log-likelihood function (i.e., loga-

rithm of the probability of each of the possible results viewed as a function

of the parameter p) for four independent and identically distributed binary

trials. Note that these functions have maxima at different points marked

with vertical interrupted lines.
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Figure 2.7: The five possible forms of the score function (i.e., the deriva-

tive of the log-likelihood function) for four independent and identically dis-

trubuted binary trials. Note that these functions have zeroes at different

points marked with vertical interrupted lines (corresponding to the maxima

of the log-likelihood functions).
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Example 6 (Counts of alpha-particles - Continued) Here we show how

to calculate the maximum likelihood estimate in the simple Poisson model

discussed in example 2. There we described the number of alpha particles

arriving to a counter as being Poisson distributed. In the experiment, 10, 097

counts for alpha particles detected in time intervals of 72 seconds were reg-

istered and we argued that these coins were reasonably described as being

realisations of a Poisson distribution with a fixed, but unknown, intensity pa-

rameter (i.e., expected value) λ. That is, the results of this large experiment

could be described by 10, 097 independent (and identically distributed) ran-

dom variables, say Y1, Y2, . . . , Y10,097, each of them being Poisson distributed.

Once we have performed the experiment (i.e., counting 10, 097 times the al-

pha particles) we will have 10, 097 values, say y1, y2, . . . , y10,097. These values

are not random quantities since they are known after we have performed the

experiment (and had been kept in a dataset); therefore we use small letters to

denote them (in contrast with the capital letters used to denote random vari-

ables). In the statistical terminology the observed values y1, y2, . . . , y10,097 are

said to be a sample. We might now calculate the probability of the observed

result by

P (Y1 = y1, . . . Y10,097 = y10,097) = (by independence and (2.2) )

=
e−λλy1

y1!
· · · · · e

−λλy10,097

y10,097!
. (2.9)

Note that the the probability calculated in the expression (2.9) above depends

on the unknown parameter λ. This probability viewed as a function of λ

(and considering the observed values y1, y2, . . . , y10,097 as fixed) is called the

likelihood function λ based on the sample y1, y2, . . . , y10,097 or simply the

likelihood function, which is usually denoted by L. That is,

L(λ) =
e−λλy1

y1!
· · · · · e

−λλy10,097

y10,097!
. (2.10)

The value of the parameter λ that maximizes the likelihood function (if any)

is called the maximum likelihood estimate of λ, and is usually denoted by λ̂.
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Note that the likelihood function in (2.10) depends on the sample (i.e., the

observed values), although the sample is considered fixed (since it is known

after we have performed the experiment).

Once established the likelihood function (using the results of the experi-

ment), the calculation of the maximum likelihood is just a matter of finding

a maximum of a function. It is convenient to maximize the logarithm of the

likelihood function instead of the direct maximisation of the likelihood func-

tion. This can be seen by observing that the right hand of the expression

(2.10) is a product of 10, 097 terms, which is difficult to work with (e.g., try

to calculate the derivative of this product!). We define then the log-likelihood

function by

l(λ) = log (L(λ)) (2.11)

= 10, 097λ+ log(λ)
10,097∑
i=1

yi −
10,097∑
i=1

log(yi!) .

Now, to find the maximum of the log-likelihood function, we just differentiate

it with respect to λ and equate it to zero. The derivative of the log-likelihood

function (with respect to λ) 10 is called the score function and is given by

S(λ) =
∂

∂λ
l(λ) = 10, 097 +

∑10,097
i=1 yi
λ

. (2.12)

Figure 2.8 displays the log-likelihood function and the score function for the

Rutherford Geiger experiment. Now equating the score function given in

(2.12) yields the following equation

10, 097 +

∑10,097
i=1 yi

λ̂
= 0 ,

with has solution

λ̂ =

∑10,097
i=1 yi

10, 097
.

A similar argument yields that in general the maximum likelihood estimate

for the intensity parameter of a sample of a Poisson distribution is nothing

10That is the function that gives the inclination of the tangent of the graph of the

function l at each point.
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but the total sum of the counts divided by the number of times the experiment

was performed, i.e., the sample mean.
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Figure 2.8: The log-likelihood function and the score function (i.e., the

derivative of the log-likelihood function) for the Rutherford Geiger exper-

iment.
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In general, the estimation can be done by defining a proper likelihood

function which express the probability of observing the results of the ex-

periment (or observations) in terms of the parameters in the model. The

maximum likelihood estimate is defined then by the value that maximises

the likelihood function (obtained with the observed data). In the examples

considered above it is relatively simple to write the score equation and find

explicit solution of it. 11However, in most of the practical cases this can be a

difficult, if not virtually impossible, task. Therefore the maximum likelihood

estimate is usually calculated with numerical approximative methods. The

most popular is the method of Newton 12 .

In order to verify whether the solution of the score equation is indeed a

maximum (and not a minimum or a saddle point) one usually calculate the

second derivative (i.e. the derivative of the derivative) of the log-likelihood. If

the solution of the score function is a maximum, then the second derivative of

the log-likelihood must be negative. The positive quantity given by minus the

second derivative of the log-likelihood evaluated at the maximum likelihood

is called the observed information and denoted by I(p̂). That is,

I(p̂) = − ∂2

∂p2
l(p) |p=p̂ . (2.13)

The observed information measures the curvature of the log-likelihood at its

maximum. A low value of the observed information means that the log-

likelihood is flat, which in turn implies that the data provide almost no

information about the parameters. It can be shown (but we will not do it

here) that, under mild regularity conditions, the maximum likelihood esti-

mate is approximately normal distributed with the mean equal to the real

value of the parameter and the variance equal to the inverse of the observed

information, for sufficiently large samples. We can therefore use the observed

information to measure the dispersion of the maximum likelihood estimate

11That is why we choose them as the first examples.
12Also called Newton-Raphson method, even thought Raphson only made the first FOR-

TRAN program implementing the idea that Newton had many years before!
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around the true value of the parameter. Figure 2.9 shows the second deriva-

tive of the log-likelihood function for the two examples considered above.

Figure 2.9: Second derivative of the log-likelihood function for the results

y1 = 1, y2 = 2, y3 = 0 and y4 = 1 (curve to the left) and y1 = 1, y2 = 0,

y3 = 2 and y4 = 2 (curve to the right) as a function of the parameter p.

2.2.1 ∗Maximum likelihood estimation for exponential

dispersion models with fixed scale

13

We give now an useful example of the calculations involved in the maximum

likelihood estimation. Suppose that we have a sample from a distribution

contained in an exponential dispersion model. Let us consider the scale

parameter λ as fixed and known and treat the estimation of θ. This will be

the case when using the Poisson and the binomial distribution, where the

scale parameter assumes indeed only the value 1. Moreover, as we will see,

the estimation of the parameter θ will not be affected by the value assumed

by the scale parameter.

13Optional reading.
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The likelihood function for a sample y1, . . . , yn is

L(θ) =
n∏
i=1

exp [λ {yiθ − b(θ)− c(yi, λ)}] .

The log-likelihood function is given by

l(θ) =
n∑
i=1

λ {yiθ − b(θ)− c(yi, λ)} .

The score function is obtained by differentiating the log-likelihood with re-

spect to θ, i.e.

S(θ) =
n∑
i=1

λ {yi − b′(θ)} .

Equating the score function to zero we obtain

λ

{
n∑
i=1

yi

}
− λnb′(θ̂) = 0 .

Since λ is different than zero, we can eliminate this parameter from the

equation (no matter which value it takes). The last equation is equivalent to

b′(θ̂) =
1

n

n∑
i=1

yi . (2.14)

This equation has a simple interpretation. Remember that the expectation

of a random variable X following an exponential dispersion model (X ∼
ED(θ, λ)) is b′(θ). Therefore, the equation (2.14 ) says that the maximum

likelihood estimator of θ (under an exponential dispersion model) is the value

of θ that makes the expectation of the random variable that generated the

sample equal to the mean of the sample. This explains the results we obtained

for the binomial distribution (with two trials) in terms of a more general

principle.

The maximum likelihood estimator of θ is

θ̂ = (b′)−1

{
1

n

n∑
i=1

yi

}
= u

{
1

n

n∑
i=1

yi

}
.

Moreover, the observed information is given by

I(θ) = nb′′(θ) .
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2.3 Confidence intervals

Providing an estimator of a parameter under a parametric model, i.e. giving

a number that points to a distribution in the parametric model that (hope-

fully) reasonably represents the data, is not always satisfactory. Estimators

are functions of the observations, which in turn are realizations of random

variables. Therefore estimators are indeed random quantities and would take

different values if a (even slightly) different sample were observed. As a con-

sequence, when reporting the results of an estimating process it is a good

practice to report also the dispersion of the estimator. Another way to cir-

cumvent this problem is to supply, when possible, a region that will contain

”the true value of the parameters” with high probability (typically 0.95 or

0.99 14). Since we are talking about models and not about absolute correct

representation of the reality, there are no ”true values of the parameters”.

This is just a way to say that we want to find a region that would contain

our good candidate to represent the distribution that generated the data

with high probability. From the point of view of prediction, this means that

other samples originated from the same mechanism that generated the data

would produce an estimator that would fall in the region with high probabil-

ity. When such a region is an interval, it is called a confidence interval with

level given by the probability of the region. We illustrate bellow two useful

methods of construction of confidence intervals.

2.3.1 Example: Confidence interval for cation exchange

capacity in soils

The following example from a study of a large experiment on soil fertility

will serve us to illustrate the construction of a confidence interval. The

cation exchange capacity (CEC) capacity was measured in 120 soil samples

(m equiv/ 100 g soil) and is displayed in Figure 2.10. Here we will use a

14There is nothing special with these numbers. They are chosen simply by convention.
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simple statistical model to describe the CEC by assuming that the measures

come from a normal distribution with variance 1.

More precisely, we denote the measurements by y1, . . . , y120 and assume

that they are independent and identically distributed following a normal

distribution with variance 1 and unknown expectation µ. In symbols, yi ∼
N(µ, 1) (for i = 1, . . . , 120). Here µ is an unknown parameter, which we

want to estimate.

The model proposed, although simple, gives a reasonable description of

the data. Indeed, the density of a normal distribution with expectation 2.87

(i.e., the sample mean) and variance 1 resembles the histogram of the data

as can be seen in Figure 2.10. 15 It is not difficult to show that the maximum

likelihood estimate for µ under this model is the sample mean. 16

We want now to calculate an interval, say CI, around the estimate µ̂ = ȳ

that contains the parameter µ with high probability. We pre-fix this prob-

ability for doing the calculations. Lets say that the pre-fixed probability is

α = 0.95 (i.e., 95 % ). 17 The interval Ci is of the form

CI = [ȳ − a, ȳ + a] , (2.15)

where a is a number, that will calculate, such that the probability that µ is

in CI is α = 0.95.

We need some ingredients for the calculation of the interval CI. First

we calculate the distribution of ȳ. Since ȳ = 1/n
∑n
i=1 yi and each of the

15The normality of these data can be verified using more appropriate methods using the

methods we will study later. Moreover, it is not necessary to introduce the assumption

that the variance is 1, but this simplifies matters and is chosen for pedagogical reasons.

Anyway the model used here is reasonable.
16Exercise: show that the maximum likelihood estimate for µ under this model is the

sample mean. Recall that the density of the normal distribution with expectation µ and

variance 1 is Φ(x;µ) = 1/
√

2π exp(−(x− µ)2/2).
17Please note that the value chosen, α = 0.95, is arbitrary. We could as well have chosen

other values (typical values are 0.90, 0.95, 0.99). The important point is that this value is

chosen a priori.
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terms of the sum are normally distributed, ȳ is also normally distributed. 18

Moreover, the expectation and the variance of ȳ are µ and 1/n, respectively.

Therefore, subtracting µ from ȳ and dividing by the square root of 1/n yield

a random variable distributed according to a standard normal distribution,

i.e.,

ȳ − µ√
1/n

=
√
n (ȳ − µ) ∼ N(0, 1) .

The next ingredient we need for the calculation of CI is the notion of

quantile. Let zα be the number such that the probability that a normal

random variable with mean 0 and variance 1 is less or equal than zα is α.

This number can be calculated by integrating the density probability of the

standard normal distribution (you do not need to do that) and is called the

αth quantile of the normal distribution with mean 0 and variance 1. Tables

with values of the quantiles of the standard normal distribution are easy to

find in the literature. Moreover, most of the statistical software have facilities

to calculate the quantiles of the standard normal distribution. Therefore we

will reduce the calculations below to calculations using the quantiles of the

standard normal distribution.

Now we have at hand all the ingredients to calculate the confidence inter-

val CI. I claim that using a = z 1+α
2
/
√
n = a = z0.975/

√
120 = 0.1789194 in

the interval CI defined as in equation (2.15) will yield a confidence interval

with coverage 0.95.

First we calculate the probability of ȳ − a ≤ µ,

P (ȳ − a ≤ µ) = P (ȳ − µ ≤ a) = P
(√

n(ȳ − µ) ≤ z 1+α
2

)
=

1 + α

2
.

Therefore

P (ȳ − a > µ) = 1− 1 + α

2
=

1− α
2

.

18Here we are using the fact that the sum of independent random normally distributed

random variables is normally distributed; and that the product of a constant (e.g. 1/n) is

also normally distributed.
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By symmetry of the normal distribution we have also

P (ȳ + a < µ) =
1− α

2
.

We conclude that

P (µ is not in CI) =
1− α

2
+

1− α
2

= 1− α ,

which implies that the interval CI given by equation (2.15 with a = 0.1789194

is a confidence interval with coverage 0.95. 19

In summary, according to our calculations the data observed indicates

that the parameter µ is between 2.686831 and 3.044669 with probability 0.95

Cation exchangeable capacity (m equiv/100g)
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Figure 2.10: Histogram of 120 measurements of the CEC in soil.

19Exercise: calculate a confidence interval with coverage 0.99.
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Cation exchangeable capacity (m equiv/100g)
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Figure 2.11: Histogram of 120 measurements of the CEC in soil and the

probability density of a normal distribution with expectation 2.87 and vari-

ance 1. The vertical continuous red line represents the position of the sample

mean.
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2.3.2 Approximate confidence interval for a binomial

experiment

In the example of the binomial experiment with two trials we showed that the

maximum likelihood estimator for the parameter indicating the probability of

success is the (sample) mean. This has three immediate consequences: First,

according to the law of large numbers, the maximum likelihood estimator ap-

proximates to the probability of success when the sample size increase. That

is, the maximum likelihood estimator approximates to the ”true value” of the

parameter of interest. Second, the expectation of the maximum likelihood

estimator is equal to the probability of success. We say that this estimator is

unbiased. The third consequence is that the maximum likelihood estimator is

approximately normally distributed, for samples with sufficiently large sizes.

This is an issue of the classic central limit theorem, a classic result of the

probability theory.

More precisely, the central limit theorem (for sequences of independent

and identically distributed random variables) says that: ”If X1, X2, . . . is

a sequence of independent and identical distributed random variables with

expectation µ and variance σ2 then∑n
i=1Xi − E (

∑n
i=1 Xi)√

Var (
∑n
i=1 Xi)

(2.16)

is approximately normal distributed with mean 0 and variance 1, for large

values of n. It is not difficult to see that the expression (2.16) is equivalent

to
√
n (x̄− µ)

σ
, (2.17)

where x̄ = 1/n
∑n
i=1 xi.

We can use this result to calculate an approximate confidence interval

for the parameter p as follows. Denote by Ȳ the mean of the n independent

results of the binomial experiment. Recall that the expectation and the

variance of each observation are p and p(1−p), respectively. Then, using the
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central limit theorem with (2.17) we obtain that, for each 0 < p < 1,
√
n (x̄− p)√
p(1− p)

is approximately normal distributed with mean 0 and variance 1. Replacing

the parameter p by the estimate x̄ we get the approximation 20

√
n (x̄− µ)√
x̄(1− x̄)

≈ N(0, 1) (2.18)

We will take advantage of the approximation 2.18 to construct a con-

fidence interval for p. That is, we will calculate an interval such that the

probability that the estimate p̂ = x̄ belongs to this interval is approximately

(greater or equal than) a pre-fixed value, say α.

The idea is to use here a procedure similar to the method used for the

calculation of the confidence interval for the expected value of the CEC in

the last section. The calculations will follow essentially the same steps, but

this time they will be approximated and not be exact as there. We want

to find an interval around the estimate p̂ = x̄ such that the probability of

the parameter p belong to the interval is approximately α, where α is a pre-

fixed ”high” value, typically 0.90 or 0.95. The interval can be written as

CI = [x̄− a, x̄ + a] for a suitable number a. Here a should be a function of

the sample (and of α) such that

P (p is in CI) ≈ α .

I claim that choosing a = z
(

1+α
2

) √
x̄(1−x̄)√
n

makes CI a confidence interval

with coverage α. The following sequence of calculations will prove this claim.

First,

P (x̄− a ≤ p) = P (x̄− p ≤ a) = P

 √
n√

x̄(1− x̄)
(x̄− p) ≤ z 1+α

2

 =
1 + α

2
.

20This is not the best approximation we can use here, but it yields a simple procedure

suitable for our purposes. We will give another approach that is more efficient.
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Therefore,

P (x̄− a > p) ≈ 1− 1 + α

2
=

1− α
2

.

Analogously,

P (x̄+ a < p) ≈ 1− α
2

.

Therefore,

P (p is not in CI) =
1− α

2
+

1− α
2

= 1− α

and we conclude that

P (p is in CI) = α .

A better approximate confidence intervals is[{
S + z2

α/2 − zα
√

[S(n− S)]/n+ z2
α/4

}
,
{
S + z2

α/2 + zα
√

[S(n− S)]/n+ z2
α/4

}]
,

where S = nx̄. The approximation sed in this interval is better than the

rough approximation used in (2.18), however the calculations involved a much

more complex and definitely not suitable to introduce the idea of confidence

intervals.

2.4 Hypotheses Tests

Here we will discuss the basic notion of hypotheses test. We will use a

relatively simple example to do that.

Example 7 (The Master Quiz Game) The so called ”Master Quiz Game”

is a game where there are three boxes, one of them containing a big check and

the other two boxes are empty. You choose one box, but before you open the

box the ”Master Quiz” (i.e., a person that knows where the check is and is di-

recting the game) says ”I give you a hint, the check is not here” and he opens

one of the remaining boxes, which (he know that) is empty. The Master-Quiz
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continues: ”Would you like to change and choose the other closed box?”.

Now the question is: Question: Is it advantageous to change? This question

typically generates controversy, but I would claim that in most of the cases

the answer presented is ”No, it does’t matter to change the boxes”. Now,

this answer is wrong; indeed there is a great advantage in changing the box,

although this is counterintuitive. I will not enter in the details of showing

this here (see exercise ??), but instead I have performed (together with stu-

dents in a course) an experiment in which the master Quiz game was played

several times, aways accepting the change of the box. The results of 112 of

those trials were the following:

0 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 1 0 0

1 1 1 0 1 1 1 0 0 1 1 0 1 0 1 1 0 1 0 0

1 1 1 1 0 0 0 1 1 1 0 1 1 1 1 1 1 1 1 0

1 0 1 1 1 1 0 1 1 0 1 1 1 0 1 1 1 1 0 1

0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1

1 1 0 0 1 1 0 1 1 0 1 0

Here a ”1” and ”0” indicates, respectively, that the player received (”suc-

cess”) or not (”failure”) the check in of the trials. That is, we observed 77

successes in 112 independent trials. It is natural to assume that the number

of successes in this experiment is binomially distributed. More precisely, if

X is a random variable representing the number of successes, then we say

that X ∼ Bi(112, p). Here p is the probability of ”success” in one trial (i.e.,

getting the check), which is a unknown parameter. From the previous discus-

sion, the maximum likelihood estimate of the parameter p is 77/112 = 0.6875.

The relevant question here is wether we have evidence that the probability of

success is different than 1/2 (if not, there would be no advantage in changing

the boxes). But, can this result be explained by mere random fluctuation?

We will build next a tool that allows to discuss this question: the so called

”hypotheses tests” or ”statistical hypotheses tests”.

Consider the following two hypotheses: p = 1/2 and p 6= 1/2. We will

denote these two possibilities by H0 : p = 1/2 and HA : p 6= 1/2 and call them
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the null hypothesis and the alternative hypothesis, respectively. Note that in

the way we formulated the two hypotheses there are only two possibilities:

whether the null hypothesis H0 is correct or the alternative HA is correct;

that is, if H0 is true, then HA is false, and if H0 is false, then HA is true,

and there are no other possibilities. We want to decide, on the basis of the

available data, which of these two hypotheses is correct. If H0 would be true,

then there would be no advantage in changing boxes.

The general idea of (statistical) hypotheses tests is to make a rule, based

on the available data (the results of the trials), to decide which of the two

hypotheses is correct. One possible type rule would be:

”Reject H0 when the relative frequency of successes is far from 1/2,”

which is intuitively reasonable. A possibility would be to allow the number of

successes to deviates only by one count of the number of successes from half

of the number of trials (i.e., 56), which yields the rule:

Rule 1: ”Reject H0 when the number of successes

is smaller than 55 or larger than 57 ”.

We call this rule a rejection rule. If we apply this rule to our data, we

would then reject the null hypothesis (since we observed 77 successes) and

conclude that our data provide evidence that it is not indifferent to change

the boxes. At this stage, it is natural to ask: what is the probability that this

decision is wrong? To answer this basic question we calculate the probability

of the number of successes, X, being smaller than 55 or larger than 57 when

p = 1/2 (i.e., under the null hypothesis). This probability can be calculated

as follows:

P (”Reject H0”) = P (X < 55 or X > 57) (2.19)

= P (X < 55) + P (X > 57)

= P (X = 0) + P (X = 1) + . . .+ P (X = 54) +

+P (X = 58) + P (X = 59) + . . .+ P (X = 112) .
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Here the second equality above comes from the fact that the events [X <

55] and [X > 57] are mutually exclusive. Each of the probabilities of the

last equality in (2.19) can be calculated using the distribution function of a

binomial distribution with size 112 and probability parameter 1/2, that is

P (X = x) =
x!

112!(112− x)!
(1/2)x(1− 1/2)112−x, (2.20)

for x = 0, 1, . . . , 112. Figure 2.12 displays these probabilities. Now, inserting

these probabilities in (2.19) yields that the probability of rejecting the null

hypothesis when the null hypothesis is in fact correct is approximately 0.777

(see the upper left panel in Figure 2.14).
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Figure 2.12: The probability function and the accumulated probability func-

tion of a binomial distribution of size 112 and probability parameter p = 1/2

(i.e., P (X = x) and P (X ≤ x), when X ∼ Bi(112, 1/2)).

According to the rule 1 above, we should reject the null hypothesis (H0 :

p = 1/2, since we observed 77 successes) and conclude that it is not indifferent

to change the boxes. On the other hand, the evidence we are presenting

against the null hypothesis is very weak, since with I high probability (0.777)

we would have rejected the null hypothesis when the null hypothesis is correct.
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In other words, the rule 1 above is too strict, only allows a deviation of one

success from what we would expect under the null hypothesis, and therefore

in the cases were a slightly larger deviation occurs we would reject the null

hypothesis even if the null hypothesis is correct. Therefore, we have to define

a new less strict rule. A way to do that is to use the following rejection rule:

Rule 2: ”Reject H0 when the number of successes

is smaller than 54 or larger than 58 ”.

That is, we accept deviations of at most two successes from the expected

number of successes when the hypothesised probability of success is 1/2. An

argument analogue to the calculation used in (2.19) yields (see the upper right

panel in Figure 2.14)

α = P (”Reject H0”) = P (X < 54 or X > 58) (2.21)

= P (X < 54) + P (X > 58)

= P (X = 0) + P (X = 1) + . . .+ P (X = 53) +

+P (X = 59) + . . .+ P (X = 112) ≈ 0.637 .

As expected, replacing the rejection rule by a less strict rule decreased the

probability of error type I, but this probability is still rather high.

The idea of hypotheses test is to construct a rejection rule such that the

probability of error type I is low, typically, taking a low pre-fixed value (e.g.,

α = 0.10, or 0.05, or 0.01)21. This construction is easy to be done in the

test we are discussing because by increasing the amount of allowd deviations

from the expected number of successes, we always decrease the probability of

error of type I (since we remove positive parcels from a sum analogue to the

sum in the last part of (2.20) or (2.21)). To see that, consider the following

general type of rejection rule:

General rule: ”Reject H0 when the number of successes

is smaller than 56− k or larger than 56 + k ”,
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Figure 2.13: Probability of error of type I (α) as a function of the number

of admitted deviations from the number of successes expected under the null

hypothesis (k). The horizontal interrupted line indicates the probability of

0.05.

where k is an integer number (between 1 and 55) representing the number

of deviations of the observed number of successes from the expected number

of successes that we admit before we reject the null hypothesis. Figure 2.13

displays the value of the probabilities of error type I (α) for each value of

k. Figure 2.14 displays the probabilities rejection rules and the probability

of error type I (α) for some choices of k. If we choose k equal to 10, the

probability of error type I becomes approximately 0.05 (in fact 0.047). Since

we observed 77 successes, we might say that ”we reject the null hypothesis

when using a test with significance level of 5%” (i.e., 0.05). Now, since

the probability of wrongly rejecting the null hypothesis is low when using the

rejection rule defined with k = 10, we say that we have a strong evidence

against the null hypothesis and we conclude that it does matter to change the

boxes in the Master Quiz game. If we increase even more the value of k, the

21Please, note that there is nothing special with the numbers 0.10, or 0.05, or 0.01, these

numbers are typically used in the literature just by an arbitrary convention.
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Figure 2.14: The probability function (i.e., P (X = x), when X ∼
Bi(112, 1/2)) with the rejection regions indicated (in black) for four different

rejections rules. The rejection rule obtained using the value k = 21 is the

smallest rejection region for which the null hypothesis is rejected when the

observed number of successes is 77. The probability of rejecting the null

hypothesis in this case is 8.98 .10−5, which is called the p-value of the test.
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probability of committing a type I error decreases even more (see Figure 2.13).

In this case, rejecting the null hypothesis would provide an even stronger evi-

dence against the null hypothesis and our conclusion would be more forceful.

One could then increase the value of k until we could still just reject the

null hypothesis. In the example in question this would correspond to take k

equal to 20 (using k = 21 would lead to the rule: ”reject the null hypothesis

when the number of successes is smaller than 56 − 21 = 35 or larger than

56 + 21 = 77”, and we would not reject the null hypothesis, taking k = 20

would yield the rule ”reject the null hypothesis when the number of successes

is smaller 36 or larger than 77, an we would still reject the null hypothesis).

Now, if we use a rejection rule constructed with k equal to 20, then the level

of significance (i.e., the probability of the type I error) is 8.98 10−5. This

probability is called the p-value for testing the null hypothesis. From the dis-

cussion below it is clear that the p-value indicates how strong the evidence

that the current result provides against the null hypothesis in the sense that

the smaller the p-value is, the stronger is the evidence against the null hy-

pothesis. Since 8.98 10−5 is small, we conclude that we have strong evidence

that it does matter to change boxes in the Master Quiz game.


