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Chapter 1

Basic notions of probability

theory

R.Labouriau 1

Draft - Please do not circulate. 2

1.1 Basic probability

1.1.1 A simple example

One of the simplest experiments is a trial with only two possible outcomes,

called binary trial. An example of binary trial is a game in which there are

two boxes, one containing an object and one empty. We do not have any

information on which box contains the object. The experiment consists in

choosing one of the boxes, opening it and verifying whether the object is

in the box or not. We say that the result of this experiment is a random

quantity because it is impossible to predict it with certainty.

Another classical example of binary trial is an experiment consisting on

tossing a coin and observing the result: head or tail. In principle, it would be
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possible to predict the result of such experiment, provided it is known with a

good precision a range of conditions at which the experiment was performed,

such as: the force used to throw the coin, the weight and the symmetry of

the coin, the magnitude of the air resistance, and so on. However, in practice

these conditions are not accessible and we must admit that it is not feasible

to calculate with certainty the result of such experiment. Therefore, we say

that the result of this experiment is random.

In both of the experiments described above we cannot predict exactly the

result, but we can still observe some regularity when we perform the experi-

ment sufficiently many times. The probabilistic and statistical tools we will

study will take advantage of this regularity in order to obtain information

about the phenomena we observe. For example, if we toss the coin many

times, the ratio between the number of times we observe a head and the

number of times the trial is performed, tend to stabilize around a certain

value. In other words, the relative frequencies of events approach a limit

when the number of trials increases. This suggests that there is an intrinsic

characteristic common to all the realizations of the experiment, the plausi-

bility of the event in play. Moreover, the limit of the relative frequency gives

a measure of how likely, or how probable, is an event. This limit is referred

as the probability of the event. 3

When discussing binary experiments it is convenient to call one of the

possible outcomes ”success” and the other ”failure”. Here the choice of what

is success and what is failure is completely arbitrary. The mathematical

structures that arises from one choice or another are absolutely equivalent.

This experiment will be called the basic binary trial. We speak of the prob-

ability of success, which we denote here by p, and the probability of failure

in the binary trial, say q. A little of reflection shows that the probability of

failure is equal to one minus the probability of success, i.e., q = 1− p.
Let us consider now a slightly more complex experiment. The experiment

3This is the so called frequencist notion of probability. There are other ways of defining

probability.
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consists in performing twice the basic binary trial with probability of success,

p, and then register how many times success is observed. Then there are

three possible results for the experiment: 0, 1 and 2. This experiment will be

referred as the binomial experiment. We will describe below how can this yet

simple experiment be modelled. The idea is to calculate the probability of

each of the possible outcomes of this experiment. This will illustrate several

key notions of the probability theory.

It is convenient at this stage to represent the outcome of the composed

experiment by a variable, say Y , taking the values 0, 1 or 2. Since the result

of the experiment occurs at random, the variable Y takes also its values

at random, i.e., it is not possible to predict completely the value that the

variable Y will take, before realizing the experiment. We call Y a random

variable. The event ”not observing any success” in our experiment is written

[Y = 0], the event event ”observing one success” is denoted by [Y = 1], etc.

The probability of the event [Y = 0] is denoted by P (Y = 0) and so on.

Let us determine the probability of each of the possible results of the

experiment described. First, we calculate the probability of [Y = 2]. Clearly

[Y = 2] occurs if and only if we observe success in both basic binary trials. We

know that the probability of success in each binary trial is p and, according to

the frequencist definition of probability, this number represents a limit which

the relative frequency approaches. Now we need to make some assumptions

that enable us to connect the probabilities of the two binary basic trials. Let

us assume that the results of the first binary basic trial does not influence at

all the result of the second basic binary trial 4 and vice-versa. In this case the

relative frequency of the event ”observing success in both binary basic trials”

is given by the product of the relative frequencies of observing a success in

the first and in the second basic binary trial. Therefore the relative frequency

of the event ”observing success in both binary basic trials” approaches the

product of the probability of observing success in the first and the second

basic trial. That is the probability of observing success in both basic trials is

4Think in the example of tossing a coin twice, would it then be a reasonable assumption?
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the product of the probability of observing success in each of the trials. Here

we come to an important notion. We say that two events are independent

when the probability of observing both events at the same time is the product

of the probabilities of each of the two events. We are then assuming that the

events ”observing a success in the first basic trial” and the event ”observing

a success in the second basic trial” are independent. Now it is easy to see

that the probability of Y = 2 is given by

P (Y = 2) =P (”success in the first trial”)·P (”success in the second trial”)

= p2.

A completely analogous argument can be used to conclude that

P (Y = 0) = (1− p)2 .

Now, the calculation of the probability of the of [Y = 1] requires a bit more

of argumentation, since this event can occur in two different ways: first if

one observes success in the first basic trial and failure in the second trial,

or secondly when one observes failure in the first basic trial and success in

the second. Let us call these two possibilities event A and B, respectively.

Clearly, using the argument of independency of the results of the two basic

binary trials, the probability of the event A is P (A) = p · (1 − p) and the

probability of event B is P (B) = (1 − p) · p = p · (1 − p). Now, the events

A and B are mutually exclusive, i.e., if A occurs then B does not occur and

vice-versa. We denote that A and B are mutually exclusive by A ∩ B = ∅.
We write A∪B for describing the event ”A occurs or B occurs”. Using again

the frequecist definition of probability as a limit of relative frequencies, it is

easy to see that the if the events A and B are mutually exclusive, then the

probability of A and B is the sum of the probability of A and the probability

of B. This can be written in symbols in the following way: if A ∩ B = ∅,
then P (A ∪ B) = P (A) + P (B). Applying this principle to the calculation

of P (Y = 1) we obtain

P (Y = 1) = P (A ∪B) = P (A) + P (B) = 2p(1− p) .
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Optional reading We give now an instructive alternative way to calculate

P (Y = 1). Given an event, say C, its complementary event is the event

”not occurring C ”, which is denoted Cc. The reader is invited to use our

frequencist definition of probability to argument that the probability of the

complement of an event C is equal to one minus the probability of C, i.e.,

P (Cc) = 1− P (C) .

It is not difficult to see that the event [Y = 1] is equal to the complementary

of the event ”[Y = 0] and [Y = 2]”, i.e.,

[Y = 1] = {[Y = 0] ∪ [Y = 2]}c .

Moreover, the events[Y = 0] and [Y = 2] are mutually exclusive. Therefore,

the probability of [Y = 1] is given by

P (Y = 1) = P ({[Y = 0] ∪ [Y = 2]}c) = 1− P ([Y = 0] ∪ [Y = 2])

= 1− (P (Y = 0) + P (Y = 2)) = 1− p2 − (1− p)2

= 2p(1− p) .

1.1.2 Another simple example with continuous vari-

able

Let us consider another simple example of experiment with random results.

Suppose that we perform the following experiment: one person places an

object in a path between two locations. We dispose of no additional infor-

mation about the position where the object is placed apart from the fact

that the person has no special preference for the position of the object. The

result of the experiment is the position of the object. Clearly, we cannot pre-

dict precisely the position of the object before the experiment is performed,

therefore we say that the result of the experiment is a random quantity.

To simplify matters let us assume that the path has length one. The

outcome of the experiment can be represented by a variable, say X, taking
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values at random in the interval [0, 1] (i.e., the set of numbers between 0

and 1). The typical question here is: What is the chance that the selected

point lies in a certain region of the interval [0, 1]? For example, what is the

chance that the point lies between 0 and 1/2? It is intuitively clear that, if

all the regions of the regions of the intervals are equiprobable, then repeating

the experiment many times, the chosen point will lie between 0 and 1/2 in

approximately one half of the cases. That is, the relative frequency of the

event ”the chosen points lies between 0 and 1/2” approaches 1/2. As before,

we say that the probability of the event ”the chosen points lies between 0

and 1/2” is 1/2. Using a analog rationale we conclude that, if the region

is one interval contained in [0, 1], say [a, b] (with 0 ≤ a < b ≤ 1), then the

probability that the chosen point is contained in [a, b] is the length of this

interval, i.e., b− a. Now, if two intervals are disjoint (i.e., have no elements

in common), then the events ”the point is contained in the first interval”

and ”the point is contained in the second interval” are mutually exclusive.

Therefore the probability of the event ”the point is contained in the first

interval or in the second interval” is the sum of the probability of the event

”the point is contained in the first interval” and the probability of the event

”the point is contained in the second interval”. That is, the sum of the length

of the two intervals. If we have an enumerable collection of disjoint intervals,

say I1, I2, . . ., the probability of the union of all the intervals, is the sum (i.e.,

the series) of the length of the intervals in the collection. Moreover, it is easy

to see that the probability of the complement of an interval is one minus the

length of the interval. Using these properties we can calculate the probability

of many regions in the interval [0, 1]. The law of probability associated with

this experiment is called the uniform distribution (on the interval [0, 1]).

1.1.3 The basic probabilistic model

In this section we collect together and generalise some of the results obtained

for the two simple particular examples studied above.

The first step in the construction of a mathematical model for experi-
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ments with random results is to identify the set of all possible results of the

experiment. This set is called the sample space and we denote it by Ω. For

example, in the case of the binary trial the sample space was a set with two

elements (termed ”success” and ”failure”). The sample space of the example

of continuous variable was the interval [0, 1].

The next step in the construction is to determine the class of events

to which we will attribute probability. For example, in the experiment of

choosing a point in the interval [0, 1] the events are the intervals contained in

[0, 1], their complements and the (enumerable) union of intervals. Next we

defined a probability of each event as the limit of the relative frequency of

the event obtained by a large number of repetitions of the experiment. Using

this frequencist notion of probability we could justify the following properties

of the probabilities:

1. Given an event A, its probability is a positive number, i.e., P (A) ≥ 0;

2. The probability of the sample space is one, i.e., P (Ω) = 1;

3. Given a sequence of mutually exclusive (disjoint) events, say A1, A2, . . .,

the probability that one of the events occurs is the sum of the proba-

bility of each of the events, i.e. P (A1∪A2∪ . . .) = P (A1)+P (A2)+ . . ..

These three intuitive properties were used by Kolmogorov as axioms for defin-

ing formally a probability. Indeed, it is possible to construct the whole theory

of probability using only the three axioms listed above (and the notion of in-

dependency). 5

We defined now the important notion of independency. Two events, say A

and B, are independent if the probability that A and B occurs is the product

of the probability of A and the probability of B, i.e., P (A∩B) = P (A)·P (B).

5See the exercise 1.1.
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1.1.4 Random variables

The results of a probabilistic experiment as described before are usually

registered by mean of a variable taking values at random, called a random

variable. For example the random variables Y and X were used to describe

the binomial experiment and the continuous variable example above. Using

the close correspondence between the results of the probabilistic experiment

and the associated random variable, it is possible to establish what is the

probability of a random variable assumes a certain value or take values in a

certain region. That is, we can attribute a probability law or distribution to

random variables.

The way to describe the distribution of a random variable differs slightly

according to the type of the variable. A random variable taking values in

an countable set6 is called a discrete random variable (e.g., Y , is the results

of counting something). In this case the law of probability of the random

variable is described by a function that associates each possible value of the

random variable with its probability. This function is called the probability

function of the random variable. For example, in the binomial experiment

the probability function is given by, for each possible value t,

fY (t) = P (Y = t)


p2 , if t = 2,

2p(1− p) , if t = 1,

(1− p)2 , if t = 0 .

(1.1)

A random variable X is called absolutely continuous or simply continuous

if there is a function f taking positive values (i.e., f(x) ≥ 0, for each x) such

that, for each real number x,

P (X ≤ x) =
∫ x

−∞
f(x)dx . (1.2)

For the reader not acquainted with the integration, the right hand sign in

the expression above is the area between the graph of the function f and the

6A countable set is a set is finite or can be enumerated; e.g., the set 1, 2, 3, . . . is

enumerable but the set of the real numbers is not (you cannot count them).



Rodrigo Labouriau - Draft 9

horizontal axis, measured up to the point x. The function f is called the

probability density of X, or in short the density of X.

In the example of the uniform distribution (i.e., the example on continu-

ous variable) the probability density of the random variable Y is the function

f(y) =

 1 , if 0 ≤ y ≤ 1 ;

0 , otherwise.

The calculation of the probability of Y takes a value between 0 and 1/2 can

be alternatively calculated in the following way:

P ([0 ≤ Y ≤ 1/2]) = P ([Y ≤ 1/2]) =
∫ 1/2

−∞
f(y)dy =

∫ 1/2

−∞
dy = 1/2 .

Now, changing the form of the density, the law of probability changes

also. Here there are two restrictions: the density function should assume

only non-negative values and should integrate 1 (that is, the area between

the graph of the density and the horizontal axis should be 1).

Another important function related to the law of probability of a random

variable X is the (cumulative) distribution function,say F , which associates

to each real number x the probability that the random variable X is less or

equal to x. In symbols, for each x,

F (x) = P (X ≤ x) .

It can be shown that (but we will not do that here!) the distribution function

of a random variable characterizes its distribution.

It is possible to define the notion of independency of two random variables

in a somehow similar way as we did for the independency of events. This

is a very important notion because several forms of independency of the

observations will be a customary assumption in the models that we will study.

The intuitive idea behind the notion of independency is that, if the knowledge

of the value taken by a random variable does not affect the distribution of

another random variable, then they are independent. Formally we say that
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the random variables X and Y are independent when, for each par of numbers

x and y,

P (X ≤ x and Y ≤ y) = P (X ≤ x) · P (Y ≤ y) .

That is, the event ”X is less or equal x” is independent of the event ”Y is

less or equal y”, for each x and each y.

1.1.5 Expectation and variance of random variables

In this section we briefly present the notions of expectation and variance of

a random variable.

The idea of expectation can be easily understood for discrete variables

taking a finite number of values. Suppose that X is a random variable

taking n values, x1, x2, . . . , xn, with probabilities p1, p2, . . . , pn, respectively.

The expectation or expected value of X is the sum of the possible values of

X multiplied by their probabilities. We use the symbol E(X) to denote the

expectation of X and write

E(X) = p1x1 + p2x2 + . . .+ pnxn .

The expectation can be interpreted in the view of the intuitive frequencist

approach in the following way: If the random variable X represents the

result of an experiment, suppose that we (at least hypothetically) repeat

independently the experiment r times, obtaining many values for the random

variable X. If the number of repetitions r is very large, then the variable

X will take a value xi with relative frequency approximately equal to the

probability of the result xi, say pi. That is, xi will appear approximately

rpi times in the r observations. Therefore, the mean value of the observed

results in the r repetitions will be approximately

1

r
(rp1x1 + rp2x2 + . . .+ rpnxn) = (p1x1 + p2x2 + . . .+ pnxn) ,

which is the expectation of X. In other words, the mean value of the re-

sults obtained in r hypothetical independent repetitions of the experiment
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approaches the number E(X), as r increases. This is a rough version of the

law of large numbers, a classic result of the probability theory7.

In the example of the binary trial the random variable X takes the values

0 and 1 with probabilities (1− p) and p, respectively. The expectation of X

is then

E(X) = (1− p)0 + p1 = p .

In the example of the binomial variable X, taking the values 0, 1, and 2 with

probabilities (1− p)2, 2p(1− p) and p2, the expectation is

E(X) = (1− p)20 + 2p(1− p)1 + p22 = 2p .

In the case of a continuous variable Y with probability density f the

expectation is given by

E(Y ) =
∫ ∞
−∞

yf(y)dy .

The law of large numbers is (under very general assumptions) also valid for

continuous variables. Therefore, we have essentially the same interpretation

of the expectation for continuous variables. It must be remarked, however,

that it is not always that the expectation exists. There are examples of

random variables without expectation, i.e., for which the integral or the

series involved in the definition of expectation is not convergent.

There is another intuitive interpretation of the expectation. This comes

from an analogy with the mechanics. Indeed, the integral used in the def-

inition of expectation is analogue to the centre of mass of a body with the

distribution of masses described by the probability density function (see Fig-

ure 1.1).

In the example of the uniform distribution the expectation is calculated

as follows:

E(Y ) =
∫ ∞
−∞

yf(y)dy =
∫ 1

0
ydy =

y2

2

∣∣∣10 =
1

2
.

7Note that we only gave an informal intuitive argument here. It is possible to define

the law of large numbers precisely and to prove that as a real theorem.
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Figure 1.1: Analogy between the expectation and the centre of mass. Above,

a discrete variable taking values 0, 1, . . . , 6; imagine that masses were put in a

bar at the positions 0, 1, . . . , 6 proportional to the probability of observing the

corresponding value; since the distribution is symmetric around the value 3,

the bar will be in balance if we put a keel beneath the position corresponding

to the value 3 (which plays the rule of the expectation). Middle, a continuous

distribution symmetric around 3; imagine that a would shape is constructed

with the form of the graph of the density; to keep the shape balanced a

keel should be placed beneath the position corresponding to the value 3 (the

expectation). Below, a continuous asymmetric distribution; the keel should

be placed in a position such that the shape is kept in balance.
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Using the analogy with mechanics, it is clear that 1/2 is the center of mass

of a body with mass uniformly distributed in the interval [0, 1].

The expectation has the following basic properties:

1. If the random variable X is equal to a constant c with probability 1,

then E(X) = c ;

2. If X and Y are random variables (with expectation well defined) and

a, b are constants, then E(aX + bY ) = aE(X) + bE(Y );

3. If X and Y are random variables (with expectation well defined) such

that X ≤ Y with probability 1, then E(X) ≤ E(Y ).

4. (Jensens inequality) If φ is a convex real function and X is a random

variable with finite expectation, then

E {φ(X)} ≥ φ {E(X)} .

The notion of variance The expectation gives an idea of the position

of a central value of the random variable. We introduce next the notion of

variance, which will give an idea of how much disperse are the values of the

random variable. The variance of a random variable X is defined by

Var(X) = E {X − E(X)}2 = E(X2)− {E(X)}2 .

Clearly, {X − E(X)}2 is a measure of the distance between the random vari-

able X and its expectation. Therefore, the expected value of this distance,

i.e., the variance, is a measure of the dispersion of the data around its ex-

pected value. The larger is the variance the more disperse is the data.

The variance of the binary variable X taking values 0 and 1 with proba-

bilities (1.p) and p is

Var(X) = E {X − E(X)}2 = E {X − p}2 = . . . = E(X2)− p2 .

To complete the calculation above we must compute the expectation of the

random variable X2. Note that X2 = X, since X takes only the values 0
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and 1. Therefore E(X2) = E(X). Replacing that in the last equation yields

Var(X) = E(X2)− p2 = p− p2 = p(1− p) .

In the case of the uniform variable Y the variance can be calculated in

the following way

Var(Y ) =
∫ ∞
−∞

(y − E(Y ))2f(y)dy =
∫ 1

0
(y − 1/2)2dy = . . . =

1

12
.

The variance has the following basic properties:

1. If the random variable X is equal to a constant with probability 1, then

Var(X) = 0;

2. If the random variable X has finite variance and b is a constant, then

Var(bX) = b2Var(X);

3. If the random variables X and Y are independent, then Var(X +Y ) =

Var(X) + Var(Y ).

1.2 Probability distributions

We consider next some useful examples of probability distributions. The

distributions described below will depend on some parameters. That is,

there will be a list of numbers, called parameters (typically one or two), such

that for each combination of values of them, there will correspond one (and

only one) distribution. The most famous example is the normal distribution,

which is determined by two parameters: the mean and the variance (note that

one could have used other parametrizations!). We say that a collection of

distributions indexed by a set of parameters is a family of distributions. One

should say then ”the family of the normal distributions” when talking about

the normal distributions in general and ”the normal distribution with mean

0 and variance 1” when talking about this specific distribution. However,

it is a common abuse of language to say ”the normal distribution” when
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talking about the whole family of normal distributions. Since there are only

little chances for confusion we will adopt this abuse of language and write

”the binomial distribution”, ”the Poisson distribution” and so on.

1.2.1 Some common key distributions

The next examples will be families of distributions sharing some mathemati-

cal properties that will characterize them as ”exponential dispersion models”.

We adopt a reversed order here presenting first the examples and defining

what we mean by exponential dispersion models in the next section (which

is an optional reading).

The binomial distribution The binomial distribution is related to

the experiment: perform independently n times a basic binary trial with

probability p of success. The distribution of the number of successes, say X,

is a random variable distributed according to a binomial distribution. The

binomial distribution is discrete (taking the values 0,1, . . . ,n) and depends

on two parameters: n and p. The probability function of X is given by

P (X = x) =

 n

x

 px(1− p)n−x

=
n!

x!(n− x)!
px(1− p)n−x , for x = 0, 1, . . . , n .

Here n!
x!(n−x)! is the number of subsets with x elements of a set with n elements,

called the binomial coefficient. It is customary to write X ∼ Bi(n, p), when

the random variable X is binomially distributed with parameters n and p.

It is not difficult to show that if X ∼ Bi(n, p), then the expectation and the

variance of X are

E(X) = n p and Var(X) = n p (1− p) .

Models based on the binomial distribution will be studied in chapter ??.



16 Chapter 1 - Lecture Notes on Basic Statistical Analysis - Draft

The Poisson distribution The Poisson distribution is a discrete dis-

tribution taking non-negative integer values (i.e., 0,1,2,3, ...). Many models

for counting are based on the Poisson distribution. The probability function

of a random variable X depends on one parameter, λ > 0, and is given by

P (X = x) =
e−λλx

x!
, for x = 0, 1, 2, . . . .

We write X ∼ Po(λ) when X is Poisson distributed with parameter λ. The

expectation and the variance of a Poisson distributed random variable are

both equal to the parameter λ, i.e., if X ∼ Po(λ), then

E(X) = Var(X) = λ .

Models based on the Poisson distribution will be studied in chapter ??.

The normal distribution The normal distributions constitute, with

no doubt, the most famous family of distributions. It is a family of continuous

distribution depending on two parameters, µ and σ2 and probability density

given by, for each real number x,

φ(x;µ, σ2) =
1

σ
√

2π
exp

{
−(x− µ)2

2σ2

}
.

Here µ is a real number and σ is a positive number (σ > 0). If a random

variable X is normally distributed with parameters µ and σ2, we write X ∼
N(µ, σ2) and in this case X has expectation and variance given by

E(X) = µ and Var(X) = σ2 .

Some models based on the Normal distribution will be studied in chapter ??.

The gamma distribution* The gamma distribution is a continuous

distribution useful for analyzing non-negative data. The family of the gamma

distribution is indexed by two indices, µ and λ, both positive. The density

of a gamma distributed variable X with is given by

f(x;µ, λ) =
1

Γ(λ)

(
λ

µ

)
xλ−1 exp

(
−λ
µ
x

)
for x ≥ 0 .
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The mean and the variance of the a gamma distributed random variable X

with parameters µ and λ are

E(X) = µ and Var(X) =
µ2

λ
.

The parameter µ is usually called the mean parameter. On the other hand,

the parameter λ is called the shape parameter, since the form of the density

depends on µ. Indeed, if 0 < λ < 1, then the density decreases as x increases

and increases indefinitely as x tends to zero (see Figure ??). If λ = 0, the

distribution is called the exponential distribution (do not misunderstand with

the exponential family!) and the density decreases as x increases. If λ > 1

then the density takes the value 0 at x = 0 is positive skewed and has mode

(ie. the assumes its highest value) at x = µ− µ/λ. The density approaches

the density of a normal distribution when λ tends to infinity.

Figure 1.2: Probability density of a gamma distribution with µ = 1 and

λ = 0.5, 1, 3 and 10.

The inverse gaussian distribution * Another example of family pos-

itive continuous distribution are the inverse gaussian distributions. These

distributions appear in physics as the distributions for the time for a ran-

dom walk hits a barrier. They have been used for modelling particle move-

ments, survival times, duration of strikes, pharmaco-kinetic and remote sens-

ing studies, etc. The inverse gaussian distributions have a probability density



18 Chapter 1 - Lecture Notes on Basic Statistical Analysis - Draft

depending on two parameters µ and λ given by

f(x;µ, λ) =

√
λ

2πx3
exp

{
−λ(x− µ)2

2µ2x

}
, for x ≥ 0 .

Figure 1.3 shows the form of the density of inverse gaussian distributions

with different values of the parameter λ. The mean and the variance of the

a inverse gaussian distributed random variable X with parameters µ and λ

are

E(X) = µ and Var(X) =
µ3

λ
.

The distribution of a random variable following an inverse gaussian distri-

bution with parameters µ and λ approximates the normal distribution with

mean µ and variance µ3/λ, when λ increases.

Figure 1.3: Probability density of an inverse gaussian distribution with µ = 1

and λ = 1, 3 and 15 (from left to right).

1.2.2 Exponential dispersion models *

8

In the following we study the notion of exponential dispersion models.

They are special families of distributions that have nice properties and that

8Optional section. Can be skipped in a first reading.



Rodrigo Labouriau - Draft 19

will be the basis for generalized linear models. A family of distributions

indexed by two parameters, θ in Θ and λ in Λ for which the probability

density or the probability function can be written in the form

f(x; θ, λ) = exp [λ {xθ − b(θ)− c(x, λ)}] , (1.3)

is called an exponential dispersion model. Here b and c are suitable functions,

λ is a positive real number and θ is a real number. There are many examples

of exponential dispersion models, among them all the families of distributions

considered in the last section.

We write X ∼ ED(θ, λ) to denote that the random variable X follows a

distribution contained in an exponential dispersion model, which is specified

by the parameters θ and λ. It can be shown that if X ∼ ED(θ, λ), then its

expectation and variance are given by

E(X) = b′(θ) and Var(X) =
b′′(θ)

λ
.

Here, b′(θ) and b′′(θ) are the first and the second derivative of the function b

at the point θ, respectively.

Since the derivative of the function b′(θ) (i.e. b′′(θ)) is proportional to

the variance of X, which in turn is a positive quantity, we conclude that

the function b′ is monotone and has an inverse, say u = {b′}−1. That is,

u{b′(θ))} = θ (for each θ) and b′{u(µ)} = µ. In other words, there is a

one-to-one correspondence between θ and the expected value of a random

variable X ∼ ED(θ, λ). Let us denote the expectation of X by µ.

The function V (µ) = b′′ [{b′}−1(µ)] = b′′ {u(µ)} is called the variance

function. This function plays a fundamental role in the theory of exponential

dispersion models, as will be clear from the following.

It will be convenient to introduce a new parametrization of the family of

distributions ED(θ, λ) by using the parameters µ = u(θ) and σ2 = 1
λ
. Doing

so we can express the expectation and the variance of X ∼ ED(θ, λ) as

E(X) = µ and Var(X) = σ2V (µ) .
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Natural Scale Distributions

Family Symbol parameter parameter support

Binomial Bi(n, p) log(p/1− p) 1 {0, 1, . . . , n}
Poisson Po(λ) log(λ) 1 {0, 1, . . .}
Normal N(µ, σ2) µ σ2 R

Gamma Ga(µ, λ) −µ−1 λ−1 R+

Inv.Gauss. IG(µ, λ) −(2µ2)−1 λ−1 R+

Family b(θ) µ V (µ)

Binomial n log(1 + eθ) neθ/(1 + eθ) n−1µ(n− µ)

Poisson eθ eθ µ

Normal θ2/2 θ 1

Gamma − log(−θ) −θ−1 µ2

Inv.Gauss. −(−2θ)1/2 −1/θ1/2 µ3

Table 1.1: Basic characteristics of some standard exponential dispersion mod-

els.

Note that with this new parametrization the relation between the parameters

and the expectation and the variance of X is very clear. The expectation

is the parameter µ and the variance is proportional to the variance func-

tion applied to the parameter µ, the constant of proportionality being the

parameter σ2. The parameters µ and σ2 are called the mean and the scale

parameters, respectively.

It can be shown that the variance function characterizes the exponen-

tial dispersion model, i.e., if V is the variance function for an exponential

dispersion model, then there is no other exponential dispersion models with

the same variance function. The main quantities related with some classic

exponential dispersion models are given in Table 1.1.
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1.2.3 Distributions derived from the normal

We will use very often three families of distributions that are related to the

normal distribution: the chi-square, the F and t distribution. They will be

used in the construction of confidence intervals and in many tests. Therefore

we briefly review the definitions and very basic properties of them.

The chi-square distribution Suppose that X is a random variable

following the normal distribution with mean 0 and variance 1. The random

variable X2 is positive valued with asymmetric distribution. This distribu-

tion is called the chi-square distribution with 1 degree of freedom. It can be

shown that the expectation and the variance of a chi-square distribution with

1 degree of freedom are 1 and 2, respectively.

Now, suppose that X1, . . . , Xν are ν independent random variables each

of them distributed according to a normal distribution with mean 0 and

variance 1. The distribution of the of the sum of the squares of X1, . . . , Xν ,

i.e., X2
1 + . . . + X2

ν , is called the chi-square distribution with ν degree of

freedom. This distribution is obviously positive, asymmetric and has mean

ν and variance 2ν (why?). The chi-square distribution with ν degrees of

freedom has density function given by

f(x; ν) =
1

2
n
2 Γ(n

2
)
x

n
2
−1 exp

(
−nx

2

)
, for x ≥ 0 .

As ν tends to infinity (i.e. increases unlimited) the chi-square distribution

tends to the normal distribution. This tendency is, however, very slow. A

better approximation is: If Z is a chi-squared distributed random variable

with ν degrees of freedom, then (Z/ν)1/3 is approximately normal distributed

with mean 1− 2/(9ν) and variance 2/(9ν), for large values of ν (see Kendall

and Stuart, 1977, pp 399).

The F distribution Suppose that X1 and X2 are two independent

random variables. Moreover, X1 is assumed to be distributed according to a
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chi-square distribution with n degrees of freedom and X2 is chi-square dis-

tributed with m degrees of freedom. The distribution of the random variable

X1/n

X2/m

is said to be the F distribution with n and m degrees of freedom.

The t distribution Suppose that X is a random variable distributed

according to a chi-square distribution with n degrees of freedom and Z is a

random variable normally distributed with mean zero and variance 1. As-

sume, moreover that X and Z are independent. Then, the distribution of

the random variable

Z√
X/n

is said to be a t distribution with n degrees of freedom.

1.3 Some fundamental results in probability

theory

Here we briefly discuss two general results of the probability theory: the law

of large numbers and the central limit theorem.

1.3.1 Law of large numbers

The idea of the law of large numbers was already mentioned when we dis-

cussed the frequencist definition of probability. A rough form of the law of

large numbers says that, if we repeat independently many times an experi-

ment generating the same random variable, then the mean of the observed

values approximates the expectation of the random variable.

We make the above statement of the law of large number above more pre-

cise. Suppose that X1, X2, . . . is a sequence of random variables independent
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and following the same distribution. We say that these random variables are

independent and identically distributed (and some times denote that by iid).

The Kolmogorov law of large numbers says that if X1 has finite expectation

µ (and hence the other random variables also have the same expectation)

then with probability 1 the sequence of means converge to the expectation

µ, i.e.

X1 + . . .+Xn

n
−→ µ (1.4)

as n→∞ (i.e. as n increases arbitrarily).

The law of large numbers can be proved from the axioms of the prob-

ability, without using the simplified frequencist approach we used to define

probability intuitively. 9. On the other hand the frequencist interpretation

of the notion of probability is a consequence of the law of large numbers. To

see that consider the case where the random variables X1, X2, . . . are bino-

mially distributed with X1 ∼ Bi(1, p). In this case the expectation of each

of the variables is E(X1) = 1.p = p. Moreover, since the nth variable, Xn,

of the binomial variables above takes the value 1 if the nth binomial trial

is successful and 0 otherwise, then the sum X1 + . . . + Xn is equal to the

number of successes occurred in the first n binomial trials. Therefore, the

left hand side of (1.4) is equal to the relative frequency of success in the first

n trials, and the right hand side of (1.4) is the probability p of success in

one trial. We conclude that the law of large numbers imply that the relative

frequency of independent identical trials approximates to the probability of

occurrence of an event with probability 1. A slightly weaker version of the

law of large number for binomial trials 10 was published by one of the mem-

bers of the Bernoulli family in the Ars Conjectandi in 1713. A stronger form

of the law of large numbers, close to the version presented here was proved by

Kolmogorov. There are other versions of the law of large numbers using less

restrictive assumptions that can be used for approximations in more general

contexts.
9This is far beyond the mathematical level of this text.

10Using a different form of convergence called convergence in probability.
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1.3.2 Central limit theorem

The central limit theorem is another useful general approximation result of

the theory of probability. Essentially this theorem says that under certain

special circumstances the sum of random variables after a proper standard-

ization follow approximately a standard normal distribution. One of the

(many) versions of the central limit theorem states that if X1, X2, . . . are in-

dependent and identically distributed random variables for which E(X1) = µ

and V ar(X1) = σ2, where 0 < σ2 < ∞ (i.e. the variances are not zero and

are not infinite), then

X1 + . . .+Xn − nµ
σ
√
n

follows approximately a standard normal distribution (i.e. N(0, 1)), for n

sufficiently large.

There other versions of the central limit theorem that use less restrictive

hypotheses. The first version of the central limit theorem was proved first

by De Moivre for binomial essays, latter Gauss proved the famous version

of the central limit theorem for distribution of errors in measurements. The

central limit theorem has been used, and misused in some cases, to justify

the use of statistical models based on the normal distribution.

1.4 Exercises

Exercise 1.1 The following properties of the probabilities were used by Kol-

mogorovas axioms to formally define probability:

1. Axiom 1: Given an event A, its probability is a positive number, i.e.,

P (A) ≥ 0;

2. Axiom 2: The probability of the sample space is one, i.e., P (Ω) = 1;

3. Axiom 3: Given a sequence of mutually exclusive (disjoint) events,

say A1, A2, . . ., the probability that one of the events occurs is the sum
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of the probability of each of the events, i.e. P (A1∪A2∪ . . .) = P (A1)+

P (A2) + . . ..

1- Please, give a justification of the three axioms of probability in terms

of the (informal) frequencist definition of probability.

2- Show, using the axioms of probability that the probability of the comple-

mentary of an event is given by one minus the probability of the event,

i.e., P (Ac) = 1− P (A).

Exercise 1.2 Consider the simple experiment:”Toss a fair dice and observe

the result”.

1- If the event A is ”observe a 5 or a 6”, what is Ac? What is the proba-

bility of A and of Ac?

2- Define the events

B = ”observe a 6”

C = ”observe an odd number” and

D = ”observe an even number”.

Which pairs of these events are mutually exclusive? What is P (B),

P (C), P (D) and P (B or C)?

3- What is the probability of flipping a fair dice four times in a row and

get a 6 each time?

Exercise 1.3 A simple experiment was performed by throwing two dices.

The result of throwing the first dice and the second dice are represented by

the random variables X and Y respectively. You may assume X and Y to be

independent.

1- What is the probability that X is an odd number? What is the proba-

bility that X and Y are both odd numbers? Justify your calculations.

2- Calculate the expectation and the variance of X (i.e., E(X) and V ar(X)).
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3- Calculate the expectation and the variance of the sum of X and Y (i.e.,

E(X + Y ) and V ar(X + Y )). Justify your calculations.

4- Calculate the expectation and the variance of 2X + Y .

Exercise 1.4 Here we analyse the results of an experiment involving the

height of maize plants. Two measurements were made per plant and anal-

ysed separately: 1) the height from the ground to the first leave insertion H1

and the distance between the first leave insertion and the plant apice H2, both

expressed in centimetres. From the analyses used the expected value of the

variables H1 and H2 were estimated to be 89.2 and 38.2, respectively. More-

over, the variance of H1 and H2 were estimated to be 2 and 1 respectively.

1- After analysing the data and reported the analyses in a manuscript

subject to publication one of the reviewer asked to express the measure-

ments in millimetres (instead of centimetres). What would be then the

estimates of the expected values and the variances when you convert to

H1 and H2 to millimetres?

2- A second (nasty) reviewer asked you to estimate the expected value of

the plant height (i.e., H1 +H2). What would be your estimate?

3- 11 You estimated also the covariance between H1 and H2 as 1.5 (in the

original scale in cm). Assuming that the covariance between H1 and

H2 is 1.5, what would be then the variance of plat height (expressed in

cm and expressed in mm)?

(Hint: V ar(X + Y ) = V ar(X) + V ar(Y ) + 2Cov(X, Y ))

Exercise 1.5 In this exercise we consider the number of worms found in a

portion of one cubic decimetre of soil (1l). The number of worms encountered

in a portion of soil was in mean 3.

1- Is it reasonable to assume that the number of worms per portion of soil

is Poisson distributed?
11Optional item.
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2- Assuming the number of worms per litre of soil to be Poisson distributed

with expectation 3, what is the probability of observing no worms in a

portion of 1l of soil? What is the probability of observing exactly one

worm in a portion of 1l of soil? What is the probability of observing

more than five worms in a portion of 1l of soil?

3- What is the distribution of the number of worms per cubic metre of

soil?

4- What is the probability of finding no worms a cubic metre of soil?

5- Simulate an experiment where 30 independent repeated counts of the

number of worms per litter of soil are performed (with different mean

numbers of worms per litre of soil, say 1, 2 and 3 worms per litre).

Calculate then the sample mean and the sample variance. Make a nor-

mal Q-Q-plot of the counts. Now, simulate the same experiment were

the number of worms per cubic meter is counted. Calculate the sample

mean and the sample variance and draw a Q-Q normal plot. (Hint:

rpois(n= 30, lambda=1 ) simulates 30 samples from a Poisson distri-

bution with parameter intensity λ = 1).

Exercise 1.6 In this exercise, we discuss a modelling problem that arises

from cell culture. Suppose that we want to produce mono-clonal tissues (i.e.,

a tissue that arises from the multiplication of one single cell). A standard

technique to do that is to prepare a suspension of the cells, place a small

aliquot of this suspension in an incubation plate were a tissue is formed after

cultivation. Here the hope is that if the suspension is diluted enough (i.e.,

has only a small number of cells per unit of volume), then probably the tissue

formed will be mono-clonal. Note that after cultivation of several plates one

typically get a number of empty plates (the transferred aliquot did not con-

tain any cells) and some plates containing a tissue (the transferred aliquot

contained at least one cell). The plates containing tissue and the plates with-

out tissue will be termed ”positive-tested” and ”negative-tested” respectively.
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Normally, it is not possible to distinguish whether a single cell or more than

one cell formed the tissue in a positive-tested plate; so we cannot claim with

certainty whether a positive-tested plate produced mono-clonal a tissue or not.

It is therefore of interest to determine the probability that a positive-tested

plate received more than one cell.

In an experiment it was reported that 17 plates were tested positive out

of 96 plates (from an array of 12x8 plates). It might be argued that (see

exercise ?? in chapter 4) the number of cells transferred to the plate is

Poisson distributed and that the intensity parameter is reasonably estimated

to be λ̂ = − log(79/96) ≈ 0.1949, which we will assume for the rest of the

exercise.

1- What is the probability of having transferred no cells to the plate?

2- What is the probability of having transferred exactly one cell to the

plate?

3- What is the probability of having transferred more than one cell to the

plate?

4- If you repeat the experiment 96 times (using an array of 12x8 plates),

what would be the expected number of plates with mono-clonal tissues?

What would be the expected number of plates with tissues formed by

more than one cell (ı.e. positive-tested but with not mono-clonal tis-

sue)?

Exercise 1.7 This exercise regards some basic calculations using the normal

distribution. The weights (dry matter) of plants of Amaranthus cruentus

(a type of Amaranth used for alimentation) were determined for 100 plants

placed far away for each other in a homogeneous cultivation field.

1- The figure displays a histogram and a normal Q-Q plot of the 100 ob-

served weights. Is it reasonable to assume that the data is normally

distributed?
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2- A descriptive summary of the 100 observations is given below

Min. 1st Qu. Median Mean 3rd Qu. Max. Variance

3.268 8.431 9.864 10.170 11.740 25.000 7.832

After some analyses of the data it was identified that the first observa-

tion presents a value of 25 (the maximum). After removing the first
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observation the histogram and the normal Q-Q-plot of the other 99 val-

ues is displayed below.

Normal Q−Q plot
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A descriptive summary of the 99 observations (eliminating the first

observation) is given below

Min. 1st Qu. Median Mean 3rd Qu. Max. Variance

3.268 8.423 9.832 10.020 11.700 16.010 5.644

Why the variance became smaller? Is it reasonable to assume this data

to be normally distributed?

3- Assuming the data to be normally distributed with expectation 10.020

and variance 5.644 (i.e. equal to the sample mean and sample variance

obtained after eliminating the first observation), what is the probabil-

ity of observing a value larger or equal 25 (i.e. the value of the first
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observation)? (Hint: In R use the function pnorm to calculate this

probability).

4- Assuming the data to be normally distributed with expectation 10.020

and variance 5.644, what would be the distribution of the measurements

after subtracting 10.020 from them and dividing the result by the square

root of 5.644?
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Exercise 1.8 This exercises is related to the standard normal distribution

and its uses.

1- If X ∼ N(µ, σ2), what is the expectation of X − µ? What is the expec-

tation of X−µ√
σ2

? (Hint: E(Y − c) = E(Y )− c and E(kY ) = kE(Y ), for

any r.v. Y and constants c and k).

2- If X ∼ N(µ, σ2), what is the variance of X − µ? What is the variance

of X−µ√
σ2

? (Hint: V ar(Y − c) = V ar(Y ) and V ar(kY ) = k2V ar(Y ), for

any r.v. Y and constants c and k).

3- Suppose that Z ∼ N(0, 1). What is the probability of Z be larger than

the following values: 0.5, 0.55, 0.93, 1.96, 2 and 3.49? What is the prob-

ability of Z be smaller than the following values: 0.5, 0.55, 0.93, 1.96, 2

and 3.49? What is the probability of Z be smaller than the following

values: 0.45? (Hint: Use the function pnorm in R).

4- If X ∼ N(30, 9) what is the probability of X be larger than the following

values: 30, 33, 36, 40? What is the probability of X be smaller than the

following values: 30, 27, 24 and 20? (Hint: Use the function pnorm in

R)

Exercise 1.9 This exercise is about the distribution of the sample mean.

1- If X1, . . . , Xn are identically distributed with expectation µ (i.e. E(X1) =

µ), what is the expectation of X̄ = 1/n
∑
Xi?

(Hint: recall that if c is a constant and X and Y are a random vari-

ables, then E(cX) = cE(X) and that E(X + Y ) = E(X) + E(Y ) ).

2- If X1, . . . , Xn are independent identically distributed (iid),

with variance σ2, what is the variance of X̄ = 1/n
∑
Xi?

(Hint: recall that if c is a constant and X is a random variable, then

V ar(cX) = c2V ar(X), moreover if X and Y are independent random

variables, then V ar(X + Y ) = V ar(X) + V ar(Y )).
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3- If X1, . . . , Xn are independent identically distributed (iid),

with X1 ∼ N(µ, σ2), what is the distribution of X̄ = 1/n
∑
Xi?

4- If X1, . . . , Xn are independent identically distributed (iid),

with X1 ∼ N(10, 9), what is the probability of X1 be larger than 13? If

n is 100, what is the probability of X̄ be larger than 13?
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1.4.1 Answer to selected exercises

Exercise 1.2

1- P (A) = 2/6 = 1/3, P (Ac) = 1− 1/3 = 2/3.

2- P (B) = 1/6, P (C) = 3/6 = 1/2, P (D) = 1/2, P (B or C) = 2/3.

3- Probability of observing 6 four times in four troughs is (1/6)4 =

1/1296 = 0.0007716049.

Exercise 1.3

1- P (X is odd) = 1/2, P (X and Y are odd) = 1/4.

2- E(X) = 21/6 = 3.5,

V ar(X) = 91/6− (21/6)2 = 11.666 . . . ≈ 11.67.

3- E(X + Y ) = 2 ∗ 21/6 = 7

V ar(X + Y ) = 2 [91/6− (21/6)2] ≈ 26.83.

3- E(2X + Y ) = 7 + 3.5 = 10.5

V ar(2X + Y ) = 4V ar(X) + V ar(Y ) = 5V ar(X) ≈ 58.35.

Exercise 1.4

1- E(H1 measured in milimeters) = 892,

E(H2 measured in milimeters) = 382,

V ar(H1 measured in milimeters) = 200,

V ar(H2 measured in milimeters) = 100.

2- E(H1 +H2) = 89.2 + 38.2

3- V ar(H1 +H2) = 2 + 1 + 2 · 1.5 = 6 when expressed in cm and

V ar(H1 +H2) = 600 when expressed in mm.

Exercise 1.5

2- X ∼ Po(3), then P (X = 0) = 0.04978707..., P (X = 1) =

0.1991483 and P (X > 5) = 0.08391794... ≈ 0.084.
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3- X ∼ Po(3)⇒ Z = 1000X ∼ Po(3000)

4- Z ∼ Po(3000)⇒ e−3000 ≈ 0

Exercise 1.6 Preliminaire remark: Let Y be a random variable representing

the number of transferred cells to one plate. Note that, if Y ∼ Po(λ),

then P (Y = 0) = e−λ. Now, out of the 96 transfers of cells we know

that 96 − 17 = 79 did not contain any cells. Therefore, it is natural

to estimate P (Y = 0) by 79/96. Equating P (Y = 0) to 79/96 we

get the equation e−λ = 9/96; solving for λ we obtain the estimate

λ̂ = − log(79/96) ≈ 0.1949. 12

1- P (Y = 0) ≈ e−0.1949 = 79/96 ≈ 0.8229.

2- P (Y = 1) ≈ e−0.19490.1949 ≈ 0.1604

3- P (Y > 1) = 1 − P (Y = 0) − P (Y = 1) ≈ 1 − 0.8229 − 0.1604 =

0.0167

4- The number of plates with mono-clonal tissue can be seen as a

binomial random variable where the probability of success is p =

P (Y = 1) ≈ e−0.19490.1949 ≈ 0.1604 and the number of trials is

n = 96. Such variable has expectation given by n.p ≈ 0.1604·96 =

15.3984. Analogously, the expected number of plates with tissue

formed by more than one cell is ≈ 0.0167 · 96 = 1.6032.

Exercise 1.7

3- X ∼ N(10.02, 5.644)⇒ P (X > 25) = 1− P (X ≤ 25)

≈ 1.436489 · 10−10.

4- The distribution is the standard normal distribution, i.e., N(0, 1).

Exercise 1.8 Assume that X ∼ N(µ, σ2) .

1- E(X − µ) = 0 and E(X−µ√
σ2

) = 0.

12This estimation technique is called moment estimation (of first order).
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2- V ar(X − µ) = V ar(X) = σ2 and V ar
(
X−µ√
σ2

)
= 1.

3- If Z ∼ N(0, 1), then the probability of Z be larger than 0.5, 0.55, 0.93, 1.96, 2

or 3.49 are 0.3085, 0.2912, 0.1762, 0.0250, 0.0228, 0.0002, respec-

tively. Detailed calculation of one case: P (Z > 0.5) = 1− P (Z ≤
0.5)1−Φ(0.5) ≈ 0.3085, where Φ is the cumulative diste?ribution

function of a standard normal distribution.

4- If X ∼ N(30, 9), then P (X > 30) = P (X − 30 > 0) = P ((X −
30)/3 > 0) = P (Z > 0) = 1− Φ(0) = 1/2. The othe probabilities

are calculated in the same way.

Exercise 1.9

1- E(X̄) = µ

2- V ar(X̄) = nσ2/n2 = σ2/n

3- X ∼ N(µ, σ2)⇒ X̄ ∼ N(µ, σ2/n)

4- P (X1 > 13) ≈ 0.1586553, P (X̄ > 13) ≈ 0.
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1.4.2 Some R codes related to the exercises

#####################################################################

# Exercise 1.6

#####################################################################

#######################

# Item 2-

#######################

# Calculating the probability of 0 and the probability of 1

dpois(0,lambda=3); dpois(1,lambda=3)

# Calculating the probability of 0 and the probability of 1 (alternative)

dpois(c(0,1),lambda=3)

# Calculating the probability of 0 or 1

sum(dpois(c(0,1),lambda=3))

# Calculating the probability of 0 or 1 or 2 or 3 or 4 or 5

sum(dpois(as.numeric(0:5),lambda=3))

# Calculating the probability of more than 5

1-sum(dpois(as.numeric(0:5),lambda=3))

# Rounding

round(1-sum(dpois(as.numeric(0:5),lambda=3)), digits=3)

#######################

# Item 4-

#######################

dpois(0,lambda=3000)

exp(-3000)
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#####################################################################

# Exercise 1.8

#####################################################################

#######################

# Item 3-

#######################

1-pnorm(25, mean=10.02, sd=sqrt(5.644))

#####################################################################

# Exercise 1.9

#####################################################################

Values <- c(0.5, 0.55, 0.93, 1.96, 2, 3.49)

round(1-pnorm(Values), digits=4)

#####################################################################

# Exercise 1.10

#####################################################################

#######################

# Item 4-

#######################

pnorm(13, mean=10, sd=3 , lower.tail=F)

round(pnorm(13, mean=10, sd=3/100 , lower.tail=F), digits=15)
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