Web Crawling

Najork and Heydon, High-Performance Web Crawling, Compaqg SRC Research
Report 173, 2001. Also in Handbook of Massive Data Sets, Kluwer, 2001.

Heydon and Najork, Mercator: A scalable, extensible Web crawler. World
Wide Web , 4, 1999.

Najork and Wiener, Breadth-first search crawling yields high-quality pages.
Proc. 10th Int. WWW Conf., 2001.

Arasu et al: Searching the Web. ACM Trans. Internet Technology, 1, 2001.

Web Crawling

Web Crawling = Graph Traversal

S = {startpage}
repeat
remove an element s from S
foreach (s,v)
If v not crawled before
Insertv in S

|Ssues

Theoretical:
Startset S

Choice of s (crawl strategy)
Refreshing of changing pages.

Practical:

Load balancing (own resources and resources of crawled
sites)

Size of data (compact representations)
Performance (1/Os).

Crawl Strategy

e Breath First Search
e Depth First Search
e Random

e Priority Search

Possible priorities:

e Often changing pages (how to estimate change rate?).
e Using global ranking scheme for queries (e.g. PageRank).

e Using query dependent ranking scheme for queries
(“focused crawling”, “collection building”).

BFS is Good

8 25
B

]

L6 s 7
8 =
% g 15-
£ a 8]
& =z]
» g 10-
> > i
<] i
2 .
s]

<>: i

0 4

0 5 10 15 20 25 30 35 40 45 50 55 1 10 100 1000 10000 100000 1et+06 1et+07 1et+08
Day of crawl top N
Figure 1: Average PageRank score by day of crawl Figure 2: Average day on which the top N pages

were crawled

[From: Najork and Wiener, 2001]

Statistics for crawl of 328 million pages.

PageRank Priority Is Even Better

(but computationally expensive to use...)

Hot pages crawled
100%

80%

60% —+ PageRank
—— backlink
—4— breadth

40% ///// — random

20% W

0% T T . . Pages crawled
0% 20% 40% 60% 80% 100%

Figure 2: The performance of various ordering metrics for IB(P); G = 100

[From: Arasu et al., 2001]

Statistics for crawl of 225.000 pages at Stanford.

Load Balancing

Own resources:
e Bandwidth (control global rate of requests)
e Storage (compact representations, compression)

e Industrial-strength crawlers must be distributed (e.qg.
partition the url-space)

Load Balancing

Own resources:
e Bandwidth (control global rate of requests)
e Storage (compact representations, compression)

e Industrial-strength crawlers must be distributed (e.qg.
partition the url-space)

Resources of others:

e BANDWIDTH. Control local rate of requests (e.g. 30 sec.
between request to same site).

e |dentify yourself in request. Give contact info.
e Monitor the crawl.

e Obey the Robots Exclusion Protocol (www.robotstxt.org).
[Also read the other material there.]

Efficiency

e RAM: never enough for serious crawls. Efficient use of disk
based storage important. 1/O when accessing data
structures is often a bottleneck.

e CPU cycles: not a problem (Java and scripting languages
are fine).

e DNS lookup can be a bottleneck (as normally
synchronized). Asynchronous DNS: check GNU adns
library.

Rates reported for serious crawlers: 200-400 pages/sec.

Example: Mercator

Mercator

DNS

—mzZ2aom4d2zZ—

Resolver ——
Content
1 e Seen? E
HTTP [RIS tink 1= 5 URL 1 51 pue —> URL Frontier
Extractor Filter
% p—
N——
Fip I Tag (1 | > " S
| Counter Log Queue
' | — Files
<
’ GIF h \/
Gopher || Stats ™ Log
N—
Protocol Processing
Modules Modules

Figure 1. Mercator’s main components.

[From: Najork and Heydon, 2001]

Mercator

Further ideas:

e Fingerprinting ((sparse) hashfunction on strings).

e Continuous crawling—crawled pages put back in queue
(prioritized using update history).

e Checkpointing (crash recovery).
e \ery modular structure.

10

Detalls: Politeness

Polite, Dynamic, Prioritizing Frontier

Y

Prioritizer

Front-end
, FIFO queues
(one per
priority level)

Random queue
chooser with bias to

high—priority queues Host-to-
queue table
i A->3
Back-end queue | __ __ E : %
router . o
. Priority queue
X>2 (e.g., heap)

Back-end
FIFO queues
(many more than
worker threads)

Back-end queue t--~ .-
selector lg--=-=-=--=-=-=-~-

Figure 3: Our best URL frontier implementation

[From: Najork and
Heydon, 2001]

Detalls: Efficient URL Elimination

Disk file containing URLs
(one per front-buffer entry)

Front-buffer containing T
FP cache‘ FPs and URL indices NN
216 entries 2721 entries
- - - 025ef 978 035f4ca8| 1 »| http://u. gov/gw
o Flngerprlntlng 0382f c97 077 6de43| 2 | http://a. cont xa
05117c6f 15ef 7885| 3 »|http://z.org/gu
e 234e7676| 4 »{http://q.net/hi
= 27cc67ed| 5 » http://medu/tz
o Sorted flle Of 2466710 6 >|{http://n.mil/gd
327849c8| 7 »| http://fq.delpl
= = 40678544 | 8 »| http://pa.fr/ok
fmgerprmts of seen T2ca6 T7] | http: 1710, tw ch

URLSs. r T

FP disk file Disk file containing URLs
100m to 1b entries (one per back-buffer entry)
. C aC h e m O St u S e d — Back-buffer cqntgining T
— FPs and URL indices S
2/21 entries
U R L 025f e427 02f567e0| 1 »|http://x.com hr
S . 8‘;;;2%% O4decall| 2 »| http://g.org/rf
o 12054693 | 3 » http://p.net/gt
17fc8692| 4 »{http://w com ni
230cd562| 5 »| http://gr.bel zf
o Non-caChed URLS 30ac8d98| 6 »{http://gg. kw kz
357cae05| 7 » http://it.il/mm
h k d . b h 4296634c | 8 >|http://g. com yt
C eC e I n a.tC eS 47693621 | 9 »{http://z.gov/ew

(merge with file 1/O). — T T

Figure 4: Our most effi cient disk-based DUE implementation

[From: Najork and Heydon, 2001]

Some Experiences

[] 200 - OK (81.36%)

[404 - Not Found (5.94%)

O 302 - Moved temporarily (3.04%)
B Excluded by robots.txt (3.92%)
B TCP error (3.12%)

Il DNS error (1.02%)

H Other (1.59%)

[] text/html (65.34%)

[] image/gif (15.77%)

[image/jpeg (14.36%)
[l text/plain (1.24%)

l application/pdf (1.04%)
H Other (2.26%)

Figure 6: Outcome of download attempts Figure 7: Distribution of content types

15%

10%

5%

0 1 2 4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M

Figure 8: Distribution of document sizes

13

Some Experiences

64G
166 [
4G F
1G F
256M |-
64M F
16M [
4am F
M L
256K F
64K F
16K [
aK F
1K F
256 F
64 [
16 F
NS

L L L L L L i L L L L L L L L
1 10 100 1000 10000 100000 1000000 10000000 1 10 100 1000 10000 100000 1000000 10000000

() Distribution of pages over web servers (b) Distribution of bytes over web servers

Figure 9: Document and web server size distributions

[.com (47.20%) [.com (51.44%)
[.de (7.93%) [.net (6.74%)
[.net (7.88%) [.org (6.31%)
[.org (4.63%) [.edu (5.56%)
O .uk (3.29%) O .jp (4.09%)

[raw IP addresses (3.25%) [.de (3.37%)
I .jp (1.80%) H .uk (2.45%)

[.edu (1.53%) [raw IP addresses (1.43%)
W .ru (1.35%) W .ca (1.36%)

Il .br (1.31%) [l .gov (1.19%)
W kr (1.30%) W .us (1.14%)

Hl .nl (1.05%) [l .cn (1.08%)

W pl (1.02%) M .au (1.08%)

H .au (0.95%) M .ru (1.00%)

B Other (15.52%) B Other (11.76%)

(a) Distribution of hosts over (b) Distribution of pages over

[From: Najork and Heydon, 2001]

14

Further Resources

Further resources for implementing a crawler:

e Another good paper with practical info:
Shkapenyuk and Suel: Design and Implementation of a
High-Performance Distributed Web Crawler. IEEE Int. Conf. on Data
Engineering (ICDE), February 2002.
(http://cis.poly.edu/suel/papers/crawl.ps)

e HTML specification (www.w3.org)

e A free book on programming web agents.
(http://www.oreilly.com/openbook/webclient)

e Software libraries (Java, Perl, Python, C++) for net
programming.

15

	Web Crawling
	Issues
	Crawl Strategy
	BFS is Good
	PageRank Priority is Even Better
	Load Balancing
	Efficiency
	Example: Mercator
	Mercator
	Details: Politeness
	Details: Efficient URL Elimination
	Some Experiences
	Some Experiences
	Further Resources

