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Web Crawling

Web Crawling = Graph Traversal

S = {startpage}
repeat
remove an element s from S
foreach (s,v)
If v not crawled before
Insertv in S




|Ssues

Theoretical:
Startset S

Choice of s (crawl strategy)
Refreshing of changing pages.

Practical:

Load balancing (own resources and resources of crawled
sites)

Size of data (compact representations)
Performance (1/Os).



Crawl Strategy

e Breath First Search
e Depth First Search
e Random

e Priority Search

Possible priorities:

e Often changing pages (how to estimate change rate?).
e Using global ranking scheme for queries (e.g. PageRank).

e Using query dependent ranking scheme for queries
(“focused crawling”, “collection building”).



BFS is Good
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Figure 1: Average PageRank score by day of crawl Figure 2: Average day on which the top N pages

were crawled

[From: Najork and Wiener, 2001]

Statistics for crawl of 328 million pages.



PageRank Priority Is Even Better

(but computationally expensive to use...)
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Figure 2: The performance of various ordering metrics for IB(P); G = 100

[From: Arasu et al., 2001]

Statistics for crawl of 225.000 pages at Stanford.



Load Balancing

Own resources:
e Bandwidth (control global rate of requests)
e Storage (compact representations, compression)

e Industrial-strength crawlers must be distributed (e.qg.
partition the url-space)



Load Balancing

Own resources:
e Bandwidth (control global rate of requests)
e Storage (compact representations, compression)

e Industrial-strength crawlers must be distributed (e.qg.
partition the url-space)

Resources of others:

e BANDWIDTH. Control local rate of requests (e.g. 30 sec.
between request to same site).

e |dentify yourself in request. Give contact info.
e Monitor the crawl.

e Obey the Robots Exclusion Protocol (www.robotstxt.org).
[Also read the other material there.]



Efficiency

e RAM: never enough for serious crawls. Efficient use of disk
based storage important. 1/O when accessing data
structures is often a bottleneck.

e CPU cycles: not a problem (Java and scripting languages
are fine).

e DNS lookup can be a bottleneck (as normally
synchronized). Asynchronous DNS: check GNU adns
library.

Rates reported for serious crawlers: 200-400 pages/sec.



Example: Mercator

Mercator
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Figure 1. Mercator’s main components.

[From: Najork and Heydon, 2001]




Mercator

Further ideas:

e Fingerprinting ((sparse) hashfunction on strings).

e Continuous crawling—crawled pages put back in queue
(prioritized using update history).

e Checkpointing (crash recovery).
e \ery modular structure.
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Detalls: Politeness
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Figure 3: Our best URL frontier implementation

[From: Najork and
Heydon, 2001]



Detalls: Efficient URL Elimination

Disk file containing URLs
(one per front-buffer entry)
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Figure 4: Our most effi cient disk-based DUE implementation

[From: Najork and Heydon, 2001]



Some Experiences

[] 200 - OK (81.36%)

[ 404 - Not Found (5.94%)

O 302 - Moved temporarily (3.04%)
B Excluded by robots.txt (3.92%)
B TCP error (3.12%)

Il DNS error (1.02%)

H Other (1.59%)

[] text/html (65.34%)

[] image/gif (15.77%)

[ image/jpeg (14.36%)
[l text/plain (1.24%)

l application/pdf (1.04%)
H Other (2.26%)

Figure 6: Outcome of download attempts Figure 7: Distribution of content types
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Some Experiences
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Figure 9: Document and web server size distributions
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[From: Najork and Heydon, 2001]
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Further Resources

Further resources for implementing a crawler:

e Another good paper with practical info:
Shkapenyuk and Suel: Design and Implementation of a
High-Performance Distributed Web Crawler. IEEE Int. Conf. on Data
Engineering (ICDE), February 2002.
(http://cis.poly.edu/suel/papers/crawl.ps)

e HTML specification (www.w3.org)

e A free book on programming web agents.
(http://www.oreilly.com/openbook/webclient)

e Software libraries (Java, Perl, Python, C++) for net
programming.
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