Randomization in Algorithms and Data Structures

3 lectures (Tuesdays 14:15-16:00)
- May 1: Gerth Stølting Brodal
- May 8: Kasper Green Larsen
- May 15: Peyman Afshani

For each lecture one handin exercise – deadline June 1
Backwards Analysis

Gerth Stølting Brodal
Pareto optimal / non-dominating points / skyline

Vilfredo Pareto (1848–1923)
Exercise 1 (skyline construction)

Given \(n \) points \((x_1, y_1), \ldots, (x_n, y_n) \) in \(\mathbb{R}^2 \)

- Give an algorithm for computing the points on the skyline?
- What is the running time of your algorithm?
Problem – expected skyline size?

- Consider n points $(x_1, y_1), \ldots, (x_n, y_n)$ in R^2
- Each x_i and y_i is selected independently and uniformly at random from $[0, 1]$
- What is the expected skyline size?
Exercise 2 (dependent points)

- Describe an algorithm for generating \(n \) distinct points \((x_1, y_1), \ldots, (x_n, y_n)\) in \(R^2 \)
- Each \(x_i \) and \(y_i \) is selected uniformly at random from \([0, 1] \)
- The points are not independent
Generating random points

Assume the points are generated by the following algorithm

1) Generate n random x-values x_1, \ldots, x_n
2) sort the x-values in decreasing order
3) for decreasing x_i generate random y_i

(x_i, y_i) is a skyline point $\iff y_i = \max(y_1, \ldots, y_i)$

$$\Pr[y_i \text{ skyline point}] = \frac{1}{i}$$

since y_1, \ldots, y_i independent and the same distribution, all permutations are equally likely, i.e. probability y_i to be largest among i values is $1/i$
Expected skyline size

Stochastic variable: \(X_i = \begin{cases} 1 & \text{if point } i \text{ on skyline} \\ 0 & \text{otherwise} \end{cases} \)

\[
E[|\text{skyline}|] = E[X_1 + \cdots + X_n] = \frac{1}{1} + \frac{1}{2} + \cdots + \frac{1}{n} = \sum_{i=1..n} \frac{1}{i} \quad \text{(harmonic number } H_n) \\
\leq \ln n + 1
\]
The n-th Harmonic number $H_n = 1/1 + 1/2 + 1/3 + \cdots + 1/n = \sum_{i=1}^{n} 1/i$

$$H_n - 1 \leq \int_{1}^{n} \frac{1}{x} \, dx = \left[\ln x \right]_{1}^{n} = \ln n - \ln 1 = \ln n \leq H_n - 1/n$$

$$\ln n + 1/n \leq H_n \leq \ln n + 1$$
Exercise 3 (divide-and-conquer skyline)

Consider the following algorithm

- Find the topmost point \(p \) in \(O(n) \) time
- recurse on points to the right of \(p \)

Show that the expected running time is \(O(n) \)
QuickSort – a randomized sorting algorithm

QuickSort($x_1, ..., x_n$)
- Pick a random pivot element x_i
- Partition remaining elements: S smaller than x_i, and L larger than x_i
- Recursively sort S and L
QuickSort – analysis I

Alternative Quicksort

- Consider a random permutation π of the input, such that $x_{\pi(1)}$ is the first pivot, then $x_{\pi(2)}$, $x_{\pi(3)}$,

Observations

- Changes the order unsorted sublists are partitioned, but the pivots are still selected uniformly among the elements
- x_i and x_j are compared if and only x_i or x_j is selected as a pivot before any element in the sorted list between x_i and x_j
QuickSort – analysis II

\[E[\text{comparisons by quicksort}] = \Sigma_{i<j} \text{cost of comparing } x_i \text{ and } x_j \]

\[= \Sigma_{i<j} E[\text{cost of comparing } x_i \text{ and } x_j] \]

\[= \Sigma_{i<j} \frac{2}{|r(j) - r(i)| + 1} \quad \text{where } r(i) = \text{position of } x_i \text{ in output} \]

\[= \Sigma_{1\leq p < q \leq n} \frac{2}{q - p + 1} \]

\[\leq 2n \cdot \Sigma_{2\leq d \leq n} \frac{1}{d} \]

\[\leq 2n \cdot ((\ln n + 1) - 1) \]

\[= 2n \cdot \ln n \]
Exercise 4 (random search trees)

Construct a unbalanced binary search tree for \(n \) numbers \(x_1 < \cdots < x_n \) by inserting the numbers in random order

- What is the probability that \(x_j \) is an ancestor of \(x_i \)?
- What is the expected depth of a node \(x_i \)?

Insert: 15, 8, 17, 13, 3, 5, 10
Convex hull

Convex hull = smallest polygon enclosing all points
Exercise 5: Convex hull

Give an $O(n \cdot \log n)$ worst-case algorithm finding the Convex Hull
Convex hull – randomized incremental

1) Let p_1, \ldots, p_n be a random permutation of the points
2) Compute convex hull of $\{p_1, p_2, p_3\}$
3) $c = (p_1 + p_2 + p_3) / 3$
4) for $i = 4$ to n insert p_i and construct H_i from H_{i-1}:
 if p_i inside H_{i-1} skip, otherwise insert p_i in H_{i-1} and delete chain inside

Convex hull
Convex hull – inserting p_i
Convex hull – inserting p_i

How to find e for p_i?

store set of points with e
and reference to e from p_i
Convex hull - analysis

- Each point inserted / deleted / inside at most once in convex hull
- $E[\# \text{ point-edge updates}]$

 $= E[\sum_{4 \leq i \leq n} \sum p \ p \text{ updated on insertion } i]$

 $= \sum_{4 \leq i \leq n} \sum p \ E[p \text{ updated on insertion } i]$

 $\leq \sum_{4 \leq i \leq n} \sum p \frac{2}{i - 3}$

 $\leq 2n \cdot (\ln n + 1)$

 since p only updated on insertion i if p_i is u or v

- Total expected time $O(n \cdot \log n)$
Binary search - but forgot to sort the array... (a debugging case)

How many cells can ever be reached by a binary search?

Binary searching unsorted array
Reachable nodes – analysis

$$\Pr[v_i \text{ useful }] = \frac{|L_i|}{\Sigma_j |L_j|}$$

$$E[\# \text{ useful nodes at level }] = \Sigma_i \left(\frac{|L_i|}{\Sigma_j |L_j|} \right) = 1$$

$$E[\# \text{ useful nodes in tree }] = \text{height} - 1$$

$$E[\# \text{ reachable nodes in tree }] \leq \text{height}^2 = O(\log^2 n)$$

Binary searching unsorted array
Closest pair

Given n points, find pair (p, q) with minimum distance

Algorithm (idea)

- permute points randomly $\rightarrow p_1, p_2, \ldots, p_n$
- for $i = 2..n$ compute $\Delta_i = $ distance between closest pair for p_1, \ldots, p_i

Observation

- $\Pr[\Delta_i < \Delta_{i-1}] \leq \frac{2}{i}$ since minimum distance can only decrease if p_i is defining Δ_i
Closest pair – grid cells

- Construct grid cells with side-length Δ_{i-1}
- Point (x, y) in cell $([x/\Delta_{i-1}], [y/\Delta_{i-1}])$
- ≤ 4 points in cell if all pairwise distances $\geq \Delta_{i-1}$
- Neighbors of p_i within distance Δ_{i-1} are in ≤ 9 cells
- Store non-empty cells in a hash table (using randomization)
- Rebuild grid whenever Δ_i decreases

Analysis

- $E[\text{rebuild cost}] = E[\Sigma_{3 \leq i \leq n} \text{rebuild cost inserting } p_i]$
 - $= \Sigma_{3 \leq i \leq n} E[\text{rebuild cost inserting } p_i] \leq \Sigma_{3 \leq i \leq n} 2i \leq 2n$
- Total expected time $O(n)$
Handin (Treaps)

A treap is a binary search tree with a random priority assigned to each element when inserted (in the example elements are white and priorities yellow).

A left-to-right inorder traversal gives the elements in sorted order, whereas the priorities satisfy heap order, i.e. priorities increase along a leaf-to-root path.

a) Argue that an arbitrary element in a treap of size n has expected depth $O(\log n)$

b) Describe how to insert an element into a treap and give running time
References

