Worst-Case Efficient Priority Queues

Gerth Stølting Brodal

gerth@brics.dk

BRICS
Computer Science Department
University of Aarhus
Aarhus, Denmark

January 1996
Priority Queue Operations

- **MAKEQUEUE**
- **FINDMIN(Q)**
- **INSERT(Q, e)**
- **MELD(Q_1, Q_2)**
- **DELETEMIN(Q)**
- **DELETE(Q, e)**
- **DECREASEKEY(Q, e, e')**, \(e' \leq e\)

Assumes that it is known where element \(e\) is stored in \(Q\).
Frame Work

- Elements can only be compared.
- RAM model.
- Extendible arrays
 — achievable by array doubling and incremental copying.
- Goal: Good worst-case performance.
Known and New Time Bounds

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Heaps</td>
<td>Heaps</td>
<td>Relaxed Heaps</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FindMin</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Insert</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Meld</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Delete(Min)</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td></td>
</tr>
<tr>
<td>DecreaseKey</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>

Amortized bounds
Guides

- We have a set of integer ranked problems.
- We can replace two rank r problems by a rank $r + 1$ problem, $\text{REDUCE}(r)$.
- When a new problem is introduced, we can perform $O(1)$ REDUCE operations.
- Goal: Bound the number of problems of each rank by a constant.
Guides

- By performing two RedUCE operations for each new problem, the number of problems of each rank can be bounded by two.
The Priority Queue Data Structure

- A priority queue is represented by two trees T_1 and T_2.
- Each node holds one element.
- The minimum element is always at the root of T_1.
- A node larger than its parent is a good node. Otherwise it is a violating node — because it violates heap order.
The Basic Idea

- A set of violating nodes is associated to each node.
- The violating nodes associated to a node are larger than the node.
- A violating node belongs to exactly one set.
The Sons of a Node

- Each node has a rank.
- The rank of a node is less than the rank of its father.
- All nodes except for the roots have a brother of equal rank.
- Leaves have rank zero.
- A node of rank \(r \geq 1 \) has at least two sons of rank \(r - 1 \).
- At most \(O(1) \) brothers can have equal rank.

- The ranks and degrees are \(O(\log n) \).
- **Linking** and **unlinking** can be done in constant time.
The Application of Guides

We use five guides to

- restrict the number of sons at t_1,
- restrict the number of sons at t_2,
- guarantee the existence of sons at t_1,
- guarantee the existence of sons at t_2,
- restrict the number of violations at t_1.
How to Reduce The Number of Violating Nodes

- The two brothers are cut off.

- The two brothers and the father are cut off and replaced by a son of t_1. The replacement becomes a new violating node.

The cut off nodes are made good sons of the root t_1.
The Basic Idea of MELD

At most two new violating nodes are created.
The Result

Priority queues exist that

- support \texttt{MAKEQUEUE}, \texttt{FINDMIN}, \texttt{INSERT}, \texttt{MELD} and \texttt{DECREASEKEY} in worst-case time $O(1)$,
- support \texttt{DELETE} and \texttt{DELETEMIN} in worst-case time $O(\log n)$,
- require linear space,
- can be implemented on a RAM.
Open Problems

- Simplify the data structure!
- Eliminate the requirement for arrays.