BRICS Research Activities

Algorithms

Gerth Stølting Brodal
Outline of Talk

- The Algorithms Group
- Courses
- Algorithm Events
- ALCOMFT
- Expertise within BRICS

Examples

- Algorithms for Evolutionary Trees
- Cache Oblivious Algorithms
The Algorithms Group

Erik Meineche Schmidt
Algorithms, Complexity Theory

Sven Skyum
Algorithms, Complexity Theory

Peter Bro Miltersen
Complexity Theory, Data Structures

Gudmund Skovbjerg Frandsen
Algebraic Algorithms, Dynamic Algorithms

Christian Nørgaard Storm Pedersen
Bioinformatics, String Algorithms

Gerth Stølting Brodal
Data Structures, External Memory

Rolf Fagerberg
Data structures, External Memory

PhD students

Alex Rune Berg
Graph Theory

Jesper Makholm Byskov
Algorithms for NP-hard problems

Bolette Ammitzbøll Madsen
Algorithms for NP-hard problems

Bjarke Skjernaa
Algorithms for NP-hard problems

Kristoffer Arnsfelt Hansen
Complexity

BRICS Retreat, Sandbjerg, 21–23 October 2002
Courses

- dProg (Introduction to Programming) Frandsen
- dADS (Algorithms and Data Structures) Brodal, Schmidt
- dSøgOpt (Searching and Optimization) Skyum, Miltersen
- Computer Architecture and Operating Systems Pedersen
- Computational Geometry Skyum
- Complexity Miltersen
- Randomized, Parallel and Dynamic Algorithms Frandsen
- Algorithms (ph.d. course) Brodal, Fagerberg
- External Memory Algorithms and Data Structures —
- Algorithms for Web Indexing and Searching —
- Algorithms in Bioinformatics Pedersen
- Genome Analysis —
Algorithm Events

Upcoming

18th IEEE Conference on Computational Complexity (June 2003, organizing chair Peter Bro Miltersen)

Ongoing

Alcom seminar

Recent

EEF Summer School on Massive Data Sets (June 2002)
ALGO 2001 (August 2001)

\[
\begin{align*}
\text{ESA 2001} & - 9\text{th Annual European Symposium on Algorithms} \\
\text{WAE 2001} & - 5\text{th Workshop on Algorithm Engineering} \\
\text{WABI 2001} & - 1\text{st Workshop on Algorithms in BioInformatics}
\end{align*}
\]
Algorithms and Complexity – Future Technologies

The ALCOM-FT project is a joint effort between eleven of the leading groups in algorithms research in Europe. The aim of the project is to discover new algorithmic concepts, identify key algorithmic problems in important applications, and contribute to the accelerated transfer of advanced algorithmic techniques into commercial systems.

The project takes place from June 2000 to June 2003.

- ALCOM-FT (continuation of ALCOM, ALCOM-II, ALCOM-IT)
- BRICS is the coordinator of ALCOM-FT (Erik Meineche Schmidt, Rolf Fagerberg)
- 336 technical reports since July 2000
<table>
<thead>
<tr>
<th>Location</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRICS</td>
<td>Erik Meineche Schmidt</td>
</tr>
<tr>
<td>Barcelona</td>
<td>Josep Díaz</td>
</tr>
<tr>
<td>Cologne</td>
<td>Michael Jünger</td>
</tr>
<tr>
<td>INRIA Rocquencourt</td>
<td>Philippe Flajolet</td>
</tr>
<tr>
<td>Max-Planck-Institut für Informatik</td>
<td>Kurt Mehlhorn</td>
</tr>
<tr>
<td>Paderborn</td>
<td>Burkhard Monien</td>
</tr>
<tr>
<td>Patras</td>
<td>Friedhelm Meyer auf der Heide</td>
</tr>
<tr>
<td>Rome “La Sapienza”</td>
<td>Paul Spirakis</td>
</tr>
<tr>
<td>Utrecht</td>
<td>Giorgio Ausiello</td>
</tr>
<tr>
<td>Warwick</td>
<td>Jan van Leeuwen</td>
</tr>
<tr>
<td>Cyprus</td>
<td>Mike Paterson</td>
</tr>
<tr>
<td></td>
<td>Marios Mavronicolas</td>
</tr>
</tbody>
</table>
Algorithm Expertise within BRICS

- Algorithms in general
- Complexity
- Data structures
- Dynamic algorithms
- External memory algorithms
- Algorithms in Bioinformatics
- Algorithm engineering / experimental algorithmics
Examples
Algorithms for Evolutionary Trees

- Reconstruct evolutionary trees, e.g. from quartets
- Compare evolutionary trees, e.g. number of common quartets
The Classic RAM Model

Add: \(O(1) \)
Mult: \(O(1) \)
Mem access: \(O(1) \)
The Classic RAM Model

Add: $O(1)$
Mult: $O(1)$
Mem access: $O(1)$

Real life

Bottleneck: transfer between two highest memory levels in use
The I/O Model

- N = problem size
- M = memory size
- B = I/O block size

- One I/O moves B consecutive records from/to disk
- **Cost**: number of I/Os
- E.g., sorting requires $O\left(\frac{N}{B} \log_{M/B} \frac{N}{B}\right)$ I/Os.

Aggarwal and Vitter 1988
Cache-Oblivious Model

Frigo, Leiserson, Prokop, Ramachandran, FOCS'99

- Program in the RAM model
- Analyze in the I/O model (for arbitrary B and M).

Advantages

- Optimal on arbitrary level \implies optimal on all levels.
- B and M not hard-wired into algorithm.
Cache-Oblivious Results

- Scanning ⇒ stack, queue, median finding,…
- Sorting, matrix multiplication, FFT
 Frigo, Leiserson, Prokop, Ramachandran, FOCS’99
- Cache oblivious search trees
 Prokop 99
 Bender, Demaine, Farach-Colton, FOCS’00
 Rahman, Cole, Raman, WAE’01
 Bender, Duan, Iacono, Wu and Brodal, Fagerberg, Jacob, SODA’02
- Priority queue and graph algorithms
 Arge, Bender, Demaine, Holland-Minkley, Munro, STOC’02
 Brodal, Fagerberg, ISAAC’02
- Computational geometry
 Bender, Cole, Raman, ICALP’02
 Brodal, Fagerberg, ICALP’02
- Scanning dynamic sets
 Bender, Cole, Demaine, Farach-Colton, ESA’02
Double for-loop

X, Y arrays of length n:

\[
\begin{array}{c}
\text{for}\ (i=0;\ i<n;\ i++) \\
\quad \text{for}\ (j=0;\ j<n;\ j++) \\
\quad \quad f(X[i], Y[j])
\end{array}
\]

I/O complexity:

\[
n \times \frac{n}{B} = \frac{n^2}{B}
\]
Double for-loop

More I/O-efficient version:

I/O complexity:

\[
\frac{n}{M} \times \frac{n}{M} \times \frac{M}{B} = \frac{n^2}{MB}
\]

```plaintext
for(i=0; i<n; i=i+M)
    for(j=0; j<n; j++)
        for(k=i; k<i+M; k++)
            f(X[k], Y[j])
```
Double for-loop

Cache-oblivious version:

\[\text{+ recursion} \]

I/O complexity:

\[\text{Again} \quad \frac{n^2}{MB} \]
Double for-loop

Cache-oblivious version

```c
doubleLoop(i, j, length)
    if (length == 1)
        f(X[i], Y[j])
    else
        doubleLoop(i, j, length/2)
        doubleLoop(i, j+length/2, length/2)
        doubleLoop(i+length/2, j, length/2)
        doubleLoop(i+length/2, j+length/2, length/2)
```
Double for-loop – Experiments

Sizes within RAM (element size 4 bytes)

366 MHz Pentium II, 128 MB RAM, 256 KB Cache, gcc -O3, Linux
Double for-loop – Experiments

Sizes exceeding RAM (element size 1 KB)

366 MHz Pentium II, 128 MB RAM, 256 KB Cache, gcc -O3, Linux
Cache-Oblivious Search Trees

Recursive memory layout (van Emde Boas layout)

Binary tree

Dynamization

Searches use $O(\log_B N)$ I/Os

Bender, Demaine, Farach-Colton, FOCS’00
Rahman, Cole, Raman, WAE’01
Bender, Duan, Iacono, Wu, SODA 02
Brodal, Fagerberg, Jacob, SODA’02
Cache-Oblivious Search Trees

Search: $O(\log_B N)$
Range Reporting: $O(\log_B N + \frac{k}{B})$
Updates: $O(\log_B N + \frac{\log^2 N}{B})$
Current Work...

$M \geq B^2$?