BRICS Research Activities

Algorithms

Gerth Stølting Brodal
Outline

- The Algorithms Group
- ALCOM\textregistered\textcircled{FT}
- Upcoming Algorithm Events
- Algorithm Expertise within BRICS
- CCI Europe
- Dynamic Convex Hull
- External Memory Algorithms
- Maps On Us
The Algorithms Group

Sven Skyum
Algorithms, Complexity Theory

Erik Meineche Schmidt
Algorithms, Complexity Theory

Ivan Bjerre Damgaard
Cryptology

Peter Bro Miltersen
Complexity Theory, Data Structures

Gudmund Skovbjerg Frandsen
Algebraic Algorithms, Dynamic Algorithms

Christian Nørgaard Storm Pedersen
Bioinformatics, String Algorithms

Gerth Stølting Brodal
Data Structures, External Memory

Rolf Fagerberg
Data structures, External Memory

Mary Cryan
Learning of Distributions

Anders Yeo
Graph Theory, Graph Algorithms

Peter Høyer
Quantum Computations

PhD students

Jakob Pagter
Time-Space Trade-Offs

Riko Jacob
Optimization, Computational Geometry

Rasmus Pagh
Data Structures, Hashing

Alex Rune Berg
Graph Theory

Jesper Makholm Nielsen
Complexity Theory

Bjarke Skjernaa
Algorithms
Algorithms and Complexity – Future Technologies

The ALCOM-FT project is a joint effort between ten of the leading groups in algorithms research in Europe. The aim of the project is to discover new algorithmic concepts, identify key algorithmic problems in important applications, and contribute to the accelerated transfer of advanced algorithmic techniques into commercial systems.

The project takes place from June 2000 to June 2003. It is supported by the European Commission under the Information Society Technologies programme of the Fifth Framework, as project number IST-1999-14186.

- ALCOM-FT is a continuation of ALCOM, ALCOM-II, ALCOM-IT
- BRICS is the coordinator of ALCOM-FT
ALCOM-FT Sites

<table>
<thead>
<tr>
<th>Site</th>
<th>Contact Person</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRICS</td>
<td>Erik Meineche Schmidt</td>
</tr>
<tr>
<td>Barcelona</td>
<td>Josep Díaz</td>
</tr>
<tr>
<td>Cologne</td>
<td>Michael Jünger</td>
</tr>
<tr>
<td>INRIA Rocquencourt</td>
<td>Philippe Flajolet</td>
</tr>
<tr>
<td>Max-Planck-Institut für Informatik</td>
<td>Kurt Mehlhorn</td>
</tr>
<tr>
<td>Paderborn</td>
<td>Burkhard Monien</td>
</tr>
<tr>
<td></td>
<td>Friedhelm Meyer auf der Heide</td>
</tr>
<tr>
<td>Patras</td>
<td>Paul Spirakis</td>
</tr>
<tr>
<td>Rome “La Sapienza”</td>
<td>Giorgio Ausiello</td>
</tr>
<tr>
<td>Utrecht</td>
<td>Jan van Leeuwen</td>
</tr>
<tr>
<td>Warwick</td>
<td>Mike Paterson</td>
</tr>
</tbody>
</table>
Upcoming Algorithm Events

August 28–31, 2001

ESA 2001 – 9th Annual European Symposium on Algorithms
WAE 2001 – 5th Workshop on Algorithm Engineering

Summer 2002

Summer school on “External Memory Algorithms”

Ongoing

Alcom seminar
Algorithm Expertise within BRICS

- Algorithms in general
- Data structures
- Dynamic algorithms
- External memory algorithms
- Algorithm engineering / experimental algorithmics
CCI Europe

- Domain specific project
- "Automatic layout of JyllandsPosten’s JobSection"
- Problem \approx 2D bin packing
- 2-approximation ?
- Enumeration + heuristics
- BRICS people
 - Kristian Høgsberg
 - Riko Jacob
 - Anders Yeo
 - Gerth Stølting Brodal
 - Erik Meineche Schmidt

BRICS Retreat, Sandbjerg, 18–20 October 2000
Dynamic Convex Hull

- **Insert** (p), **Delete** (p)
 Insert/delete a point p

- **Query** (\vec{v})
 Find extreme point on CH in direction \vec{v}

Updates

- Overmars & van Leeuwen 1981: $O(\log^2 n)$
- Chan 1999: $O(\log^{1+\varepsilon} n)$
- Brodal & Jacob 2000: $O(\log n \cdot \log \log n)$

Queries

- $O(\log n)$

BRICS Retreat, Sandbjerg, 18–20 October 2000
External Memory Algorithms

I/O model [Aggarwal and Vitter]

$M = \text{Internal memory size}$
$N = \text{Problem size}$
$B = \text{Block size}$

Complexity $= \# \text{ block I/Os to solve a problem}$

Examples

$\text{Scan}(N) = O\left(\frac{N}{B}\right)$
$\text{Sort}(N) = O\left(\frac{N}{B} \cdot \log_{M/B} \frac{N}{M}\right)$

Minimum Spanning Tree (MST)

Compute the MST of a weighted graph with V vertices and E edges

<table>
<thead>
<tr>
<th>Internal</th>
<th>External</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chazelle 1999</td>
<td>Arge, Brodal, Toma 2000</td>
</tr>
<tr>
<td>$O(E \cdot \alpha(E, V))$</td>
<td>$O(\text{Sort}(E) \cdot \log \log \frac{V \cdot B}{E})$</td>
</tr>
</tbody>
</table>
Minimum Spanning Tree

Prim's algorithm

Grow a single tree by iteratively including a minimum weight incident edge

Priority queue on incident edges

\[
\text{Internal } O(E \cdot \log E)
\]

\[
\text{External } O(V + \text{Sort}(E))
\]

Kruskal's algorithm

In \(O(\log V)\) phases grow independent MST trees by picking minimum weight incident edges

\[
\text{Internal } O(E \cdot \log V)
\]

\[
\text{External } O(\text{Sort}(E) \cdot \log V)
\]

Using “superphases” \(V \rightarrow \frac{V}{k}\) requires \(O(\text{Sort}(E) \cdot \log \log k)\) I/Os

Let \(k = \frac{V \cdot B}{E}\) and switch to Prim implies the external result \(\square\)
“However, because of the size of the routing data, we have to use heuristics when planning routes (i.e., we find “close to optimum” routes rather than optimum routes). As a result, sometimes a Favor Highways route will be slightly faster than the Fastest route. This is particularly true for routes longer than about 100 miles. ... Our routing will continually improve as the quality of our data improves and as we invent better routing algorithms.”