
Algorithms and Data Structures for Hierarchical Memory

Gerth Stølting Brodal University of Aarhus

BRICS people

- Lars Arge, Professor
 Joining September 1, 2004, SNF Rømer
- Gerth Stølting Brodal, Lektor
 Carlsberg
- Rolf Fagerberg, Lektor
 Since March 1, 2004, Odense
- Herman J. Haverkort, Post. Doc. Joining October 1, 2004, SNF
- Gabriel Moruz, Ph.D. student

Former BRICS students with hierarchical memory research

- Lars Arge
- Gerth Stølting Brodal
- Jakob Pagter
- Riko Jacob

Ph.D. 1996, Duke University

Ph.D. 1997, University of Aarhus

Ph.D. 2001, University of Aarhus

Ph.D. 2002, ETH Zürich

Typical workstations...

Typical workstations...

Customizing a Dell 650 May 26, 2004

www.dell.dk

Processor speed

L3 cache size

Memory

Hard Disk

CD/DVD

 $2.4 - 3.2 \, \text{GHz}$

0.5 - 2 MB

1/4 - 4 GB

36 GB – 146 GB

7.200 - 15.000 RPM

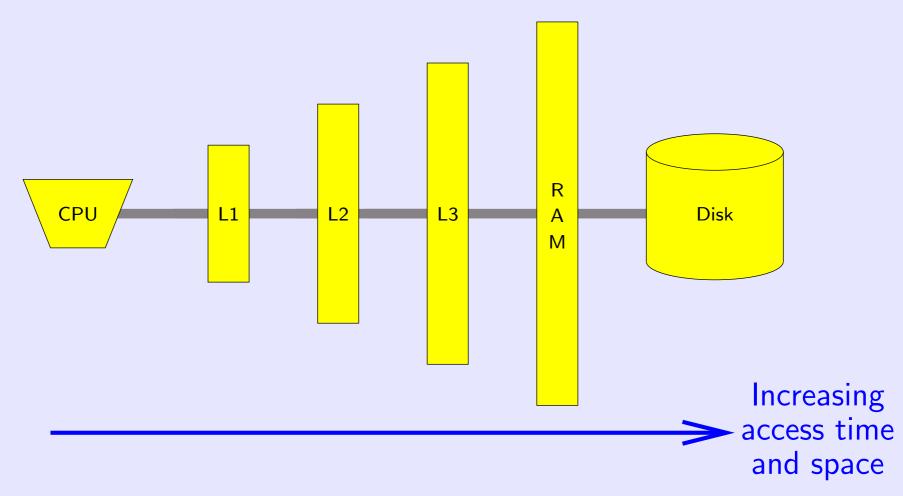
8 - 48x

L2 cache size

L2 cache line size

L1 cache line size

L1 cache size


256-512 KB

128 Bytes

64 Bytes

16 KB

Hierarchical Memory Basics

Data moved between adjacent memory levels in blocks

More Hardware Specifications...

	Pentium 4	Pentium III	MIPS 10000	AMD Athlon	Itanium 2
Architecture type	Modern CISC	Classic CISC	RISC	Modern CISC	EPIC
Operation system	Linux v. 2.4.18	Linux v. 2.4.18	IRIX v. 6.5	Linux 2.4.18	Linux 2.4.18
Clock rate	2400MHz	800MHz	175MHz	1333 MHz	1137 MHz
Address space	32 bit	32 bit	64 bit	32 bit	64 bit
Pipeline stages	20	12	6	10	8
L1 data cache size	8 KB	16 KB	32 KB	128 KB	32 KB
L1 line size	128 B	32 B	32 B	64 B	64 B
L1 associativity	4-way	4-way	2-way	2-way	4-way
L2 cache size	512 KB	256 KB	1024 KB	256 KB	256 KB
L2 line size	128 B	32 B	32 B	64 B	128 B
L2 associativity	8-way	4-way	2-way	8-way	8-way
TLB entries	128	64	64	40	128
TLB associativity	full	4-way	64-way	4-way	full
TLB miss handling	hardware	hardware	software	hardware	?
RAM size	512 MB	256 MB	128 MB	512 MB	3072 MB

Motivation

- Memory hierarchy has become a fact of life
- Accessing non-local storage may take a very long time
- Good locality is important to achieving high performance
- Handling massive data requires optimal memory usage

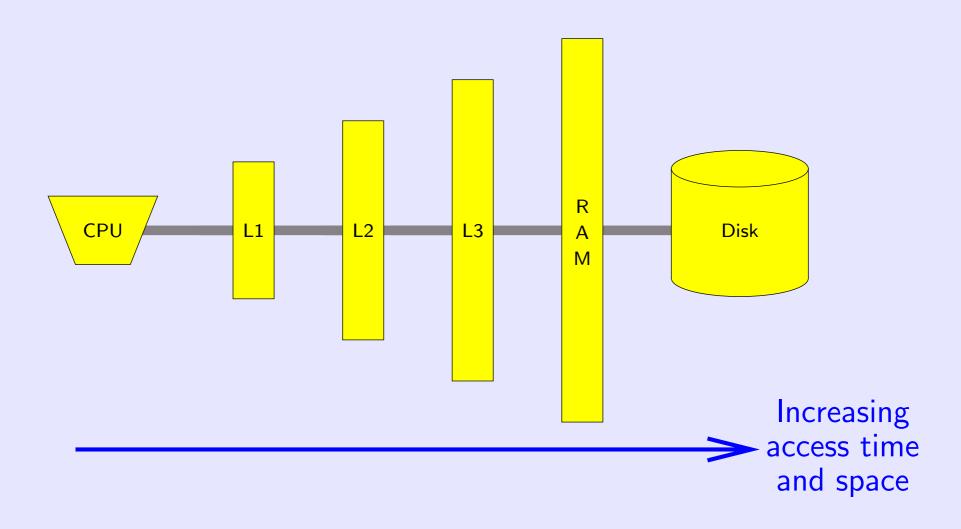
	Latency	Relative to CPU	
Register	0.5 ns	1	
L1 cache	0.5 ns	1-2	
L2 cache	3 ns	2-7	
DRAM	150 ns	80-200	
TLB	500+ ns	200-2000	
Disk	10 ms	10 ⁷	Increasing

- Modern hardware is not uniform many different parameters
 - Number of caches
 - Cache sizes
 - Cache line/disk block sizes
 - Cache associativity
 - Cache replacement strategy
 - CPU/BUS/memory speed

- Modern hardware is not uniform many different parameters
 - Number of caches
 - Cache sizes
 - Cache line/disk block sizes
 - Cache associativity
 - Cache replacement strategy
 - CPU/BUS/memory speed
- Programs should ideally run for many different parameters

- Modern hardware is not uniform many different parameters
 - Number of caches
 - Cache sizes
 - Cache line/disk block sizes
 - Cache associativity
 - Cache replacement strategy
 - CPU/BUS/memory speed
- Programs should ideally run for many different parameters
 - by knowing many of the parameters at runtime
 - by knowing few essentiel parameters
 - ignoring the memory hierarchies

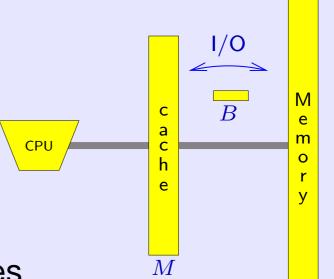
- Modern hardware is not uniform many different parameters
 - Number of caches
 - Cache sizes
 - Cache line/disk block sizes
 - Cache associativity
 - Cache replacement strategy
 - CPU/BUS/memory speed
- Programs should ideally run for many different parameters
 - by knowing many of the parameters at runtime
 - by knowing few essentiel parameters
 - ignoring the memory hierarchies


- Modern hardware is not uniform many different parameters
 - Number of caches
 - Cache sizes
 - Cache line/disk block sizes
 - Cache associativity
 - Cache replacement strategy
 - CPU/BUS/memory speed
- Programs should ideally run for many different parameters
 - by knowing many of the parameters at runtime
 - by knowing few essentiel parameters
 - ignoring the memory hierarchies

- Programs are executed on unpredictable configurations
 - Generic portable and scalable software libraries
 - Code downloaded from the internet, e.g. Java applets

Hierarchical Memory Models

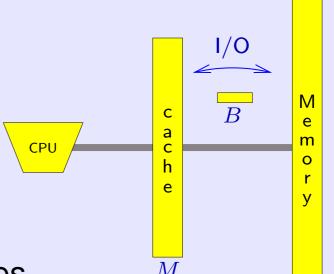
— many parameters


Limited success since model to complicated

Aggarwal and Vitter 1988

- Measure number of block transfers between two memory levels
- Bottleneck in many computations
- Very succesfull (+250 papers, many BRICS publications)
- Example: Sorting N elements requires

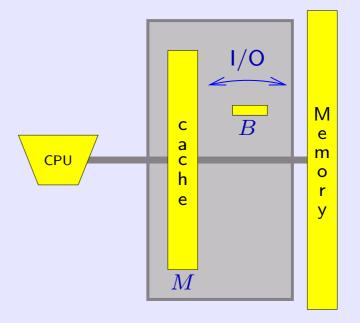
$$O\left(\frac{N}{B}\log_{M/B}\frac{N}{M}\right)$$
 I/Os


Aggarwal and Vitter 1988

- Measure number of block transfers between two memory levels
- Bottleneck in many computations
- Very succesfull (+250 papers, many BRICS publications)
- Example: Sorting N elements requires

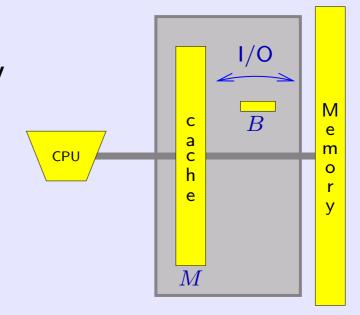
$$O\left(\frac{N}{B}\log_{M/B}\frac{N}{M}\right)$$
 I/Os

Limitations

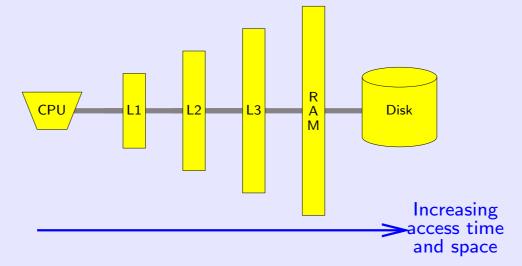

- Parameters B and M must be known
- Does not handle multiple memory levels

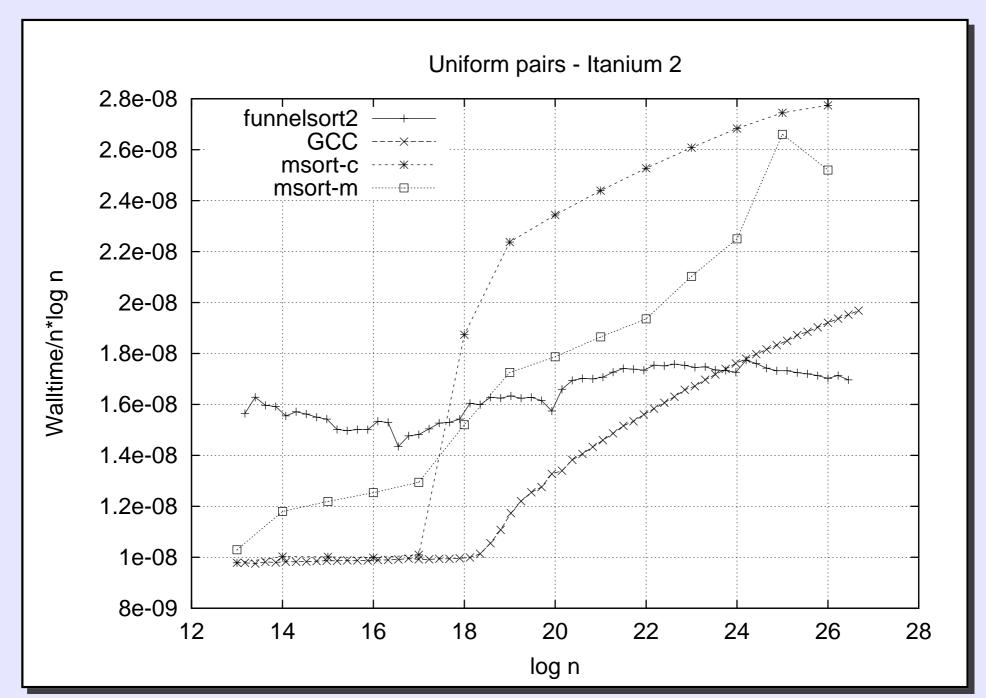
Cache Oblivious Model — no parameters!?

Frigo, Leiserson, Prokop, Ramachandran 1999


- Program with only one memory
- Analyze in the I/O model for arbitrary B and M

Cache Oblivious Model — no parameters!?


Frigo, Leiserson, Prokop, Ramachandran 1999


- Program with only one memory
- Analyze in the I/O model for arbitrary B and M

Advantages

- Optimal on arbitrary level ⇒ optimal on all levels
- Portability

Engineering a Cache-Oblivious Sorting Algorithm, Brodal, Fagerberg, Vinther, 2004

Hierarchical Memory @ BRICS

- Ongoing research at BRICS since the start of BRICS
- Focus on foundational work for handling massive data sets
- Major research focus since 1998 (Brodal, Fagerberg)
- From September 2004 increased focus when Lars Arge (SNF Rømer) is joining BRICS
- BRICS publications in leading theoretical computer science conference proceedings
- Several surveys and book chapters on algorithms for massive data sets / external memory algorithms / cache-oblivious algorithms by BRICS authors
- EEF summer school on Massive data sets (2002)