Time-Space Trade-Offs for 2D Range Minimum Queries

Gerth Stølting Brodal
Aarhus University

Join work with Pooya Davoodi and S. Srinivasa Rao

Dagstuhl Seminar on Data Structures, February 28 - March 5, 2010
The 2D Range Minimum Problem

Preprocess an \(m \times n \)-matrix of size \(N = n \cdot m \), \(m \leq n \), to efficiently support range minimum queries

\[
\text{RMQ}([i_1, i_2] \times [j_1, j_2]) = (i', j')
\]

\[
A_{i', j'} = \min\{ A_{i'', j''} \mid (i'', j'') \in [i_1, i_2] \times [j_1, j_2] \}, \quad (i', j') \in [i_1, i_2] \times [j_1, j_2]
\]
Models

Encoding model
- Queries can access data structure but not input matrix

Indexing model
- Queries can access data structure and read input matrix
Some Trivial Examples...

<table>
<thead>
<tr>
<th>Solution</th>
<th>Additional space (bits)</th>
<th>Query time</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>No data structure</td>
<td>0</td>
<td>$O(N)$</td>
<td>Indexing</td>
</tr>
<tr>
<td>Tabulate answers</td>
<td>$O(N^2 \log N)$</td>
<td>$O(1)$</td>
<td>Encoding</td>
</tr>
<tr>
<td>Store permutation</td>
<td>$O(N \log N)$</td>
<td>$O(N)$</td>
<td>Encoding</td>
</tr>
</tbody>
</table>

Table:

<table>
<thead>
<tr>
<th>i_1</th>
<th>j_1</th>
<th>10</th>
<th>4</th>
<th>13</th>
<th>9</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>14</td>
<td>6</td>
<td>11</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>28</td>
<td>9</td>
<td>16</td>
<td>52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>48</td>
<td>19</td>
<td>2</td>
<td>23</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Minimum j's index is j_2.
Results
1D Range Minimum Queries

Indexing

- Upper Bound
 - Fischer and Heun (2007)
 - \(\text{Time} = O(1) \)
 - \(\text{Space} = 2n + o(n) + |A| \) bits

- NEW
 - Lower Bound
 - (matching upper bound)
 - \(\text{Time} = \Omega(c) \)
 - \(\text{Space} = O(n/c) + |A| \) bits

Encoding

- Upper Bound
 - Fischer (Latin 2010)
 - \(\text{Time} = O(1) \)
 - \(\text{Space} = 2n + o(n) \) bits

- Lower Bound:
 - \(\text{Space} = 2n - \Theta(\log n) \) bits
2D Range Minimum Queries

Indexing

\[\text{Upper Bound} \]
\[\begin{align*}
\text{Time} &= O(1) \\
\text{Space} &= O(N) + |A| \text{ bits}
\end{align*} \]

\[\begin{align*}
\text{Time} &= O(c \log^2 c) \\
\text{Space} &= O(N/c) + |A| \text{ bits}
\end{align*} \]

\[\text{NEW} \]

\[\text{Lower Bound} \]
\[\begin{align*}
\text{Time} &= \Omega(c) \\
\text{Space} &= O(N/c) + |A| \text{ bits}
\end{align*} \]

Encoding

\[\text{Upper Bound} \]
\[\begin{align*}
\text{Time} &= O(1) \\
\text{Space} &= O(N \log n) \text{ bits}
\end{align*} \]

\[\text{NEW Proof} \]

\[\text{Lower Bound:} \]
\[\begin{align*}
\text{Space} &= \Omega(N \log m) \text{ bits}
\end{align*} \]

Demain et al. (2009)
1D Encoding model
Index model
Upper bound
Lower bound

<table>
<thead>
<tr>
<th>1D</th>
<th>Encoding model</th>
<th>Index model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lower Bound (1D, Encoding)

- For each input array consider the Cartesian tree
- Each binary tree is a possible Cartesian tree
- RMQ queries can reconstruct the Cartesian tree
- \# Cartesian trees is $\binom{2n}{n} / (n+1)$
- \# bits $\geq \log\left(\binom{2n}{n} / (n+1)\right) = 2n - \Theta(\log n)$
For an input array consider the Cartesian tree.

- Succinct representation using $4n+o(n)$ bits and $O(1)$ query time (Sadakane 2007)
- Improved to $2n+o(n)$ (Fischer 2010)
Upper Bounds (1D, Indexing)

- Build encoding \(O(N/c)\) bit structure for block minimums
- RMQ = query to encoding structure + 3\(c\) elements, i.e. query time \(O(c)\)
Lower Bounds (1D, Indexing)

Thm Space $\frac{N}{c}$ bits implies $\Omega(c)$ query time

- Consider $\frac{N}{C}$ queries for $c^{\frac{N}{c}}$ different \{0,1\} inputs with exactly one zero in each block
- $c^{\frac{N}{c}} / 2^{\frac{N}{c}}$ inputs share some data structure
- Every query is a decision tree of height $\leq d$
Lower Bounds (1D, Indexing) cont.

- Combine queries to decision tree identifying input
- Prune non-reachable branches

\[\# \text{ zeroes on any path} \leq \frac{N}{c} \]

\[\frac{c^{N/c}}{2^{N/c}} \leq \# \text{ inputs} = \# \text{ leaves} \leq \binom{d \cdot N/c}{N/c} \]

query time \(d = \Omega(c) \)
Upper Bounds (2D, Indexing)

$O(1)$ time using $O(N)$ words

Atallah and Yuan (SODA 2010)

- Using two-levels of recursion, tabulating micro-blocks of size $\log \log m \times \log \log n$

$O(1)$ time using $O(N)$ bits
Upper Bounds (2D, Indexing) \textit{cont.}

\textbf{Thm} \(O(N/c \cdot \log c) \) bits and \(O(c \log c) \) query time

- Build \(\log c \) indexing structures for compressed matrices for block sizes \(2^i \times c/2^i \), each using \(O(N/c) \) bits and can locate \(O(1) \) blocks with minimum key in \(O(1) \) time

- **Query**: \(O(1) \) blocks for each block size in time \(O(c) + \) elements not covered by blocks in time \(O(c \log c) \)
Lower Bounds (2D, Indexing)

- As for 1D consider \(\{0,1\}\) matrices and partition the array into blocks of \(c\) elements each containing exactly one zero.

- As for 1D an algorithm being able to identify the zero in each block using \(N/c\) bits will require time \(\Omega(c)\).
Upper Bounds (2D, Encoding)

- **Translate input matrix into rank matrix using** \(O(N \log N) \) **bits**
- **Apply index structure to rank matrix using** \(O(N) \) **bits achieving** \(O(1) \) **query time**

<table>
<thead>
<tr>
<th></th>
<th>29</th>
<th>-14</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>7</td>
<td>0</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>-4</td>
<td>-5</td>
<td>-1</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>-17</td>
<td>32</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>15</th>
<th>2</th>
<th>10</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>9</td>
<td>6</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>5</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>13</td>
<td>1</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

input matrix

rank matrix
NEW Proof

Lower Bound (2D, Encoding)
Demaine et al. 2009

- Define a set of
 \[\left(\frac{m}{2}! \right)^{\frac{n}{2}} - \frac{m}{4} \]
 matrices where the RMQ answers differ among all matrices

- Bits required is at least
 \[\log \left(\frac{m}{2}! \right)^{\frac{n}{2}} - \frac{m}{4} = \Omega(N \log m) \]
Conclusion
1D Range Minimum Queries

Indexing

- **Upper Bound**
 - Fischer and Heun (2007)
 - Time: $O(1)$
 - Space: $2n + o(n) + |A|$ bits

- **Lower Bound**
 - Matching upper bound
 - Time: $\Omega(c)$
 - Space: $O(n/c) + |A|$ bits

Encoding

- **Upper Bound**
 - Fischer (Latin 2010)
 - Time: $O(1)$
 - Space: $2n + o(n)$ bits

- **Lower Bound**
 - Space: $2n - \Theta(\log n)$ bits
2D Range Minimum Queries

Indexing

- NEW Upper Bound
 - Time $= O(1)$
 - Space $= O(N) + |A|$ bits
 - Time $= O(c \log^2 c)$
 - Space $= O(N/c) + |A|$ bits

- NEW Lower Bound
 - Time $= \Omega(c)$
 - Space $= O(N/c) + |A|$ bits

Encoding

- Upper Bound
 - Time $= O(1)$
 - Space $= O(N \log n)$ bits

- Lower Bound:
 - Demain et al. (2009)
 - Space $= \Omega(N \log m)$ bits

NEW Proof
Thank You