On the Scalability of Computing Triplet and Quartet Distances

Morten Kragelund Holt
Jens Johansen
Gerth Stølting Brodal
Introduction

• Trees are used in many branches of science.
• Phylogenetic trees are especially used in biology and bioinformatics.
• We want to measure how different two such trees are.
Introduction

• Trees are used in many branches of science.
• Phylogenetic trees are especially used in biology and bioinformatics.
• We want to measure how different two such trees are.

Holt, Johansen, Brodal
On the Scalability of Computing Triplet and Quartet Distances
Distances

• Natural in some cases.
• Between trees?
Triplets and Quartets

Triplets
- Used in **rooted** trees.
- Sub-trees consisting of **three** leaves.
- \(\binom{n}{3} \) in a tree with \(n \) leaves.
- With 2,000 leaves, 1,331,334,000 triplets.
- Naïve algorithm runs in at least \(\Omega(n^3) \).
- Number of disagreeing triplets.

Quartets
- Used in **unrooted** trees.
- Sub-trees consisting of **four** leaves.
- \(\binom{n}{4} \) in a tree with \(n \) leaves.
- With 2,000 leaves, 664,668,499,500 quartets.
- Naïve algorithm runs in at least \(\Omega(n^4) \).
- Number of disagreeing quartets.
Goal

• Comparison of two trees (T_1 and T_2) with the same set of leaf-labels.
 – Numerical value of the difference of the two trees.
 – Number of different triplets (quartets) in the two input trees.

• A tree has a distance of 0 to itself.
Brodal *et al.* [SODA13]

<table>
<thead>
<tr>
<th>T_1</th>
<th>T_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolved</td>
<td>Resolved</td>
</tr>
<tr>
<td>A: Agree</td>
<td>C</td>
</tr>
<tr>
<td>B: Disagree</td>
<td>D</td>
</tr>
</tbody>
</table>

- For binary trees C, D and E are all zero 😊
For binary trees C, D and E are all zero 😊
Brodal et al. [SODA13]

<table>
<thead>
<tr>
<th></th>
<th>Binary</th>
<th>Arbitrary degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triplets</td>
<td>O(n lg n)</td>
<td>O(n lg n)</td>
</tr>
<tr>
<td></td>
<td>Up to 4d+2 counters in each HDT node</td>
<td>Up to 4d+2 counters in each HDT node</td>
</tr>
<tr>
<td>Quartets</td>
<td>O(n lg n)</td>
<td>O(max(d₁, d₂) n lg n)</td>
</tr>
<tr>
<td></td>
<td>2d² + 79d + 22 counters</td>
<td>2d² + 79d + 22 counters</td>
</tr>
</tbody>
</table>

- A lot of counters ☹️. Is this even feasible?
- Why the d factor on arbitrary degree quartets?
 - d^2 counters
Overview

• Basic idea
 – Each triplet (quartet) is anchored somewhere in T_1.
 – Run through T_1, and for each triplet (quartet), check if they are anchored the same way in T_2.

• The algorithm consists of four parts
 1. Coloring
 2. Counting
 3. Hierarchical Decomposition Tree (HDT)
 4. Extraction and contraction
1. Coloring

• Consists of two steps
 1. Leaf-linking \(O(n) \)
 2. Recursive coloring \(O(n \lg n) \)
2. Counting

- Using the coloring of T_1 and T_2 we count the number of similar triplets (quartets).
- No reason to look at all triplets (would be much too slow) — Instead, look at inner nodes.
- In each inner node, we can keep track of the number of different triplets (quartets), rooted at the given node.
- Using counting and coloring, the triplet distance can be calculated in $O(n^2)$.
3. Hierarchical Decomposition Tree (HDT)

- **Problem:** T_2 is unbalanced.
- **Solution:** Hierarchical Decomposition Trees.

Built in linear time
Locally balanced
Triplet distance in $O(n \lg^2 n)$
4. Extraction and Contraction

- Ensuring that the HDT is small, we can cut off that $\lg n$ factor.
- If the HDT is too large, remove the irrelevant parts.

$O(n \lg n)$

Remove $\lg n$ factor
Optimizations

1. [SODA13] hints at constructing HDTs early.
 Problem: HDTs take up a lot of memory.
 Solution: Postpone HDT construction.
 Result: 25-50% reduction in memory usage.
 4-10% reduction in runtime.

2. Utilizing the standard C++ vector data structure.
 Problem: Relatively slow (for our needs).
 Solution: A purpose-built linked list implementation.
 Result: 6-9% reduction in runtime on binary trees.

3. Allocating memory whenever needed.
 Problem: (Relatively) slow to allocate memory.
 Solution: Allocation in large blocks.
 Result: 18-25% improvement in the runtime.
 10-20% increase in memory usage on large input.
Limitations

Two primary limitations in our implementation:

• **Integer representation**
 – \(\binom{n}{3} \) and \(\binom{n}{4} \) are in the order of \(n^3 \) and \(n^4 \).
 – With signed 64-bit integers, quartet distance of only 55,000 leaves.
 – **Solution**: Signed 128-bit integers for \(n^4 \) counters.
 • Quartet distance of up to 2,000,000 leaves.

• **Recursion depth**
 – OS imposed limitation in recursion stack depth.
 – Input, consisting of a very long chain, will fail.
 – Windows: Height \(~4,000\).
 – Linux: Height \(~48,000\).
 – **Solution**: Purpose built stack implementation*.

*Not done in the implementation
Results: [SODA13]

It works, and it is fast!

<table>
<thead>
<tr>
<th>Leaves</th>
<th>Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000</td>
<td>.29</td>
</tr>
<tr>
<td>10,000</td>
<td>3.90</td>
</tr>
<tr>
<td>100,000</td>
<td>42.60</td>
</tr>
<tr>
<td>1,000,000</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Improvements

• Why \(\min (d_1, d_2) \)?

 – \(d \)-counters given by first input tree

 – [SODA13]: Calculates 6 out of 9 cases.

 – [SODA13]: \(d_1 = 2, d_2 = 1024 \) is much slower than \(d_1 = d_2 = 2 \).

\[
\begin{array}{c|c|c|c}
\text{T_1} & \alpha & \beta & \gamma \\
\hline
\alpha & \times & \times & \times \\
\beta & \times & \times & \times \\
\gamma & \times & \times & \times \\
\end{array}
\]

Add \(5d^2 + 18d + 7 \) counters

Total \(7d^2 + 97d + 29 \) counters

Remove need for swapping

\(O(\min(d_1, d_2) \cdot n \lg n) \)
Results: Improved

Faster in all cases

<table>
<thead>
<tr>
<th>Leaves</th>
<th>Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000</td>
<td>.02</td>
</tr>
<tr>
<td>10,000</td>
<td>.31</td>
</tr>
<tr>
<td>100,000</td>
<td>4.14</td>
</tr>
<tr>
<td>1,000,000</td>
<td>52.05</td>
</tr>
</tbody>
</table>

Holt, Johansen, Brodal
On the Scalability of Computing Triplet and Quartet Distances
More improvements

A+B is a choice
Count A+E instead
Faster?

Holt, Johansen, Brodal
On the Scalability of Computing Triplet and Quartet Distances
More improvements

To count B

• 14 cases
• 92 sums
• $5d^2 + 48d + 8$ counters
• $O(\min(d_1, d_2) n \lg n)$

To Count E

• 5 cases
• 21 sums
• $1d^2 + 12d + 12$ counters
• $O(\min(d_1, d_2) n \lg n)$
Results: More improvements

Fastest in the field 😊

Leaves	Time (s)
1,000 | 0.01
10,000 | 0.21
100,000 | 3.07
1,000,000 | 40.06

Holt, Johansen, Brodal
On the Scalability of Computing Triplet and Quartet Distances
Overview

<table>
<thead>
<tr>
<th></th>
<th>Binary</th>
<th>Arbitrary degree</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[SODA13]: $O(n \lg n)$</td>
<td>[SODA13]: $O(n \lg n)$</td>
</tr>
<tr>
<td></td>
<td>[SODA13]: ~34 seconds</td>
<td>[SODA13]: ~7 seconds</td>
</tr>
<tr>
<td>Triplets</td>
<td>[SODA13]: $O(n \lg n)$</td>
<td>$d_1 = d_2 = 256$</td>
</tr>
<tr>
<td></td>
<td>[SODA13]: ~125 seconds</td>
<td>[SODA13]: ~139 seconds</td>
</tr>
<tr>
<td>Quartets</td>
<td>[SODA13]: $O(n \lg n)$</td>
<td>[SODA13]: $O(\max(d_1, d_2) \ n \lg n)$</td>
</tr>
<tr>
<td></td>
<td>[SODA13]: ~125 seconds</td>
<td>[SODA13]: ~139 seconds</td>
</tr>
</tbody>
</table>

Balanced tree, 630,000 leaves
Conclusion

• [SODA13] is both practical and implementable.
 • We have
 – Performed a thorough study of the alternative choices not studied in [SODA13].
 – Theoretically, and practically, found good choices for the parameters.
 – Shown that [SODA13], and derivatives, successfully scales up to trees with millions of nodes.
 • Open problem
 – Current algorithm makes heavy use of random accesses, and doesn't scale to external memory.
 – Current algorithm is single-threaded.