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Abstract. Sorting n integers in the word-RAM model is a fundamental
problem and a long-standing open problem is whether integer sorting is
possible in linear time when the word size is ω(logn). In this paper we
give an algorithm for sorting integers in expected linear time when the
word size is Ω(log2 n log logn). Previously expected linear time sorting
was only possible for word size Ω(log2+ε n). Part of our construction is a
new packed sorting algorithm that sorts n integers of w/b-bits packed in
O(n/b) words, where b is the number of integers packed in a word of size w
bits. The packed sorting algorithm runs in expected O(n

b
(logn+ log2 b))

time.

1 Introduction

Sorting is one of the most fundamental problems in computer science and has
been studied widely in many different computational models. In the comparison
based setting the worst case and average case complexity of sorting n elements
is Θ(n log n), and running time O(n log n) is e.g. achieved by Mergesort and
Heapsort [19]. The lower bound is proved using decision trees, see e.g. [4], and
is also valid in the average case.

In the word-RAM model with word size w = Θ(log n) we can sort n w-bit
integers in O(n) time using radix sort. The exact bound for sorting n integers of
w bits each using radix sort is Θ(n w

logn ). A fundamental open problem is if we

can still sort in linear time when the word size is ω(log n) bits. The RAM dictio-
nary of van Emde Boas [17] allows us to sort in O(n logw) time. Unfortunately
the space usage by the van Emde Boas structure cannot be bounded better than
O(2w). The space usage can be reduced to O(n) by using the Y-fast trie of
Willard [18], but the time bound for sorting becomes expected. For polyloga-

rithmic word sizes, i.e. w = logO(1) n, this gives sorting in time O(n log log n).
Kirkpatrick and Reisch gave an algorithm achievingO(n log w

logn ) [11], which also
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gives O(n log log n) for w = logO(1) n. Andersson et al. [3] showed how to sort
in expected O(n) time for word size w = Ω(log2+ε n) for any ε > 0. The result
is achieved by exploiting word parallelism on “signatures” of the input elements
packed into words, such that a RAM instruction can perform several element
operations in parallel in constant time. Han and Thorup [10] achieved running
time O(n

√
log(w/ log n)), implying the best known bound of O(n

√
log log n) for

sorting integers that is independent of the word size. Thorup established that
maintaining RAM priority queues and RAM sorting are equivalent problems by
proving that if we can sort in time O(n · f(n)) then there is a priority queue
using O(f(n)) time per operation [15].

Our results. We consider for which word sizes we can sort n w-bit integers in
the word-RAM model in expected linear time. We improve the previous best
word size of Ω(log2+ε n) [3] to Ω(log2 n log log n). Word-level parallelism is used
extensively and we rely on a new packed sorting algorithm (see Section 5) in
intermediate steps. The principal idea for the packed sorting algorithm is an
implementation of the randomized Shell-sort of Goodrich [7] using the parallelism
in the RAM model. The bottleneck in our construction is O(log log n) levels of
packed sorting ofO(n) elements each of Θ(log n) bits, where each sorting requires

time O(n log2 n
w ). For w = Ω(log2 n log log n), the overall time becomes O(n).

This paper is structured as follows: Section 2 contains a high level description
of the ideas and concepts used by our algorithm. In Section 3 we summarize the
RAM operations adopted from [3] that are needed to implement the algorithm
outlined in Section 2. In Section 4 we give the details of implementing the al-
gorithm on a RAM and in Section 5 we present the packed sorting algorithm.
Finally, in Section 6 we discuss how to adapt our algorithm to work with an
arbitrary word size.

2 Algorithm

In this section we give a high level description of the algorithm. The input is n
words x1, x2, . . . , xn, each containing a w-bit integer from U = {0, 1, . . . , 2w−1}.
We assume the elements are distinct. Otherwise we can ensure this by hashing
the elements into buckets in expected O(n) time and only sorting a reduced
input with one element from each bucket. The algorithm uses a Monte Carlo
procedure, which sorts the input with high probability. While the output is not
sorted, we repeatedly rerun the Monte Carlo algorithm, turning the main sorting
algorithm into a Las Vegas algorithm.

The Monte Carlo algorithm is a recursive procedure using geometrically de-
creasing time in the recursion, ensuring O(n) time overall. We view the algorithm
as building a Patricia trie over the input words by gradually refining the Patri-
cia trie in the following sense: on the outermost recursion level characters are
considered to be w bits long, on the next level w/2 bits, then w/4 bits and so
on. The main idea is to avoid considering all the bits of an element to decide
its rank. To avoid looking at every bit of the bit string e at every level of the



recursion, we either consider the MSH(e) (Most Significant Half, i.e. the |e|2 most
significant bits of e) or LSH(e) (Least Significant Half) when moving one level
down in the recursion (similar to the recursion in van Emde Boas trees).

The input to the ith recursion is a list (id1, e1), (id2, e2), . . . , (idm, em) of
length m, where n ≤ m ≤ 2n−1, idj is a log n bit id and ej is a w/2i bit element.
At most n elements have equal id. The output is a list of ranks π1, π2, . . . , πm,
where the j’th output is the rank of ej among elements with id identical to idj
using log n bits. There are m(log n+ w

2i ) bits of input to the ith level of recursion
and m log n bits are returned from the ith level. On the outermost recursion level
we take the input x1, x2, . . . , xn and produce the list (1, x1), (1, x2), . . . , (1, xn),
solve this problem, and use the ranks π1, π2, . . . , πn returned to permute the
input in sorted order in O(n) time.

To describe the recursion we need the following definitions.

Definition 1 ([6]). The Patricia trie consists of all the branching nodes and
leaves of the corresponding compacted trie as well as their connecting edges.
All the edges in the Patricia trie are labeled only by the first character of the
corresponding edge in the compacted trie.

Definition 2. The Patricia trie of x1, x2, . . . , xn of detail i, denoted T i, is the
Patricia trie of x1, . . . , xn when considered over the alphabet Σi = {0, 1}w/2i .

The input to the ith recursion satisfies the following invariants, provided the
algorithm has not made any errors so far:

i. The number of bits in an element is |e| = w
2i .

ii. There is a bijection from id’s to non leaf nodes in T i.
iii. The pair (id, e) is in the input if and only if there is an edge from a node

v ∈ T i corresponding to id to a child labeled by a string in which e ∈ Σi is
the first character.

That the maximum number of elements at any level in the recursion is at
most 2n−1 follows because a Patricia trie on n strings has at most 2n−1 edges.

The recursion. The base case of the recursion is when |e| = O( w
logn ) bits, i.e. we

can pack Ω(log n) elements into a single word, where we use the packed sorting
algorithm from Section 5 to sort (idj , ej , j) pairs lexicographically by (id, e) in
time O( n

logn (log n + (log log n)2)) = O(n). Then we generate the ranks πj and

return them in the correct order by packed sorting pairs (j, πj) by j.
When preparing the input for a recursive call we need to halve the number

of bits the elements use. To maintain the second invariant we need to find all
the branching nodes of T i+1 to create a unique id for each of them. Finally
for each edge going out of a branching node v in T i+1 we need to make the
pair (id, e), where id is v’s id and e is the first character (in Σi+1) on an edge
below v. Compared to level i, level i+1 may have two kinds of branching nodes:
inherited nodes and new nodes, as detailed below (Figure 1).

In Figure 1 we see T i and T i+1 on 5 bit-strings. In T i characters are 4 bits
and in T i+1 they are 2 bits. Observe that node a is not going to be a branching
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Fig. 1. Example of how nodes are introduced and how they disappear from detail i to
i+ 1. The bits that are marked by a dotted circle are omitted in the recursion.

node when characters are 2 bits because “00” are the first bits on both edges
below it. Thus the “00” bits below a should not appear in the next recursion
– this is captured by Invariant iii. A similar situation happens at the node b,
however since there are two different 2-bit strings below it, we get the inherited
node binh. At the node c we see that the order among its edges is determined
by the first two bits, thus the last two bits can be discarded. Note there are 7
elements in the ith recursion and 8 in the next – the number of elements may
increase in each recursion, but the maximum amount is bounded by 2n− 2.

By invariant ii) every id corresponds to a node v in T i. If we find all elements
that share the same id, then we have all the outgoing edges of v. We refine an edge
labeled e out of v to have the two characters MSH(e)LSH(e) both of w/2i+1 bits.
Some edges might then share their MSH. The node v will appear in level i + 1
if and only if at least two outgoing edges do not share MSH – these are the
inherited nodes. Thus we need only count the number of unique MSHs out of v
to decide if v is also a node in level i + 1. The edges out of v at level i+ 1 will
be the unique MSH characters (in Σi+1) on the edges down from v at level i.

If at least two edges out of v share the same first character c (MSH), but not
the second, then there is a branching node following c – these are the new nodes.
We find all new nodes by detecting for each MSH character c ∈ Σi+1 going out
of v if there are two or more edges with c as their first character. If so, we have
a branching node following c and the labels of the edges are the LSHs. At this
point everything for the recursion is prepared.

We receive for each id/node of T i+1 the ranks of all elements (labels on the
outgoing edges) from the recursion. A relative rank for an element at level i is
created by concatenating the rank of MSH(e) from level i + 1 with the rank of
LSH(e) from level i+1. All edges branching out of a new node needs to receive the
rank of their MSH (first character). If the MSH was not used for the recursion, it
means it did not distinguish any edges, and we can put an arbitrary value as the
rank (we use 0). The same is true for the LSHs. Since each relative rank consists
of 2 log n bits we can sort them fast using packed sorting (Section 5) and finally
the actual ranks can be returned based on that.



3 Tools

This section is a summary of standard word-parallel algorithms used by our
sorting algorithm; for an extensive treatment see [12]. In particular the prefix
sum and word packing algorithms can be derived from [13]. For those familiar
with “bit tricks” this section can be skipped.

We adopt the notation and techniques used in [3]. A w-bit word can be
interpreted as a single integer in the range 0, . . . , 2w − 1 or the interpretation
can be parameterized by (M,f). A word under the (M,f) interpretation uses
the rightmost M(f + 1) bits as M fields using f + 1 bits each and the most
significant bit in each field is called the test bit and is 0 by default.

0 x1 0 x2 · · · xM0

w bits

f + 1 bits test-bits

We write X = (x1, x2, . . . , xM ) where xi uses f bits, meaning the word X has
the integer x1 encoded in its leftmost field, x2 in the next and so on. If xi ∈ {0, 1}
for all i we may also interpret them as boolean values where 0 is false and 1 is
true. This representation allows us to do “bit tricks”.

Comparisons. Given a word X = (x1, x2, . . . , xM ) under the (M,f) inter-
pretation, we wish to check xi > 0 for 1 ≤ i ≤ M , i.e. we want a word
Z = [X > 0] = (z1, z2, . . . , zM ), in the (M,f) interpretation, such that zi = 1
(true) if xi > 0 and zi = 0 (false) otherwise. Let kM,f be the word where the
number k is encoded in each field where 0 ≤ k < 2f . Create the word 0M,f

and set all test bits to 1. Evaluate ¬(0M,f − X), the ith test bit is 1 if and
only if xi > 0. By masking away everything but the test bit and shifting right
by f bits we have the desired output. We can also implement more advanced
comparisons, such as comparing [X ≤ Y ] by setting all test bits to 1 in Y and 0
in X and subtracting the word X from Y . The test bits now equal the result of
comparing xi ≤ yi.

Hashing. We will use a family of hash functions that can hash n elements in
some range 0, . . . ,m − 1 with m > nc to 0, . . . nc − 1. Furthermore a family of
hash functions that are injective on a set with high probability when chosen
uniformly at random, can be found in [5]. Hashing is roughly just multiplication
by a random odd integer and keeping the most significant bits. The integer is at
most f bits. If we just multiply this on a word in (M,f) interpretation one field
might overflow to the next field, which is undesirable. To implement hashing on
a word in (M,f) representation we first mask out all even fields, do the hashing,
then do the same for odd fields. The details can be found in [3]. In [5] it is
proved that if we choose a function ha uniformly at random from the family
Hk,` = {ha | 0 < a < 2k, and a is odd} where ha(x) = (ax mod 2k) div 2k−`

for 0 ≤ x < 2k then Pr[ha(x) = ha(y)] ≤ 1
2`−1 for distinct x, y from a set of



size n. Thus choosing ` = c log n + 1 gives collision probability ≤ 1/nc. The
probability that the function is not injective on n elements: Pr[∃x, y : x 6= y ∧
ha(x) = ha(y)] ≤ n2

nc (union bound on all pairs).

Prefix sum. Let A = (a1, . . . , aM ) be the input with M = b, f = w/b and

ai ∈ {0, 1}. In the output B = (b1, . . . , bM ), bi = 0 if ai = 0 and bi =
∑i−1

j=1 aj
otherwise. We describe an O(log b) time algorithm. The invariant is that in
the jth iteration ai has been added to its 2j immediately right adjacent fields.
Compute B1, which is A shifted right by f bits and added to itself3: B1 =
A + (A ↓ f). Let Bi = (Bi−1 ↓ 2i−1f) + Bi−1. This continues for log b steps.
Then we keep all fields i from Blog b where ai = 1, subtract 1 from all of these
fields and return it.

Packing words. We are given a word X = (x1, . . . , xM ) in (M,f) = (b, w/b)
representation. Some of the fields are zero fields, i.e. a field only containing bits
set to 0. We want to produce a “packed word”, such that reading from left to
right there are no zero fields, followed only by zero fields. The fields that are
nonzero in the input must be in the output and in the same order. This problem
is solved by Andersson et al. [3, Lemma 6.4]

Expanding. Given a word with fields using b′ bits we need to expand each field to
using b bits i.e., given X = (x1, . . . , xk) where |xi| = b′ we want Y = (y1, . . . , yk)
such that yi = xi but |yi| = b. We assume there are enough zero fields in the
input word such that the output is only one word. The general idea is to just do
packing backwards. The idea is to write under each field the number of bits it
needs to be shifted right, this requires at most O(log b) bits per field. We now
move items based on the binary representation. First we move those who have
the highest bit set, then we continue with those that have the second highest bit
set and so on. The proof that this works is the same as for the packing algorithm.

Creating index. We have a list of n elements of w/b bits each, packed in an
array of words X1, X2, . . . , Xn/b, where each word is in (b, w/b) representation
and w/b ≥ dlog ne. Furthermore, the rightmost dlog ne bits in every field are 0.
The index of an element is the number of elements preceding it and we want to
put the index in the rightmost bits of each field. First we will spend O(b) time to
create the word A = (1, 2, 3, . . . , b) using the rightmost bits of the fields. We also
create the word B = (b, b, . . . , b). Now we run through the input words, update
Xi = Xi + A, then update A = A + B. The time is O(n/b + b), which in our
case always is O(n/b), since we always have b = O(log n log log n).

4 Algorithm – RAM details

In this section we describe how to execute each step of the algorithm outlined in
Section 2. We first we describe how to construct T i+1 from T i, i.e. advance one
level in the recursion. Then we describe how to use the output of the recursion

3 We use ↑ and ↓ as the shift operations where x ↑ y is x · 2y and x ↓ y is bx div 2yc.



for T i+1 to get the ranks of the input elements for level i. Finally the analysis
of the algorithm is given.

The input to the ith recursion is a list of pairs: (id, e) using log n + w
2i bits

each and satisfying the invariants stated in Section 2. The list is packed tightly

in words, i.e. if we have m input elements they occupy O(m·(logn+w/2i)
w ) words.

The returned ranks are also packed in words, i.e. they occupy O(m·logn
w ) words.

The main challenge of this section is to be able to compute the necessary opera-
tions, even when the input elements and output ranks are packed in words. For
convenience and simplicity we assume tuples are not split between words.

Finding branching nodes. We need to find the branching nodes (inherited and
new) of T i+1 given T i. For each character ej in the input list (i.e. T i) we create
the tuple (idj , Hj , j) where idj corresponds to the node ej branches out of,
Hj = h(MSH(ej)) is the hash function applied to the MSH of ej , and j is
the index of ej in the input list. The list L consists of all these tuples and L is
sorted. We assume the hash function is injective on the set of input MSHs, which
it is with high probability if |Hj | ≥ 4 log n (see the analysis below). If the hash
function is not injective, this step may result in an error which we will realize
at the end of the algorithm, which was discussed in Section 2. The following is
largely about manipulating the order of the elements in L, such that we can
create the recursive sub problem, i.e. T i+1.

To find Inherited nodes we find all the edges out of nodes that are in both
T i and T i+1 and pair them with unique identifiers for their corresponding nodes
in T i+1. Consider a fixed node a which is a branching node in T i – this cor-
responds to an id in L. There is a node ainh in T i+1 if a and its edges satisfy
the following condition: When considering the labels of the edges from a to its
children over the alphabet Σi+1 instead of Σi, there are at least two edges from
a to its children that do not share their first character. When working with the
list L the node a and its edges correspond to the tuples where the id is the id
that corresponds to a. This means we need to compute for each id in L whether
there are at least 2 unique MSHs, and if so we need to extract precisely all the
unique MSHs for that id.

The list L is sorted by (idj , Hj , j), which means all edges out of a particular
node are adjacent in L, and all edges that share their MSH are adjacent in L
(with high probability), because they have the same hash value which is distinct
from the hash value of all other MSHs (with high probability). We select the
MSHs corresponding to the first occurrence of each unique hash value with a
particular id for the recursion (given that it is needed). To decide if a tuple
contains a first unique hash value, we need only consider the previous tuple: did
it have a different hash value from the current, or did it have a different id?
To decide if MSH(ej) should be extracted from the corresponding tuple we also
need to compute whether there are at least two unique hash values with id idj .
This tells us we need to compute two things for every tuple (idj , Hj , j) in L:

1. Is j the first index such that (idj−1 = idj ∧Hj−1 6= Hj) ∨ idj−1 6= idj?
2. Is there an i such that idi = idj and Hi 6= Hj?



To accomplish the first task we do parallel comparison of idj and Hj with idj−1
and Hj−1 on L and L shifted left by one tuple length (using the word-level
parallel comparisons described in Section 3). The second task is tedious but
conceptually simple to test: count the number of unique hash values for each id,
and test for each id if there are at least two unique hash values.

The details of accomplishing the two tasks are as follows (keep in mind that
elements of the lists are bit-strings). LetB be a list of length |L| and consider each
element in B as being the same length as a tuple in L. Encode 1 in element j of B
if and only if idj−1 6= idj in L. Next we create a list C with the same element size
as B. There will be a 1 in element j of C if and only if Hj 6= Hj−1 ∧ idj = idj−1
(this is what we needed to compute for task 1). The second task is now to
count how many 1s there are in C between two ones in B. Let CC be the prefix
sum on C (described in Section 3) and keep only the values where there is a
corresponding 1 in B, all other elements become 0 (simple masking). Now we
need to compute the difference between each non-zero value and the next non-
zero value in CC – but these are varying lengths apart, how do we subtract them?
The solution is to pack the list CC (see Section 3) such that the values become
adjacent. Now we compute the difference, and by maintaining some information
from the packing we can unpack the differences to the same positions that the
original values had. Now we can finally test for the first tuple in each id if there
are at least two different hash values with that id. That is, we now have a list D
with a 1 in position j if j is the first position of an id in L and there are at
least two unique MSHs with that id. In addition to completing the two tasks
we can also compute the unique identifiers for the inherited nodes in T i+1 by
performing a prefix sum on D.

Finding the new nodes is simpler than finding the inherited nodes. The only
case where an LSH should be extracted is when two or more characters out of a
node share MSH, in which case all the LSHs with that MSH define the outgoing
edges of a new node. Observe that if two characters share MSH then their LSHs
must differ, due to the assumption of distinct elements propagating through the
recursion. To find the relevant LSHs we consider the sorted list L. Each new
node is identified by a pair (id,MSH) where (idj , h(MSH(ej)), ·) appears at least
twice in L, i.e. two or more tuples with the same id and hash of MSH. For each
new node we find the leftmost such tuple j in L.

Technically we scan through L and evaluate (Hj−1 6= Hj ∨ idj−1 6= idj) ∧
(Hj+1 = Hj ∧ idj+1 = idj). If this evaluates to true then j is a new node
in T i+1. Using a prefix sum we create and assign all ids for new nodes and
their edges. In order to test if LSHj should be in the recursion we evaluate
(Hj−1 = Hj ∧ idj−1 = idj) ∨ (Hj+1 = Hj ∧ idj+1 = idj). This evaluates to true
only if the LSH should be extracted for the recursion because we assume distinct
elements.

Using results from the recursion. We created the input to the recursion by first
extracting all MSHs, packing them and afterwards extracting all LSHs and then
packing them. Finally concatenate the two packed arrays. Now we simply have
to reverse this process, first for the MSHs, then the LSHs. Technically after



the recursive call the array of tuples (j, rankMSHj , rankLSHj , Hj , idj , ranknew) is
filled out. Some of the fields are just additional fields to the array L. The three
ranks use log n bits each and are initialized to 0. First rankMSHj is filled out and
afterwards rankLSHj . The same procedure is used for both.

For retrieving rankMSHi , we know how many MSHs were extracted for the
recursion, so we separate the ranks of MSHs and LSHs and now only consider
MSHs ranks. We first expand the MSH ranks as described in Section 3 such
that each rank uses the same number of bits as an entire tuple. Recall that the
MSHs were packed and we now need to unpack them. If we saved information
on how we packed elements, we can also unpack them. The information we need
to retain is how many elements each word contributed and for each element in
a word its initial position in that word. Note that for each unique Hj we only
used one MSH for the recursion, thus we need to propagate its rank to all other
elements with the same hash and id. Fortunately the hash values are adjacent,
and by noting where the hash values change we can do an operation similar to
a prefix sum to copy the ranks appropriately.

Returning. As this point the only field not filled out is ranknew. To fill it out
we sort the list by the concatenation of rankMSHj and rankLSHj . In this sorted
list we put the current position of the elements in ranknew (see Section 3 on
creating index). The integer in ranknew is currently not the correct rank, but by
subtracting the first ranknew in an id from the other ranknews with that id we
get the correct rank. Then we sort by j, mask away everything except ranknew,
pack the array and return. We are guaranteed the ranks from the recursion use
log n bits each, which means the concatenation uses 2 log n bits so we can sort
the array efficiently.

Analysis. We argue that the algorithm is correct and runs in linear time.

Lemma 1. Let n be the number of integers we need to sort then the maximum
number of elements in any level of the recursion is 2n− 1.

Proof. This follows immediately from the invariants. ut

Theorem 1. The main algorithm runs in O(n) time.

Proof. At level i of the recursion |e| = w
2i . After log log n levels we switch to the

base case where there are b = 2log logn = log n elements per word. The time used
in the base case is O(n

b (log2 b+ log n)) = O( n
logn ((log log n)2 + log n)) = O(n).

At level i of the recursion we have b = 2i elements per word and the time to
work with each of the O(n

b ) words using the methods of Section 3 is O(log b).

The packed sorting at each level sorts elements with O(log n) bits, i.e. O
(

w
logn

)
elements per word in time O

(
n

w/ logn

(
log2 w

logn + log n
))

. Plugging in our as-

sumption w = Ω(log2 n log log n), we get time O
(

n
log logn

)
. For all levels the

total time becomes
∑log logn

i=0

(
n
2i i+ n

log logn

)
= O(n). ut
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Fig. 2. Transposing and concatenating blocks.

The probability of doing more than one iteration of the algorithm is the
probability that there is a level in the recursion where the randomly chosen
hash function was not injective. The hash family can be designed such that
the probability of a hash function not being injective when chosen uniformly at
random is less than 1/n2 [5]. We need to choose log log n such functions. The
probability that at least one of the functions is not injective is O(log log n/n2) <
O(1/n). In conclusion the sorting step works with high probability, thus we
expect to repeat it O(1) times.

5 Packed sorting

We are given n elements of w
b bits packed into n

b words using (M,f) = (b, w/b)
representation that we need to sort. Albers and Hagerup [2] describe how to per-
form a deterministic packed sorting in timeO(n

b log n·log b). We describe a simple
randomized word-level parallel sorting algorithm running in time O(n

b (log n +

log2 b)). Packed sorting proceeds in four steps described in the following sections.
The idea is to implement b sorting networks in parallel using word-level paral-
lelism. In sorting networks one operation is available: compare the elements at
positions i and j then swap i and j based on the outcome of the comparison.
Denote the `th element of word i at any point by xi,`. First we use the `th
sorting network to get a sorted list L`: x1,` ≤ x2,` ≤ · · · ≤ xn/b,` for 1 ≤ ` ≤ b.
Each L` then occupies field ` of every word. Next we reorder the elements such
that each of the b sorted lists uses n/b2 consecutive words, i.e. xi,j ≤ xi,j+1 and
xi,w/b ≤ xi+1,1, where n/b2 · k < i ≤ n/b2 · (k + 1) and 0 ≤ k ≤ b− 1 (See Fig-
ure 2). From that point we can merge the lists using the RAM implementation
of bitonic merging (see below). The idea of using sorting networks or oblivious
sorting algorithms is not new (see e.g. [9]), but since we need to sort in sublinear
time (in the number of elements) we use a slightly different approach.

Data-oblivious sorting. A famous result is the AKS deterministic sorting net-
work which uses O(n log n) comparisons [1]. Other deterministic O(n log n) sort-
ing networks were presented in [2, 8]. However, in our application randomized
sorting suffices so we use the simpler randomized Shell-sort by Goodrich [7]. An
alternative randomized sorting-network construction was given by Leighton and
Plaxton [14].



Randomized Shell-sort sorts any permutation with probability at least 1 −
1/N c (N = n/b is the input size), for any c ≥ 1. We choose c = 2. The probability
that b arbitrary lists are sorted is then at least 1− b/N c ≥ 1−N c−1. We check
that the sorting was correct for all the lists in time O(n

b ). If not, we redo the
oblivious sorting algorithm. Overall the expected running time is O(n

b log n
b ).

The Randomized Shell-sort algorithm works on any adversarial chosen per-
mutation that does not know the random choices of the algorithm. The algo-
rithm uses randomization to generate a sequence of Θ(n log n) comparisons (a
sorting network) and then applies the sequence of comparisons to the input ar-
ray. We start the algorithm of Goodrich [7] to get the sorting network. We run
it with N = n/b as the input size. When the network compares i and j, we
compare words i and j field-wise. That is, the first element of the two words
are compared, the second element of the words are compared and so on. Us-
ing the result we can implement the swap that follows. After this step we have
x1,` ≤ x2,` ≤ · · · ≤ xn/b,` for all 1 ≤ ` ≤ b.

The property of Goodrich’ Shellsort that makes it possible to apply it in
parallel is its data obliviousness. In fact any sufficiently fast data oblivious sorting
algorithm would work.

Verification step. The verification step proceeds in the following way: we have
n/b words and we need to verify that the words are sorted field-wise. That is,
to check that xi,` ≤ xi+1,` for all i, `. One packed comparison will be applied
on each pair of consecutive words to verify this. If the verification fails, then we
redo the oblivious sorting algorithm.

Rearranging the sequences. The rearrangement in Figure 2 corresponds to look-
ing at b words as a b × b matrix (b words with b elements in each) and then
transposing this matrix. Thorup [16, Lemma 9] solved this problem in O(b log b)
time. We transpose every block of b consecutive words. The transposition takes
overall time O(n

b log b). Finally, we collect in correct order all the words of each
run. This takes time O(n

b ). Building the ith run for 1 ≤ i ≤ b consists of putting
together the ith words of the blocks in the block order. This can be done in a
linear scan in O(n/b) time.

Bitonic merging. The last phase is the bitonic merging. We merge pairs of runs
of n

b2 words into runs of 2n
b2 words, then runs of 2n

b2 words into runs of size 4n
b2

and so on, until we get to a single run of n/b words. We need to do log b rounds,
each round taking time O(n

b log b) making for a total time of O(n
b log2 b) [2].

6 General sorting

In this section we tune the algorithm slightly and state the running time of the
tuned algorithm in terms of the word size w. We see that for some word sizes
we can beat the O(n

√
log log n) bound. We use the splitting technique of [10,

Theorem 7] that given n integers can partition them into sets X1, X2, . . . Xk of
at most O(

√
n) elements each, such that all elements in Xi are less than all ele-

ments in Xi+1 in O(n) time. Using this we can sort in O(n log logn√
w/ logw

) time.



The algorithm repeatedly splits the set S of inital size n0 into smaller subsets
of size nj =

√
nj−1 until we get log nj ≤

√
w/ logw where it stops and sorts

each subset in linear time using our sorting algorithm. The splitting is performed

log((log n)/(
√
w/ logw)) = 1

2 log log2 n logw
w = O(log log2 n log logn

w ) times. An in-

teresting example is to sort in time O(n log log log n) for w = log2 n
(log logn)c for any

constant c. When w = log2 n

2Ω(
√

log logn) , the sorting time is Ω(n
√

log log n).
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