
Dynamic 3-sided Planar Range Queries with
Expected Doubly Logarithmic Time

Gerth Stølting Brodal1, Alexis C. Kaporis2, Spyros Sioutas3, Konstantinos
Tsakalidis1, Kostas Tsichlas4

1 MADALGO?, Department of Computer Science, Aarhus University, Denmark
{gerth,tsakalid}@madalgo.au.dk

2 Computer Engineering and Informatics Department, University of Patras, Greece
kaporis@ceid.upatras.gr

3 Department of Informatics, Ionian University, Corfu, Greece
sioutas@ionio.gr

4 Department of Informatics, Aristotle University of Thessaloniki, Greece
tsichlas@csd.auth.gr

Abstract. We consider the problem of maintaining dynamically a set
of points in the plane and supporting range queries of the type [a, b] ×
(−∞, c]. We assume that the inserted points have their x-coordinates
drawn from a class of smooth distributions, whereas the y-coordinates are
arbitrarily distributed. The points to be deleted are selected uniformly
at random among the inserted points. For the RAM model, we present
a linear space data structure that supports queries in O(log log n + t)
expected time with high probability and updates in O(log log n) expected
amortized time, where n is the number of points stored and t is the size
of the output of the query. For the I/O model we support queries in
O(log logB n + t/B) expected I/Os with high probability and updates in
O(logB log n) expected amortized I/Os using linear space, where B is the
disk block size. The data structures are deterministic and the expectation
is with respect to the input distribution.

1 Introduction

We consider the dynamic 3-sided range reporting problem in the plane. That is,
to design a data structure that supports insertions and deletions of points, and
supports range reporting queries of the type [a, b]× (−∞, c], i.e. report all points
contained in the query rectangle with one side unbounded. The more general
orthogonal range searching problem finds applications in databases and is used
as a subroutine for solving general geometric problems. A survey can be found
at [1]. In particular, multidimensional instances can be decomposed into two
dimensional subproblems, where 3-sided queries are of major importance [2].
Previous results. In the internal memory, the most commonly used data struc-
ture for supporting 3-sided queries is the priority search tree of McCreight [3].
? Center for Massive Data Algorithmics, a Center of the Danish National Research

Foundation.

It supports queries in O(log n + t) worst case time, insertions and deletions of
points in O(log n) worst case time and uses linear space, where n is the number
of points and t the size of the output of a query. It is a hybrid of a binary heap
for the y-coordinates and of a balanced search tree for the x-coordinates.

In the RAM model, the only dynamic sublogarithmic bounds for this prob-
lem are due to Willard [4] who attains O (log n/ log log n) worst case or O(

√
log n)

randomized update time and O (log n/ log log n + t) query time using linear space.
In the I/O model, Arge et al. [5] proposed an indexing scheme that consumes
O(n/B) space, supports updates in O(logB n) amortized I/Os, and 3-sided range
queries in O(logB n + t/B) I/Os, where B denotes the block size. Both data
structures pose no assumptions on the input distribution.
Our results. We consider the case where the x-coordinates of inserted points
are drawn from a smooth probabilistic distribution, and the y-coordinates are
arbitrarily distributed. Moreover, the deleted points are selected uniformly at
random among the points in the data structure and queries can be adversarial.
The assumption on the x-coordinates is broad enough to include distributions
used in practice, such as uniform, regular and classes of non-uniform ones [6, 7].

We present two linear space data structures, for the RAM and the I/O model
respectively. In the former model, we achieve a query time of O(log log n + t)
expected with high probability and update time of O(log log n) expected amor-
tized. In the latter model, the I/O complexity is O(log logB n + t/B) expected
with high probability for the query and O(logB log n) expected amortized for
the updates. In both cases, our data structures are deterministic and the expec-
tation is derived from a probabilistic distribution of the x-coordinates, and an
expected analysis of updates of points with respect to their y-coordinates.

2 Preliminaries

Weight Balanced Exponential Tree. The exponential search tree is a tech-
nique for converting static polynomial space search structures for ordered sets
into fully-dynamic linear space data structures. It was introduced in [8, 9, 10]
for searching and updating a dynamic set U of n integer keys in linear space and
optimal O(

√
logn/loglogn) time in the RAM model. Effectively, to solve the dic-

tionary problem, a doubly logarithmic height search tree is employed that stores
static local search structures of size polynomial to the degree of the nodes.

Here we describe a variant of the exponential search tree that we dynamize us-
ing a rebalancing scheme relative to that of the weight balanced search trees [11].
In particular, a weight balanced exponential tree T on n points is a leaf-oriented
rooted search tree where the degrees of the nodes increase double exponentially
on a leaf-to-root path. All leaves have the same depth and reside on the lowest
level of the tree (level zero). The weight of a subtree Tu rooted at node u is defined
to be the number of its leaves. If u lies at level i ≥ 1, the weight of Tu ranges
within

[
1
2 · wi + 1, 2 · wi − 1

]
, for a weight parameter wi = cci

2
1 and constants

c2 > 1 and c1 ≥ 23/(c2−1) (see Lem. 1). Note that wi+1 = wc2
i . The root does not

need to satisfy the lower bound of this range. The tree has height Θ(logc2
logc1

n).

The insertion of a new leaf to the tree increases the weight of the nodes
on the leaf-to-root path by one. This might cause some weights to exceed their
range constraints (“overflow”). We rebalance the tree in order to revalidate the
constraints by a leaf-to-root traversal, where we “split” each node that over-
flowed. An overflown node u at level i has weight 2wi. A split is performed by
creating a new node v that is a sibling of u and redistributing the children of u
among u and v such that each node acquires a weight within the allowed range.
In particular, we scan the children of u, accumulating their weights until we
exceed the value wi, say at child x. Node u gets the scanned children and v gets
the rest. Node x is assigned as a child to the node with the smallest weight.
Processing the overflown nodes u bottom up guarantees that, during the split
of u, its children satisfy their weight constraints.

The deletion of a leaf might cause the nodes on the leaf-to-root path to
“underflow”, i.e. a node u at level i reaches weight 1

2wi. By an upwards traversal
of the path, we discover the underflown nodes. In order to revalidate their node
constraints, each underflown node chooses a sibling node v to “merge” with.
That is, we assign the children of u to v and delete u. Possibly, v needs to
“split” again if its weight after the merge is more than 3

2wi (“share”). In either
case, the traversal continues upwards, which guarantees that the children of the
underflown nodes satisfy their weight constraints. The following lemma, which
is similar to [11, Lem. 9], holds.

Lemma 1. After rebalancing a node u at level i, Ω(wi) insertions or deletions
need to be performed on Tu, for u to overflow or underflow again.

Proof. A split, a merge or a share on a node u on level i yield nodes with
weight in

[
3
4wi − wi−1,

3
2wi + wi−1

]
. If we set wi−1 ≤ 1

8wi, which always holds
for c1 ≥ 23/(c2−1), this interval is always contained in [58wi,

14
8 wi]. ut

Range Minimum Queries. The range minimum query (RMQ) problem asks
to preprocess an array of size n such that, given an index range, one can report
the position of the minimum element in the range. In [12] the RMQ problem is
solved in O(1) time using O(n) space and preprocessing time.

Dynamic External Memory 3-sided Range Queries for O(B2) Points.
[5, Lem. 1] A set of K ≤ B2 points can be stored in O(K/B) blocks, so that
3-sided queries need O(t/B + 1) I/Os and updates O(1) I/Os, for output size t.

Smooth Distribution and Interpolation Search Structures. Informally,
a distribution defined over an interval I is smooth if the probability density
over any subinterval of I does not exceed a specific bound, however small this
subinterval is (no “sharp peaks” exist).

Formally, given two functions f1 and f2, a density function µ = µ[a, b](x)
is (f1, f2)-smooth [13, 6] if there exists a constant β, such that for all c1, c2, c3

where a ≤ c1 < c2 < c3 ≤ b, and for all integers n and ∆ = (c3 − c1)/f1(n),
it holds that

∫ c2

c2−∆
µ[c1, c3](x)dx ≤ β·f2(n)

n , when µ[c1, c3](x) = 0 for x < c1

or x > c3, and µ[c1, c3](x) = µ(x)/p for c1 ≤ x ≤ c3, where p =
∫ c3

c1
µ(x)dx.

The IS-tree [13, 14] is a dynamic data structure based on interpolation search
that consumes linear space and can be updated in O(1) time when the update po-
sition is given. Furthermore, the elements can be searched in O(log2 n) worst case
time, or O(log log n) time expected with high probability when they are drawn
from an (nα, n1/2)-smooth distribution, for constant 1/2<α<1. Its externaliza-
tion, the ISB-tree [15], consumes linear space and can be updated in O(1) I/Os
for given update position. It supports searches in O(logB n) I/Os worst case, or
O(logB log n) I/Os expected with high probability when the elements are drawn
from an (n/(log log n)1+ε, n1/B)-smooth distribution, for constant ε>0.

3 The Internal Memory Data Structure

Our internal memory construction for storing n points in the plane consists of
an IS-tree storing the points in sorted order with respect to the x-coordinates.
On the sorted points, we maintain a weight balanced exponential search tree T
with c2 = 3/2 and c1 = 26. Thus its height is Θ(log log n). In order to use T
as a priority search tree, we augment it as follows. The root stores the point
with overall minimum y-coordinate. Points are assigned to nodes in a top-down
manner, such that a node u stores the point with minimum y-coordinate among
the points in Tu that is not already stored at an ancestor of u. Note that the
point from a leaf of T can only be stored at an ancestor of the leaf and that
the y-coordinates of the points stored at a leaf-to-root path are monotonically
decreasing (Min-Heap Property). Finally, every node contains an RMQ-structure
on the y-coordinates of the points in the children nodes and an array with
pointers to the children nodes. Every point in a leaf can occur at most once in
an internal node u and the RMQ-structure of u’s parent. Since the space of the
IS-tree is linear [13, 14], so is the total space.

3.1 Querying the Data Structure

Before we describe the query algorithm of the data structure, we will describe
the query algorithm that finds all points with y-coordinate less than c in a
subtree Tu. Let the query begin at an internal node u. At first we check if the
y-coordinate of the point stored at u is smaller or equal to c (we call it a member
of the query). If not we stop. Else, we identify the tu children of u storing points
with y-coordinate less than or equal to c, using the RMQ-structure of u. That
is, we first query the whole array and then recurse on the two parts of the array
partitioned by the index of the returned point. The recursion ends when the
point found has y-coordinate larger than c (non-member point).

Lemma 2. For an internal node u and value c, all points stored in Tu with
y-coordinate ≤c can be found in O(t + 1) time, when t points are reported.

Proof. Querying the RMQ-structure at a node v that contains tv member points
will return at most tv +1 non-member points. We only query the RMQ-structure
of a node v if we have already reported its point as a member point. Summing
over all visited nodes we get a total cost of O (

∑
v(2tv + 1))=O(t + 1). ut

In order to query the whole structure, we first process a 3-sided query [a, b]×
(−∞, c] by searching for a and b in the IS-tree. The two accessed leaves a, b
of the IS-tree comprise leaves of T as well. We traverse T from a and b to the
root. Let Pa (resp. Pb) be the root-to-leaf path for a (resp. b) in T and let
Pm = Pa ∩ Pb. During the traversal we also record the index of the traversed
child. When we traverse a node u on the path Pa − Pm (resp. Pb − Pm), the
recorded index comprises the leftmost (resp. rightmost) margin of a query to
the RMQ-structure of u. Thus all accessed children by the RMQ-query will
be completely contained in the query’s x-range [a, b]. Moreover, by Lem. 2 the
RMQ-structure returns all member points in Tu.

For the lowest node in Pm, i.e. the lowest common ancestor (LCA) of a and
b, we query the RMQ-structure for all subtrees contained completely within a
and b. We don’t execute RMQ-queries on the rest of the nodes of Pm, since they
root subtrees that overlap the query’s x-range. Instead, we merely check if the
x- and y-coordinates of their stored point lies within the query. Since the paths
Pm, Pa−Pm and Pb−Pm have length O(log log n), the query time of T becomes
O(log log n + t). When the x-coordinates are smoothly distributed, the query to
the IS-Tree takes O(log log n) expected time with high probability [13]. Hence
the total query time is O(log log n + t) expected with high probability.

3.2 Inserting and Deleting Points

Before we describe the update algorithm of the data structure, we will first prove
some properties of updating the points in T . Suppose that we decrease the y-
value of a point pu at node u to the value y′. Let v be the ancestor node of u
highest in the tree with y-coordinate bigger than y′. We remove pu from u. This
creates an “empty slot” that has to be filled by the point of u’s child with smallest
y-coordinate. The same procedure has to be applied to the affected child, thus
causing a “bubble down” of the empty slot until a node is reached with no points
at its children. Next we replace v’s point pv with pu (swap). We find the child
of v that contains the leaf corresponding to pv and swap its point with pv. The
procedure recurses on this child until an empty slot is found to place the last
swapped out point (“swap down”). In case of increasing the y-value of a node
the update to T is the same, except that pu is now inserted at a node along the
path from u to the leaf corresponding to pu.

For every swap we will have to rebuild the RMQ-structures of the parents
of the involved nodes, since the RMQ-structures are static data structures. This
has a linear cost to the size of the RMQ-structure (Sect. 2).

Lemma 3. Let i be the highest level where the point has been affected by an
update. Rebuilding the RMQ-structures due to the update takes O(wc2−1

i) time.

Proof. The executed “bubble down” and “swap down”, along with the search
for v, traverse at most two paths in T . We have to rebuild all the RMQ-
structures that lie on the two v-to-leaf paths, as well as that of the parent
of the top-most node of the two paths. The RMQ-structure of a node at level j

is proportional to its degree, namely O (wj/wj−1). Thus, the total time becomes
O

(∑i+1
j=1wj/wj−1

)
= O

(∑
i
j=0w

c2−1
j

)
= O

(
wc2−1

i

)
. ut

To insert a point p, we first insert it in the IS-tree. This creates a new leaf
in T , which might cause several of its ancestors to overflow. We split them
as described in Sec. 2. For every split a new node is created that contains no
point. This empty slot is filled by “bubbling down” as described above. Next, we
search on the path to the root for the node that p should reside according to the
Min-Heap Property and execute a “swap down”, as described above. Finally, all
affected RMQ-structures are rebuilt.

To delete point p, we first locate it in the IS-tree, which points out the
corresponding leaf in T . By traversing the leaf-to-root path in T , we find the
node in T that stores p. We delete the point from the node and “bubble down” the
empty slot, as described above. Finally, we delete the leaf from T and rebalance T
if required. Merging two nodes requires one point to be “swapped down” through
the tree. In case of a share, we additionally “bubble down” the new empty slot.
Finally we rebuild all affected RMQ-structures and update the IS-tree.
Analysis. We assume that the point to be deleted is selected uniformly at
random among the points stored in the data structure. Moreover, we assume
that the inserted points have their x-coordinates drawn independently at random
from an (nα, n1/2)-smooth distribution for a constant 1/2<α<1, and that the
y-coordinates are drawn from an arbitrary distribution. Searching and updating
the IS-tree needs O(log log n) expected with high probability [13, 14], under the
same assumption for the x-coordinates.

Lemma 4. Starting with an empty weight balanced exponential tree, the amor-
tized time of rebalancing it due to insertions or deletions is O(1).

Proof. A sequence of n updates requires at most O(n/wi) rebalancings at level i
(Lem. 1). Rebuilding the RMQ-structures after each rebalancing costs O

(
wc2−1

i

)
time (Lem. 3). Summing over all levels, the total time becomes O(

∑height(T)
i=1

n
wi
·

wc2−1
i) = O(n

∑height(T)
i=1 wc2−2

i)= O(n), when c2<2. ut

Lemma 5. The expected amortized time for inserting or deleting a point in a
weight balanced exponential tree is O(1).

Proof. The insertion of a point creates a new leaf and thus T may rebalance,
which by Lemma 4 costs O(1) amortized time. Note that the shape of T only
depends on the sequence of updates and the x-coordinates of the points that
have been inserted. The shape of T is independent of the y-coordinates, but the
assignment of points to the nodes of T follows uniquely from the y-coordinates,
assuming all y-coordinates are distinct. Let u be the ancestor at level i of the leaf
for the new point p. For any integer k ≥ 1, the probability of p being inserted at u
or an ancestor of u can be bounded by the probability that a point from a leaf
of Tu is stored at the root down to the k-th ancestor of u plus the probability that
the y-coordinate of p is among the k smallest y-coordinates of the leaves of T . The
first probability is bounded by

∑height(T)
j=i+k

2wj−1
1
2 wj

, whereas the second probability

is bounded by k
/

1
2wi. It follows that p ends up at the i-th ancestor or higher with

probability at most O
(∑height(T)

j=i+k
2wj−1
1
2 wj

+ k
1
2 wi

)
= O

(∑height(T)
j=i+k w1−c2

j−1 + k
wi

)
=

O
(
w1−c2

i+k−1 + k
wi

)
= O

(
w

(1−c2)c
k−1
2

i + k
wi

)
= O

(
1

wi

)
for c2 = 3/2 and k = 3. Thus

the expected cost of “swapping down” p becomes O
(∑height(T)

i=1
1

wi
· wi+1

wi

)
=

O
(∑height(T)

i=1 wc2−2
i

)
= O

(∑height(T)
i=1 c

(c2−2)ci
2

1

)
= O(1) for c2 < 2.

A deletion results in “bubbling down” an empty slot, whose cost depends on
the level of the node that contains it. Since the point to be deleted is selected
uniformly at random and there are O (n/wi) points at level i, the probabil-
ity that the deleted point is at level i is O (1/wi). Since the cost of an up-
date at level i is O (wi+1/wi), we get that the expected “bubble down” cost is
O

(∑height(T)
i=1

1
wi
· wi+1

wi

)
= O(1) for c2 < 2. ut

Theorem 1. In the RAM model, using O(n) space, 3-sided queries can be sup-
ported in O(log log n + t/B) expected time with high probability, and updates in
O(log log n) time expected amortized, given that the x-coordinates of the inserted
points are drawn from an (nα, n1/2)-smooth distribution for constant 1/2<α<1,
the y-coordinates from an arbitrary distribution, and that the deleted points are
drawn uniformly at random among the stored points.

4 The External Memory Data Structure

We now convert our internal memory into a solution for the I/O model. First
we substitute the IS-tree with its variant in the I/O model, the ISB-Tree [15].
We implement every consecutive Θ(B2) leaves of the ISB-Tree with the data
structure of Arge et al. [5]. Each such structure constitutes a leaf of a weight
balanced exponential tree T that we build on top of the O(n/B2) leaves.

In T every node now stores B points sorted by y-coordinate, such that
the maximum y-coordinate of the points in a node is smaller than all the y-
coordinates of the points of its children (Min-Heap Property). The B points
with overall smallest y-coordinates are stored at the root. At a node u we store
the B points from the leaves of Tu with smallest y-coordinates that are not
stored at an ancestor of u. At the leaves we consider the B points with smallest
y-coordinate among the remaining points in the leaf to comprise this list. More-
over, we define the weight parameter of a node at level i to be wi=B2·(7/6)i

. Thus
we get wi+1=w7/6

i , which yields a height of Θ(log logB n). Let di= wi

wi−1
=w1/7

i de-
note the degree parameter for level i. All nodes at level i have degree O(di). Also
every node stores an array that indexes the children according to their x-order.

We furthermore need a structure to identify the children with respect to their
y-coordinates. We replace the RMQ-structure of the internal memory solution
with a table. For every possible interval [k, l] over the children of the node, we
store in an entry of the table the points of the children that belong to this
interval, sorted by y-coordinate. Since every node at level i has degree O(di),

there are O(d2
i) different intervals and for each interval we store O(B ·di) points.

Thus, the total size of this table is O(B · d3
i) points or O(d3

i) disk blocks.
The ISB-Tree consumes O(n/B) blocks [15]. Each of the O(n/B2) leaves of T

contains B2 points. Each of the n/wi nodes at level i contains B points and a ta-
ble with O(B ·d3

i) points. Thus, the total space is O
(
n+

∑height(T)
i=1 n·B·d3

i /wi

)
=

O
(
n+

∑height(T)
i=1 n·B

/(
B2· 76

i) 4
7
)

= O(n) points, i.e. O(n/B) disk blocks.

4.1 Querying the Data Structure

The query is similar to the internal memory construction. First we access the
ISB-Tree, spending O(logB log n) expected I/Os with high probability, given
that the x-coordinates are smoothly distributed [15]. This points out the leaves
of T that contain a, b. We perform a 3-sided range query at the two leaf struc-
tures. Next, we traverse upwards the leaf-to-root path Pa (resp. Pb) on T , while
recording the index k (resp. l) of the traversed child in the table. That costs
Θ(log logB n) I/Os. At each node we report the points of the node that belong
to the query range. For all nodes on Pa − Pb and Pb − Pa we query as follows:
We access the table at the appropriate children range, recorded by the index k
and l. These ranges are always [k + 1,last child] and [0, l − 1] for the node that
lie on Pa−Pb and Pb−Pa, respectively. The only node where we access a range
[k + 1, l− 1] is the LCA of the leaves that contain a and b. The recorded indices
facilitate access to these entries in O(1) I/Os. We scan the list of points sorted by
y-coordinate, until we reach a point with y-coordinate bigger than c. All scanned
points are reported. If the scan has reported all B elements of a child node, the
query proceeds recursively to that child, since more member points may lie in
its subtree. Note that for these recursive calls, we do not need to access the B
points of a node v, since we accessed them in v’s parent table. The table entries
they access contain the complete range of children. If the recursion accesses a
leaf, we execute a 3-sided query on it, with respect to a and b [5].

The list of B points in every node can be accessed in O(1) I/Os. The con-
struction of [5] allows us to load the B points with minimum y-coordinate in a
leaf also in O(1) I/Os. Thus, traversing Pa and Pb costs Θ(log logB n) I/Os worst
case. There are O(log logB n) nodes u on Pa−Pm and Pb−Pm. The algorithm re-
curses on nodes that lie within the x-range. Since the table entries that we scan
are sorted by y-coordinate, we access only points that belong to the answer.
Thus, we can charge the scanning I/Os to the output. The algorithm recurses on
all children nodes whose B points have been reported. The I/Os to access these
children can be charged to their points reported by their parents, thus to the
output. That allows us to access the child even if it contains only o(B) member
points to be reported. The same property holds also for the access to the leaves.
Thus we can perform a query on a leaf in O(t/B) I/Os. Summing up, the worst
case query complexity of querying T is O(log logB n + t

B) I/Os. Hence in total
the query costs O(log logB n + t

B) expected I/Os with high probability.

4.2 Inserting and Deleting Points

Insertions and deletions of points are in accordance with the internal solution.
For the case of insertions, first we update the ISB-tree. This creates a new leaf
in the ISB-tree that we also insert at the appropriate leaf of T in O(1) I/Os [5].
This might cause some ancestors of the leaves to overflow. We split these nodes,
as in the internal memory solution. For every split B empty slots “bubble down”.
Next, we update T with the new point. For the inserted point p we locate the
highest ancestor node that contains a point with y-coordinate larger than p’s.
We insert p in the list of the node. This causes an excess point, namely the one
with maximum y-coordinate among the B points stored in the node, to “swap
down” towards the leaves. Next, we scan all affected tables to replace a single
point with a new one.

In case of deletions, we search the ISB-tree for the deleted point, which points
out the appropriate leaf of T . By traversing the leaf-to-root path and loading the
list of B point, we find the point to be deleted. We remove the point from the
list, which creates an empty slot that “bubbles down” T towards the leaves. Next
we rebalance T as in the internal solution. For every merge we need to “swap
down” the B largest excess points. For a share, we need to “bubble down” B
empty slots. Next, we rebuild all affected tables and update the ISB-tree.
Analysis. Searching and updating the ISB-tree requires O(logB log n) expected
I/Os with high probability, given that the x-coordinates are drawn from an
(n/(log log n)1+ε, n1/B)-smooth distribution, for constant ε>0 [15].

Lemma 6. For every path corresponding to a “swap down” or a “bubble down”
starting at level i, the cost of rebuilding the tables of the paths is O

(
d3

i+1

)
I/Os.

Proof. Analogously to Lem. 3, a “swap down” or a “bubble down” traverse at
most two paths in T . A table at level j costs O(d3

j) I/Os to be rebuilt, thus all
tables on the paths need O

(∑i+1
j=1d

3
j

)
= O

(
d3

i+1

)
I/Os. ut

Lemma 7. Starting with an empty external weight balanced exponential tree,
the amortized I/Os for rebalancing it due to insertions or deletions is O(1).

Proof. We follow the proof of Lem. 4. Rebalancing a node at level i requires
O

(
d3

i+1+B·d3
i

)
I/Os (Lem. 6), since we get B “swap downs” and “bubble downs”

emanating from the node. The total I/O cost for a sequence of n updates is
O

(∑height(T)
i=1

n
wi
·(d3

i+1+B·d3
i)

)
=O

(
n·

∑height(T)
i=1 w−1/2

i +B·w−4/7
i

)
=O(n). ut

Lemma 8. The expected amortized I/Os for inserting or deleting a point in an
external weight balanced exponential tree is O(1).

Proof. By similar arguments as in Lem. 5 and considering that a node contains B
points, we bound the probability that point p ends up at the i-th ancestor or
higher by O(B/wi). An update at level i costs O(d3

i+1)=O(w1/2
i) I/Os. Thus

“swapping down” p costs O
(∑height(T)

i=1 w1/2
i · B

wi

)
=O(1) expected I/Os. The same

bound holds for deleting p, following similar arguments as in Lem. 5. ut

Theorem 2. In the I/O model, using O(n/B) disk blocks, 3-sided queries can be
supported in O(log logB n+t/B) expected I/Os with high probability, and updates
in O(logB log n) I/Os expected amortized, given that the x-coordinates of the
inserted points are drawn from an (n/(log log n)1+ε, n1/B)-smooth distribution
for a constant ε > 0, the y-coordinates from an arbitrary distribution, and that
the deleted points are drawn uniformly at random among the stored points.

References

[1] Agarwal, P., Erickson, J.: Geometric range rearching and its relatives. In Chazelle,
B., Goodman, J., Pollack, R., eds.: Advances in Discrete and Computational
Geometry. Contemporary Mathematics. American Mathematical Society Press
(1999) 1–56

[2] Kanellakis, P.C., Ramaswamy, S., Vengroff, D.E., Vitter, J.S.: Indexing for data
models with constraints and classes. In: Proc. ACM SIGACT-SIGMOD-SIGART
PODS. (1993) 233–243

[3] McCreight, E.M.: Priority search trees. SIAM J. Comput. 14(2) (1985) 257–276
[4] Willard, D.E.: Examining computational geometry, van emde boas trees, and

hashing from the perspective of the fusion tree. SIAM J. Comput. 29(3) (2000)
1030–1049

[5] Arge, L., Samoladas, V., Vitter, J.S.: On two-dimensional indexability and opti-
mal range search indexing. In: Proc. ACM SIGMOD-SIGACT-SIGART PODS.
(1999) 346–357

[6] Andersson, A., Mattsson, C.: Dynamic interpolation search in o(log log n) time.
In: Proc. ICALP. Volume 700 of Springer LNCS. (1993) 15–27

[7] Kaporis, A., Makris, C., Sioutas, S., Tsakalidis, A., Tsichlas, K., Zaroliagis, C.:
Improved bounds for finger search on a RAM. In: Proc. ESA. Volume 2832 of
Springer LNCS. (2003) 325–336

[8] Andersson, A.: Faster deterministic sorting and searching in linear space. In:
Proc. IEEE FOCS. (1996) 135–141

[9] Thorup, M.: Faster deterministic sorting and priority queues in linear space. In:
Proc. ACM-SIAM SODA. (1998) 550–555

[10] Andersson, A., Thorup, M.: Dynamic ordered sets with exponential search trees.
J. ACM 54(3) (2007) 13

[11] Arge, L., Vitter, J.S.: Optimal dynamic interval management in external memory
(extended abstract). In: Proc. IEEE FOCS. (1996) 560–569

[12] Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors.
SIAM J. Comput. 13(2) (1984) 338–355

[13] Mehlhorn, K., Tsakalidis, A.: Dynamic interpolation search. J. ACM 40(3) (1993)
621–634

[14] Kaporis, A., Makris, C., Sioutas, S., Tsakalidis, A., Tsichlas, K., Zaroliagis, C.:
Dynamic interpolation search revisited. In: Proc. ICALP. Volume 4051 of Springer
LNCS. (2006) 382–394

[15] Kaporis, A.C., Makris, C., Mavritsakis, G., Sioutas, S., Tsakalidis, A.K., Tsichlas,
K., Zaroliagis, C.D.: ISB-tree: A new indexing scheme with efficient expected
behaviour. In: Proc. ICALP. Volume 3827 of Springer LNCS. (2005) 318–327

