
Cahe Oblivious Searh Trees via Binary Trees ofSmall HeightGerth St�lting Brodal� Rolf Fagerberg� Riko Jaob�AbstratWe propose a version of ahe oblivious searh trees whih is simplerthan the previous proposal of Bender, Demaine and Farah-Colton andhas the same omplexity bounds. In partiular, our data struture avoidsthe use of weight balaned B-trees, and an be implemented as just asingle array of data elements, without the use of pointers. The struturealso improves spae utilization.For storing n elements, our proposal uses (1 + ")n times the elementsize of memory, and performs searhes in worst ase O(logB n) memorytransfers, updates in amortized O((log2 n)=("B)) memory transfers, andrange queries in worst ase O(logB n+ k=B) memory transfers, where kis the size of the output.The basi idea of our data struture is to maintain a dynami binarytree of height logn + O(1) using existing methods, embed this tree ina stati binary tree, whih in turn is embedded in an array in a aheoblivious fashion, using the van Emde Boas layout of Prokop.We also investigate the pratiality of ahe obliviousness in the areaof searh trees, by providing an empirial omparison of di�erent methodsfor laying out a searh tree in memory.1 IntrodutionModern omputers ontain a hierarhy of memory levels, with eah level atingas a ahe for the next. Typial omponents of the memory hierarhy are:registers, level 1 ahe, level 2 ahe, main memory, and disk. The time foraessing a level in the memory hierarhy inreases from one yle for registersand level 1 ahe to �gures around 10, 100, and 100,000 yles for level 2 ahe,main memory, and disk, respetively [13, p. 471℄, making the ost of a memory�BRICS (Basi Researh in Computer Siene, www.bris.dk, funded by the Danish Na-tional Researh Foundation), Department of Computer Siene, University of Aarhus, NyMunkegade, DK-8000 �Arhus C, Denmark. E-mail: fgerth,rolf,rjaobg�bris.dk. Par-tially supported by the Future and Emerging Tehnologies programme of the EU underontrat number IST-1999-14186 (ALCOM-FT).1



aess depend highly on what is the urrent lowest memory level ontainingthe element aessed. The evolution in CPU speed and memory aess timeindiates that these di�erenes are likely to inrease in the future [13, pp. 7and 429℄.As a onsequene, the memory aess pattern of an algorithm has beomea key omponent in determining its running time in pratie. Sine lassiasymptotial analysis of algorithms in the RAM model is unable to apturethis, a number of more elaborate models for analysis have been proposed.The most widely used of these is the I/O model of Aggarwal and Vitter [1℄,whih assumes a memory hierarhy ontaining two levels, the lower level hav-ing size M and the transfer between the two levels taking plae in bloks of Belements. This model is illustrated in Figure 1. The ost of the omputationin the I/O model is the number of bloks transferred. This model is adequatewhen the memory transfer between two levels of the memory hierarhy dom-inates the running time, whih is often the ase when the size of the datasigni�antly exeeds the size of main memory, as the aess time is very largefor disks ompared to the remaining levels of the memory hierarhy.
BlokMemory 1CPU Memory 2

Figure 1: The I/O modelReently, the onept of ahe oblivious algorithms has been introdued byFrigo et al. [12℄. In essene, this designates algorithms optimized in the I/Omodel, exept that one optimizes to a blok size B and a memory sizeM whihare unknown. This seemingly simple hange has signi�ant onsequenes: sinethe analysis holds for any blok and memory size, it holds for all levels of thememory hierarhy. In other words, by optimizing an algorithm to one unknownlevel of the memory hierarhy, it is optimized to eah level automatially.Furthermore, the harateristis of the memory hierarhy do not need to beknown, and do not need to be hardwired into the algorithm for the analysis tohold. This inreases the portability of implementations of the algorithm, whihis important in many situations, inluding prodution of software librariesand ode delivered over the web. For further details on the onept of aheobliviousness, see [12℄. 2



Frigo et al. [12℄ present optimal ahe oblivious algorithms for matrix trans-position, FFT, and sorting. Bender et al. [5℄, give a proposal for ahe obliv-ious searh trees with searh ost mathing that of standard (ahe aware)B-trees [4℄. While most of the results in [5, 12℄ are of theoretial nature, [12℄ontains some preliminary empirial investigations indiating the ompetitive-ness of ahe oblivious algorithms. The authors delare the determination ofthe range of pratiality of ahe oblivious algorithms an important avenuefor future researh.In this paper, we study further the subjet of ahe oblivious searh trees.In the �rst part, we propose a simpli�ed version of the ahe oblivious searhtrees from [5℄, ahieving the same omplexity bounds. In partiular, our datastruture avoids the use of weight balaned B-trees of Arge and Vitter [3℄,and it an be implemented in a single array of data elements without theuse of pointers. Our struture also improves spae utilization, implying thatfor given n, a larger fration of the struture an reside in lower levels of thememory hierarhy. The lak of pointers also makes more elements �t in a blok,thereby inreasing the parameter B. These e�ets tend to derease runningtime in pratie. For storing n elements, our data struture uses (1+")n timesthe element size of memory. Searhes are performed in worst ase O(logB n)memory transfers, updates in amortized O((log2 n)=("B)) memory transfers,and range queries in worst ase O(logB n + k=B) memory transfers, where kis the size of the output. This mathes the asymptoti omplexities of [5℄. Wenote that as in [5℄, the amortized omplexity of updates an be lowered bythe tehnique of substituting leaves with pointers to bukets eah ontaining�(logn) elements and maintaining the size bound of the bukets by splitting(merging) overowing (underowing) bukets. The prie to pay is that rangesannot be reported in the optimal number �(k=B) of memory transfers, sinethe bukets an reside in arbitrary positions in memory.The basi idea of our data struture is to maintain a dynami binary treeof height logn + O(1) using existing methods [2, 14℄, embed this tree in astati binary tree, whih in turn is embedded in an array in a ahe obliviousfashion, using the van Emde Boas layout [5, 19, 22℄. The stati strutures aremaintained by global rebuilding, i.e. they are rebuilt eah time the dynamitree has doubled or halved in size.In the last part of this paper, we try to assess more systematially theimpat of the memory layout of searh trees by omparing experimentallythe eÆieny of the ahe-oblivious van Emde Boas layout with a ahe-awarelayout based on multiway trees, and with lassial layouts suh as Breath FirstSearh (BFS), Depth First Searh (DFS), and inorder. Our results indiatethat the nie theoretial properties of ahe oblivious searh trees atually doarry over into pratie. We also implement our proposal, and on�rm itspratiality. 3



1.1 Related workOne tehnique used by our data struture is a ahe oblivious layout of statibinary searh trees permitting searhes in the asymptotially optimal num-ber of memory transfers. This layout, the van Emde Boas layout, was pro-posed by Prokop [19, Setion 10.2℄, and is related to a data struture ofvan Emde Boas [21, 22℄.Another tehnique used is the maintenane of binary searh trees of heightlogn+O(1) using loal rebuildings of subtrees. The small height of the tree al-lows it to be embedded in a perfet binary tree (a tree with 2k�1 internal nodesand optimal height) whih has only a onstant fator more nodes. Tehniquesfor maintaining small height in binary trees were proposed by Andersson andLai [2℄, who gave an algorithm for maintaining height dlog(n+ 1)e + 1 usingamortized O(log2 n) work per update. By viewing the tree as a linear list,this problem an be seen to be equivalent to the problem of maintaining nelements in sorted order in an array of length O(n), using even redistributionof the elements in a setion of the array as the reorganization primitive duringinsertions and deletions of elements. In this formulation, a similar solutionhad previously been given by Itai et al. [14℄, also using amortized O(log2 n)work per update. In [9℄, a mathing 
(log2 n) lower bound for algorithmsusing this primitive was given.Both the van Emde Boas layout and the tehnique of Itai et al. were used inthe previous proposal for ahe oblivious searh trees [5℄. The diÆulty of thisproposal originates mainly from the need to hange the van Emde Boas layoutduring updates, whih in turn neessitates the use of the weight balaned B-trees of Arge and Vitter [3℄. By managing to use a stati van Emde Boaslayout (exept for oasional global rebuildings of the entire struture), weavoid the use of weight balaned B-trees, and arrive at a signi�antly simplerstruture.Another improvement in our data struture is to avoid the use of pointers.The term impliit is often used for pointer-free implementations of trees andother data strutures whih are normally pointer based. One early exampleis the heap of Williams [23℄. There is a large body of work dealing withimpliit data strutures, see e.g. [7, 11, 18℄ and the referenes therein. In thatwork, the term impliit is often de�ned as using only spae for the n elementsstored, plus O(1) additional spae. In the present paper, we will abuse theterminology a little, taking impliit to mean a struture stored entirely in anarray of elements of length O(n).We note that independently, a data struture very similar to ours has beenproposed by Bender et al. [6℄. Essentially, their proposal is leaf-oriented, whereours is node-oriented. The leaf-oriented version allows an easy implementa-tion of optimal sanning from any given loation (the node-oriented versionneeds suessor pointers for this), whereas the node-oriented version allows4



an impliit implementation, with the assoiated inrease in B and derease inmemory usage.The impat of di�erent memory layouts for data strutures has been stud-ied before in di�erent ontexts. In onnetion with matries, signi�ant speed-ups an be ahieved by using layouts optimized for the memory hierarhy|seee.g. the paper by Chatterjee et al. [8℄ and the referenes it ontains. LaMaraand Ladner onsider the question in onnetion with heaps [16℄. Among otherthings, they repeat an experiment performed by Jones [15℄ ten years earlier,and demonstrate that due to the inreased gaps in aess time between levelsin the memory hierarhy, the d-ary heap has inreased ompetitiveness rel-ative to the pointer-based priority queues. For searh trees, B-trees are thestandard way to implement trees optimized for the memory hierarhy. In theI/O-model, they use the worst ase optimal number of memory transfers forsearhes. For external memory, they are the struture of hoie, and are widelyused for storing data base indexes. Also at the ahe level, their memory op-timality makes them very ompetitive to other searh trees [17, p. 127℄.Reently, Rahman and Raman [20℄ made an empirial study of the perfor-mane of various searh tree implementations, with fous on showing the signif-iane of also minimizing translation look-aside bu�er (TLB) misses. Basedon exponential searh trees, they implemented a dynamization of the vanEmde Boas layout supporting searhes and updates in O(logB(n) + log log n)memory transfers. They ompared it experimentally to standard B-trees andthree-level ahe aware trees, and reported that the ahe oblivious trees werebetter than standard B-trees but worse than the ahe aware strutures.1.2 PreliminariesAs usual when disussing searh trees, a tree is rooted and ordered. The depthd(v) of a node v in a tree T is the number of nodes on the simple path fromthe node to the root. The height h(T ) of T is the maximum depth of a nodein T , and the size jT j of T is the number of nodes in T . For a node v in atree, we let Tv denote the subtree rooted at v, i.e. the subtree onsisting of vand all its desendants, and we let the height h(v) of v be the height of Tv.A omplete tree T is a tree with 2h(T )�1 nodes.A searh tree will denote a tree where all nodes store an element from sometotally ordered universe, and where all elements stored in the left and rightsubtrees of a node v are respetively smaller than and larger than the elementat v. We say that a tree T1 an be embedded in another tree T2, if T1 an beobtained from T2 by pruning subtrees. In Figure 2 is shown the embedding ofa searh tree of size 10 in a omplete tree of height 5.
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641 3 5 87 1110 13Figure 2: The embedding of a searh tree with height 4 and size 10 in a ompletetree with height 52 Memory Layouts of Stati TreesIn this setion we disuss four memory layouts for stati trees: DFS, inorder,BFS, and van Emde Boas layouts. We assume that eah node is representedby a node reord and that all node reords for a tree are stored in one array.We distinguish between pointer based and impliit layouts. In pointer basedlayouts the navigation between a node and its hildren is done via pointersstored in the node reords. In impliit layouts no pointers are stored; thenavigation is based solely on address arithmeti. Whereas all layouts havepointer based versions, impliit versions are only possible for layouts where theaddress omputation is feasible. In this paper we will only onsider impliitlayouts of omplete trees. A omplete tree of size n is stored in an array of nnode reords.DFS layout The nodes of T are stored in the order they are visited by aleft-to-right depth �rst traversal of T (i.e. a preorder traversal).Inorder layout The nodes of T are stored in the order that they are visitedby a left-to-right inorder traversal of T .BFS layout The nodes of T are stored in the order they are visited by aleft-to-right breath �rst traversal of T .van Emde Boas layout The layout is de�ned reursively: A tree with onlyone node is a single node reord. If a tree T has two or more nodes, letH0 = dh(T )=2e, let T0 be the tree onsisting of all nodes in T with depthat most H0, and let T1; : : : ; Tk be the subtrees of T rooted at nodes withdepth H0 + 1, numbered from left to right. We will denote T0 the toptree and T1; : : : ; Tk the bottom trees of the reursion. The van EmdeBoas layout of T onsists of the van Emde Boas layout of T0 followed bythe van Emde Boas layouts of T1; : : : ; Tk.Figure 3 gives the impliit DFS, inorder, BFS, and van Emde Boas layouts fora omplete tree with height four.We now disuss how to alulate the position of the hildren of a node vat position i in the impliit layouts. For the BFS layout, the hildren are atposition 2i and 2i + 1|a fat exploited already in the 1960s in the design ofthe impliit binary heap [23℄. For the DFS layout, the two hildren are at6



DFS1234 5 67 8 91011 12 1314 15 inorder8421 3 65 7 12109 11 1413 15
BFS1248 9 510 11 3612 13 714 15 van Emde Boas1245 6 78 9 31011 12 1314 15Figure 3: The DFS, inorder, BFS, and van Emde Boas layouts for a omplete treewith height 4. Numbers designate positions in the array of node reordspositions i+ 1 and i+ 2h(v)�1, and in the inorder layout the two hildren areat positions i� 2h(v)�2 and i+ 2h(v)�2.For the impliit van Emde Boas layout the omputations are more involved.Our solution is based on the fat that if we for a node in the tree unfold thereursion in the van Emde Boas layout until this node is the root of a bottomtree, then the unfolding will be the same for all nodes of the same depth. In apreomputed table of size O(log n), we for eah depth d store the size B[d℄ ofthis bottom tree, the size T [d℄ of the orresponding top tree, and the depthD[d℄of the root of the orresponding top tree. When laying out a stati tree, webuild this table in O(logn) time by a straightforward reursive algorithm.During a searh from the root, we keep trak of the position i in a BFSlayout of the urrent node v of depth d. We also store the position Pos [j℄ inthe van Emde Boas layout of the node passed at depth j for j < d during theurrent searh. As the bits of the BFS number i represents the left and rightturns made during the searh, the log(T [d℄ + 1) least signi�ant bits of i givesthe index of the bottom tree with v as root among all the bottom trees of theorresponding top tree. Sine T [d℄ is of the form 2k�1, these bits an be foundas i and T [d℄. It follows that for d > 1, we an alulate the position Pos [d℄of v by the expressionPos [d℄ = Pos[D[d℄℄ + T [d℄ + (i and T [d℄) � B[d℄ :At the root, we have i = 1, d = 1, and Pos [1℄ = 1. Navigating from a nodeto a hild is done by �rst alulating the new BFS position from the old, andthen �nding the value of the expression above.The worst ase number of memory transfers during a top down traversal ofa path using the above layout shemes is as follows, assuming eah blok storesB nodes. With the BFS layout, the topmost blog(B + 1) levels of the tree7



will be ontained in at most two bloks, whereas eah of the following bloksread only ontains one node from the path. The total number of memorytransfers is therefore �(log(n=B)). For the DFS and inorder layouts, we getthe same worst ase bound when following the path to the rightmost leaf, sinethe �rst dlog(n+ 1)e � dlogBe nodes have distane at least B in memory,whereas the last blog(B + 1) nodes are stored in at most two bloks. AsProkop [19, Setion 10.2℄ observed, in the van Emde Boas layout there are atmost O(logB n) memory transfers. Note that only the van Emde Boas layouthas the asymptotially optimal bound ahieved by B-trees [4℄.We note that DFS, inorder, BFS, and van Emde Boas layouts all supporteÆient range queries (i.e. the reporting of all elements with keys within agiven query interval), by the usual reursive inorder traversal of the relevantpart of the tree, starting at the root.We argue below that the number of memory transfers for a range query ineah of the four layouts equals the number of memory transfers for two searhesplus O(k=B), where k is the number of elements reported. If a range report-ing query visits a node that is not ontained in one of the searh paths to theendpoints of the query interval, then all elements in the subtree rooted at thenode will be reported. As a subtree of height dlog(B + 1)e stores between Band 2B� 1 elements, at most k=B nodes with height larger than dlog(B + 1)eare visited whih are not on the searh paths to the two endpoints. Sine sub-trees are stored ontiguously for both the inorder and DFS layouts, a subtreeof height dlog(B + 1)e is stored in at most three bloks. The laimed boundfollows for these layouts. For the van Emde Boas layout, onsider a subtree Tof height dlog(B + 1)e. There exists a level in the reursive layout where thetopmost levels of T will be stored in a reursive top tree and the remaininglevels of T will be stored in a ontiguous sequene of bottom trees. Sine thetop tree and eah bottom tree has size less than 2B � 1 and the bottom treesare stored ontiguously in memory, the bound for range reportings in the vanEmde Boas layout follows.For the BFS layout, we prove the bound under the assumption that thememory size is 
(B logB). Observe that the inorder traversal of the relevantnodes onsists of a left-to-right san of eah level of the tree. Sine eah levelis stored ontiguously in memory, the bound follows under the assumptionabove, as the memory an hold one blok for eah of the lowest dlog(B + 1)elevels simultaneously.3 Searh Trees of Small HeightIn the previous setion, we onsidered how to lay out a stati omplete treein memory. In this setion, we desribe how the stati layouts an be usedto store dynami balaned trees. We �rst desribe an insertions only sheme8



and later show how this sheme an be extended to handle deletions and toahieve spae usage arbitrary lose to optimal.Our approah is to embed a dynami tree in a stati omplete tree bymaintaining a height bound of logn + O(1) for the dynami tree, where nis its urrent size. It follows that the dynami tree an be embedded in aomplete tree of height log n+O(1) and size O(n). Whenever n has doubled,we reate a new stati tree. The following subsetions are devoted to treerebalaning shemes ahieving height log n+O(1).Our sheme is very similar to the tree balaning sheme of Andersson [2℄and to the sheme of Itai et al. [14℄ for supporting insertions into the middleof a �le. Bender et al. [5℄ used a similar sheme in their ahe oblivious searhtrees, but used it to solve the \paked-memory problem", rather than diretlyto maintain balane in a tree. Note that the embedding of a dynami treein a omplete tree implies that we annot use rebalaning shemes whih arebased on rotations, or, more generally, shemes allowing subtrees to be movedby just hanging the pointer to the root of the subtree, as e.g. is the ase inthe rebalaning sheme of Fagerberg [10℄ ahieving height dlogn+ o(1)e.3.1 InsertionsLet T denote the dynami binary searh tree, and let H be the upper boundon h(T ) we want to guarantee, i.e. the height we will use for the ompletetree in whih T is embedded. For a node v in T , we let s(v) = 2H�d(v)+1 � 1denote the size of the subtree rooted at v in the omplete tree. We de�ne thedensity of v to be the ratio �(v) = jTvj=s(v), and de�ne a sequene of evenlydistributed density thresholds 0 < �1 < �2 < � � � < �H = 1 by �i = �1+(i�1)�for 1 � i � H and � = (1 � �1)=(H � 1). We maintain the invariant at theroot r of T that �(r) � �1. This implies the onstraint n=(2H � 1) � �1, i.e.H � log(n=�1+1). If for some N the urrent omplete tree should be valid forall n � N , we let H = dlog(N=�1 + 1)e. In the following we assume �1 � 1=2and N = O(n), suh that H = logn+O(1).The insertion of a new element into a tree T of n � N�1 elements proeedsas follows:1. We loate the position in T of the new node v via a top down searh,and reate v.2. If d(v) = H + 1, we rebalane T as follows. First, we in a bottom-upfashion �nd the nearest anestor w of v with �(w) � �d(w). This happensat the root at the latest. We need not store the sizes of nodes expliitly,as we an ompute jTwj by a traversal of Tw. Sine the anestors of v areexamined bottom-up one by one, we have already omputed the size ofone hild when examining a node, and it suÆes to traverse the subtreerooted at the other hild in order to ompute the total size. After having9



loated w, we rebalane Tw by evenly distributing the elements in Tw asfollows. We �rst reate a sorted array of all elements in Tw by an inordertraversal of Tw. The djTwj=2eth element beomes the element stored atw, the smallest b(jTwj � 1)=2 elements are reursively distributed in theleft subtree of w and the largest d(jTwj � 1)=2e elements are reursivelydistributed in the right subtree of w.In the redistribution step, the use of an additional array an be avoidedby ompating the elements into the rightmost end of the omplete subtreerooted at v by a right-to-left inorder traversal, and then inserting the elementsat the positions desribed above in a left-to-right inorder traversal.Lemma 1 A redistribution at v implies b�(v) � s(w)�1 � jTwj � d�(v) � s(w)efor all desendants w of v.Proof. We prove the bounds by indution on the depth of w. The bounds holdfor w = v, sine by de�nition jTvj = �(v)�s(v). Let u be a desendant of v, let wand w0 be the hildren of u, and assume the bounds hold for u. Sine �(v) � 1,we have jTuj � d�(v) � s(u)e = d�(v) � (1 + s(w) + s(w0))e � 1+d�(v) � s(w)e+d�(v) � s(w0)e. From s(w) = s(w0) we get d(jTuj � 1)=2e � d�(v) � s(w)e. Thedistribution algorithm guarantees that jTwj � d(jTuj � 1)=2e, implying jTwj �d�(v) � s(w)e.We also have jTuj � b�(v) � s(u) � 1 � b�(v) � (s(w) + s(w0)) � 1 �(b�(v) � s(w) � 1) + (b�(v) � s(w0) � 1) + 1. Beause s(w) = s(w0), we getb(jTuj � 1)=2 � b�(v) � s(w)�1. The distribution algorithm guarantees thatjTwj � b(jTuj � 1)=2, implying jTwj � b�(v) � s(w) � 1. 2Theorem 1 Insertions require amortized O((log2 n)=(1��1)) time and amor-tized O(logB n+ (log2 n)=(B(1� �1))) memory transfers.Proof. Consider a redistribution at a node v, aused by an insertion below v.By the rebalaning algorithm, we for a hild w of v have jTwj > �d(w) � s(w),as the redistribution otherwise would have taken plae at w. Immediatelyafter the last time there was a redistribution at v or at an anestor of v,we by Lemma 1 had jTwj < �d(v) � s(w) + 1. It follows that the number ofinsertions below w sine the last redistribution at v or an anestor of v is atleast �d(w) �s(w)�(�d(v) �s(w)+1) = � �s(w)�1. The redistribution at v takestimeO(s(v)), whih an be overed by harging O(s(v)=maxf1;��s(w)�1g) =O(1=�) to eah of the mentioned insertions below w. Sine eah reated nodehas at most H anestors and hene is harged at most H times, the amortizedredistribution time for an insertion is O(H=�) = O(H2=(1 � �1)).Sine a top-down searh requires O(logB N) memory transfers and theredistribution is done solely by inorder traversals requiringO(maxf1; s(v)=Bg)memory transfers, the bound on memory transfers follows. 210



Example. Assume that �1 = 0:9. This implies that we inrease H by onewhenever an insertion auses n > �1(2H � 1). Sine inreasing H by onedoubles the size of the omplete tree, this implies that we always have densityat least 0.45, i.e. the array used for the layout has size at most 1=0:45n = 2:2n.Note that the spae usage in the worst ase is at least 2n, independently ofthe hoie of �1. Sine the size of the omplete tree doubles eah time H isinreased, the global rebuilding only inreases the amortized update ost bya onstant additive term. By Lemma 1, all nodes v with depth H � 2 in theomplete tree, i.e. with s(v) = 7, are present in T , sine b0:45 � 7 � 1 > 0.The number of memory transfers for range searhes is therefore guaranteed tobe asymptotially optimal.3.2 DeletionsOne standard approah to add deletions is to simply mark elements as deleted,removing marked nodes by a global rebuilding when, say, half of the elementshave been deleted. The disadvantage of this sheme is that loally, elementsan end up being sparsely distributed in memory, suh that no bound on thenumber of memory transfers for a range searh an be guaranteed.To support range queries with a worst-ase guarantee on the number ofmemory transfers, the tree T must be rebalaned after deletions. The ideais similar to the sheme used for insertions, exept that we now also havelower bound density thresholds 0 � H < � � � < 2 < 1 < �1, where i =1 � (i� 1)�0 for 1 � i � H and �0 = (1 � H)=(H � 1). For the root r of Twe require the invariant 1 � �(r) � �1.Deletion is done as desribed below. Insertions are handled as desribedin Setion 3.1, exept that Step 2 is replaed by Step 2 below.1. First, we loate the node v in T ontaining the element e to be deleted,via a top down searh in T . If v is not a leaf and v has a right subtree,we then loate the node v0 ontaining the immediate suessor to e (thenode reahed by following left hildren in the right subtree of v), swapthe elements at v and v0, and let v = v0. We repeat this until v is aleaf. If v is not a leaf but v has no right subtree, we symmetrially swapv with the node ontaining the predeessor of e. Finally, we delete theleaf v from T .2. We rebalane the tree by rebuilding the subtree rooted at the lowestanestor w of v satisfying d(w) � �(w) � �d(w).Theorem 2 Insertions and deletions require amortized O((log2 n)=�) timeand amortized O(logB n+(log2 n)=(B�)) memory transfers, where � is de�nedas minf1 � H ; 1� �1g. 11



Proof. Consider a redistribution at a node v. If the redistribution is ausedby an update below a hild w of v leading to jTwj > �d(w) � s(w), then theargument is exatly as in Theorem 1. Otherwise the redistribution is ausedby an update below a hild w of v leading to jTwj < d(w) � s(w). Immediatelyafter the last time there was a redistribution at v or at an anestor of v,we by Lemma 1 had jTwj > d(v) � s(w) � 2. It follows that the number ofdeletions sine the last rebuild at v or an anestor of v is at least (d(v) �s(w)�2) � d(w) � s(w) = �0 � s(w) � 2. By averaging the redistribution time overthe deletions, the amortized redistribution time of a deletion is seen to beO(H=�0) = O(H2=(1 � H)). 2Example. Assume �1 = 0:9, 1 = 0:35, and H = 0:3. We inrease H byone whenever an insertion auses n > �1(2H � 1) and derease H by onewhenever a deletion auses n < 1(2H � 1). With the parameters above, wehave that when H is hanged, at least (�1=2 � 1)n = 0:1n updates must beperformed before H is hanged again, so the global rebuilding only inreasesthe amortized update ost by a onstant additive term. The array used for thelayout has size at most n=1 = 2:9n. By Lemma 1, all nodes with depth H�2(and hene size 7) in the omplete tree are present in T , as bH � 7 � 1 > 0.The number of memory transfers for range searhes is therefore asymptotiallyoptimal.3.3 Improved densitiesThe rebalaning shemes onsidered in the previous setion require in theworst ase spae at least 2n, due to the oasional doubling of the array. Inthis setion, we desribe how to ahieve spae (1 + ")n, for any " > 0. As aonsequene, we ahieve spae usage lose to optimal and redue the numberof memory transfers for range searhes.Our solution is the following. Let N be the spae we are willing to use(not neessarily a power of two), and let �1 and 1 be density thresholds suhthat 1 � n=N � �1. Whenever the density threshold beomes violated, anew N must be hosen. If N = 2k � 1 for some k, then we an apply theprevious shemes diretly. Otherwise, assume N = 2b1 + 2b2 + � � � 2bk , whereb1; : : : ; bk are non-negative integers satisfying bi > bi+1, i.e. the bi values arethe positions of 1s in the binary representation of N . For eah bi, we will have atree Fi onsisting of a root ri with no left hild and a right subtree Ci whih is aomplete tree of size 2bi�1. The elements will be distributed among F1; : : : ; Fksuh that all elements stored in Fi are smaller than the elements in Fi+1. If Fistores at least one element, the minimum element in Fi is stored at ri andthe remaining elements are stored in a tree Ti whih is embedded in Ci. Thetrees are laid out in memory in the order r1; r2; : : : ; rk; C1; C2; : : : ; Ck, whereeah Ci is laid out using the van Emde Boas layout.12



A searh for an element e proeeds by examining the elements at r1; : : : ; rkin inreasing order until e is found or the subtree Ti is loated that mustontain e, i.e. e is larger than the element at ri and smaller than the elementat ri+1. In the latter ase, we perform a top-down searh on Ti. The total timefor a searh is O(i+ bi) = O(logN) using O(i=B+logB(2bi �1)) = O(logB N)I/Os.For the rebalaning, we view F1; : : : ; Fk as being merged into one big tree F ,where all leafs have the same depth and all internal nodes are binary, exept forthe nodes on the rightmost path whih may have degree three. The tree Ci+1is onsidered a hild of the rightmost node ui in Ci with h(ui) = bi+1+1, andwith the element of ri+1 being a seond element of ui. Note that the elementsof F satisfy inorder. For a node v in F , we de�ne s(v) to be the subtree Tvof F plus the number of nodes of degree three, i.e. the number of slots to storeelements in Tv, and jTvj the number of elements stored in Tv. As in Setion 3.1and 3.2, we de�ne �(v) = jTvj=s(v). The rebalaning is done as in Setions 3.1and 3.2, exept that if we have to redistribute the ontent of v, we will expli-itly ensure that the inequality b�(v) � s(w) � 1 � jTwj � d�(v) � s(w)e fromLemma 1 is satis�ed for all desendants w of v. That this is possible followsfrom the inequalities below, where u is a desendant of v and w1; : : : ; wk arethe hildren of u for k = 2 or 3:d�(v) � s(u)e = l�(v) � �k � 1 +Pki=1 s(wi)�m� k � 1 +Pki=1 d�(v) � s(wi)e ;b�(v) � s(u) � 1 � j�(v) �Pki=1 s(wi)k� 1� k � 1 +Pki=1(b�(v) � s(wi) � 1) :Beause Lemma 1 still holds, Theorem 2 also holds. The only hange inthe analysis of Theorem 2 is that for a node v on the rightmost path with ahild w, we now have s(v) � 4s(w), i.e. the bound on the amortized time andnumber of memory transfers inreases by a fator two.Example. Let " > 0 be an arbitrary small onstant suh that when N ishosen, N = (1 + ")n. Valid density thresholds an then be �1 = (Æ + 1)=2,1 = (3Æ�1)=2, and H = 2Æ�1, where Æ = 1=(1+") is the density immediatelyafter having hosen N . After hoosing an N , at least N(1 � Æ)=2 = O(N=")updates must be performed before a new N is hosen. Hene, the amortizedost of the global rebuildings is O(1=") time and O(1=("B)) memory transfersper update. The worst ase spae usage is n=1 = n(1 + ")=(1 � "=2) =n(1 +O(")).
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4 ExperimentsIn this setion, we desribe our empirial investigations of methods for layingout a searh tree in memory.We implemented the four impliit memory layouts disussed in Setion 2:DFS, inorder, BFS, and van Emde Boas. We also implemented a ahe awareimpliit layout based on a d-ary version of the BFS, where d is hosen suhthat the size of a node equals a ahe line. Our experiments thus omparelayouts whih in term of optimization for the memory hierarhy over threeategories: not optimized, ahe oblivious, and ahe aware.We also implemented pointer based versions of the layouts, where eahnode stored in the array ontains the indies of its hildren. Compared toimpliit layouts, pointer based layouts have lower instrution ount for nav-igation, higher total memory usage, and lower number of nodes per memoryblok. We implemented one further pointer based layout, namely the layoutwhih arises when building a binary tree by random insertions, plaing nodesin the array in order of alloation. We all this the random insertion layout.Our experiments fall in two parts: one dealing with searhes in statilayouts, and one dealing with the dynamization method from Setion 3.1. InSetion 4.2, we report on the results. We tested several ombinations andvariations of the memory layouts and algorithms, but for brevity we onlydesribe a subset representative of our general observations.4.1 MethodologyThe omputer used to perform the experiments had two 1 GHz Pentium III(Coppermine) proessors, 256 KB of ahe, and 1 GB of RAM. The programswere written in C, ompiled by the GNU g ompiler version 2.95.2.1 withfull optimization (option -O3). The operating system was Linux with kernelversion 2.4.3-12smp.The timing was based on wall lok time. For the searh based experiments,we used the getitimer and setitimer system alls to interrupt the programevery 10 seonds, giving us a relative timing preision of roughly 0:001 formost experiments.The elements were 32 bit in size, as was eah of the two pointers pernode used in the pointer based layouts. We only report on integer keys|ourresults with oating point keys did di�er (probably due in parts to the di�erentosts of omparisons), but not signi�antly. We generated uniformly randomintegers by asting double preision oats returned by drand48(). We onlysearhed for present keys.Where possible, the programs shared soure ode, in order to minimizeoding inonsistenies. We also tried to avoid artifats from the ompilationproess by e.g. inlining funtion alls ourselves.14



We performed experiments for n = 2k; 2k�1; 2k+1, and 0:7�2k for a rangeof k. For n not a power of two, the assumption from Setion 2 of dealing withomplete trees is not ful�lled. We adapted to this situation by utting thetree at the boundary of the array: If the address of both hildren of node v isoutside the array, i.e. larger than n, then v is a leaf, if only the right hild isoutside, it is a degree one node. This works beause the addresses of hildrenare higher than that of their parent (whih does not hold for the inorder layout,but there, we simply used binary searh).Due to the small di�erene between the 1 GB RAM size and 2 GB addressspae, experiments beyond main memory required a di�erent setup. This weahieved by booting the mahine suh that only 32 MB of RAM was available.However, the bulk of our experiments overed trees ontained in ahe andRAM.The soure ode of the programs, our sripts and tools, and the data wepresent here are available online underftp://ftp.bris.dk/RS/01/36/Experiments/.4.2 ResultsFor all graphs, the y-axis is logarithmi, and depits the average time for onesearh for (or insertion of) a randomly hosen key, measured in seonds. Allthe x-axes depits log2 n, where n is the number of keys stored in the searhtree. Note that this translates to di�erent memory usage for impliit andpointer based layouts.Figure 4 ompares the time for random searhes in pointer based layouts.Pointer based layouts all have the same instrution ount per level during asearh. This is reeted in the range n = 210; : : : ; 214 (for whih the tree �tsentirely in ahe), where the three layouts of optimal height behave identially,while the random insertion layout (whih has larger average height) is worse.As n gets bigger, the di�erenes in memory aess pattern starts showing. Forrandom searhes, we an expet the top levels of the trees to reside in ahe.For the remaining levels, a ahe fault should happen at every level for the BFSlayout, approximately at every seond level for the DFS layout (most nodesreside in the same ahe line as their left hild), and every �(logB n) levels forthe van Emde Boas layout. This analysis is onsistent with the graphs.Figure 5 ompares the time for random searhes in impliit layouts. Forsizes up to ahe size (n = 216), it appears that the higher instrution ountfor navigating in an impliit layout dominates the running times: most graphsare slightly higher than orresponding graphs in Figure 4, and the van EmdeBoas layout (most ompliated address arithmeti) is the slowest while theBFS layout (simplest address arithmeti) is fastest. For larger n, the memoryaess pattern shows its e�et. The high arity layouts (d = 8 and 16) are15
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inorder:implicitFigure 4: Searhes for pointer basedlayouts Figure 5: Searhes for impliit layoutsthe fastest, as expeted|they are ahe-optimized and have simple addressarithmeti. The van Emde Boas layout is quite ompetitive, eventually beatingBFS and only being 50% slower than the ahe aware layouts.The inorder layout has bad performane, probably beause no nodes in thetop part of the tree share ahe lines. It is worst when n is a power of two. Webelieve this as an e�et of the limited assoiativity of the ahe: For these n,the nodes of the top of the tree are large powers of two apart in memory, andare mapped to the same few lines in ahe.In Figure 6, we ompare the searh times for the pointer based and theimpliit versions of the BFS and the van Emde Boas layout. The aim is tosee how the e�et of a smaller size and a more expensive navigation ompeteagainst eah other. For the BFS, the impliit version wins for all sizes, indi-ating that its address arithmeti is not slower than following pointers. Thisis not the ase for the van Emde Boas layout|however, outside of ahe, theimpliit version wins, most likely due to the higher value of B resulting fromthe absene of pointers.In Figure 7, we ompare the performane of the dynami versions of someof the data strutures. The inorder and the van Emde Boas layout is madesemi-dynami by the method from Setion 3.1. For the inorder layout, theredistribution during rebalaning an be implemented partiularly simple, justby sans of ontiguous segments of the array. We use this implementation here.The random insertion layout is semi-dynami by de�nition.Starting with a bulk of 10,000 randomly hosen elements, we insert bulksof sizes inreasing by a fator of 1.5. We time the insertion of one blok andalulate the average time for inserting one element. The amortization in16
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the bounds of the method from Setion 3.1 is apparent in the instability ofthe graphs. In ontrast, the unbalaned pointer based searh tree has a rela-tively smooth graph. We remark that the dynamization method of Setion 3.1seems quite ompetitive, eventually winning over the unbalaned pointer basedtree, whih for random insertions is known to ompete well against stan-dard rebalaning shemes for binary searh trees, suh as red-blak trees (seee.g. [17, p. 127℄). The inorder layout is somewhat faster than the van EmdeBoas layout, whih we think is due to the simpler redistribution algorithm.In Figure 8, we ompare in more detail the performane of the randominsertion layout with the impliit, semi-dynami van Emde Boas layout, show-ing the time for random insertions as well as for random searhes. If the datastruture is to be used mainly for searhes and only oasionally for updates,the ahe oblivious version is preferable already at roughly 216 elements. Buteven if updates dominate, it beomes advantageous around 223 elements.In Figure 9, we look at the performane of the layouts as our memoryrequirement exeeds main memory. As said, for this experiment we bootedthe mahine in suh a way that only 32 MB of RAM was available. Weompare the van Emde Boas layout, the usual BFS layout, and a 1024-aryversion version of it, optimized for the page size of the virtual memory. Thekeys of a 1024-ary nodes are stored in sorted order, and a node is searhed bya �xed, inlined deision tree. We measure the time for random searhes on astati tree.Inside main memory, the BFS is best, but looses by a fator of �ve outside.The tree optimized for page size is the best outside main memory, but looses17
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high1024Figure 8: Insert and Searh for impliitveb and unbalaned searh trees Figure 9: Beyond main memoryby a fator of two inside. Remarkably, the van Emde Boas layout is on parwith the best throughout the range.4.3 ConlusionFrom the experiments reported in this paper, it is apparent that the e�etsof the memory hierarhy in todays omputers play a dominant role for therunning time of tree searh algorithms, already for sizes of trees well withinmain memory.It also appears that in the area of searh trees, the nie theoretial prop-erties of ahe obliviousness seems to arry over into pratie: in our experi-ments, the van Emde Boas layout was ompetitive with ahe aware strutures,was better than strutures not optimized for memory aess for all but thesmallest n, and behaved robustly over several levels of the memory hierarhy.One further observation is that the e�ets from the spae saving and in-rease in fanout aused by impliit layouts are notable.Finally, the method for dynami ahe oblivious searh tree suggested inthis paper seems pratial, not only in terms of implementation e�ort but alsoin terms of running time.Referenes[1℄ A. Aggarwal and J. S. Vitter. The input/output omplexity of sortingand related problems. Communiations of the ACM, 31(9):1116{1127,Sept. 1988. 18
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