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Abstract

The cache oblivious model of computation is a two-level memory
model with the assumption that the parameters of the model are un-
known to the algorithms. A consequence of this assumption is that an
algorithm efficient in the cache oblivious model is automatically effi-
cient in a multi-level memory model. Arge et al. recently presented the
first optimal cache oblivious priority queue, and demonstrated the im-
portance of this result by providing the first cache oblivious algorithms
for graph problems. Their structure uses cache oblivious sorting and
selection as subroutines. In this paper, we devise an alternative opti-
mal cache oblivious priority queue based only on binary merging. We
also show that our structure can be made adaptive to different usage
profiles.
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1 Introduction

External memory models are formal models for analyzing the impact of the
memory access patterns of algorithms in the presence of several levels of
memory and caches on modern computer architectures. The cache oblivious
model, recently introduced by Frigo et al. [10], is based on the I/O model
of Aggarwal and Vitter [1], which has been the most widely used model
for developing external memory algorithms; see the survey by Vitter [11].
Both models assume a two-level memory hierarchy where the lower level has
size M and data is transfered between the two levels in blocks of B elements.
The difference is that in the I/O model the algorithms are aware of B and M ,
whereas in the cache oblivious model these parameters are unknown to the
algorithms and I/Os are handled automatically by an optimal off-line cache
replacement strategy.

Frigo et al. [10] showed that an efficient algorithm in the cache oblivious
model is automatically efficient on an each level of a multi-level memory
model. They also presented optimal cache oblivious algorithms for matrix
transposition, FFT, and sorting. Cache oblivious search trees which match
the search cost of the standard (cache aware) B-trees [3] were presented in [4,
5, 6, 8]. Cache oblivious algorithms for computational geometry problems
were developed in [4, 7]. The first cache oblivious priority queue was recently
developed by Arge et al. [2], and gave rise to several cache oblivious graph
algorithms [2]. Their structure uses existing cache oblivious sorting and
selection algorithms as subroutines.

In this paper, we present an alternative optimal cache oblivious prior-
ity queue, Funnel Heap, based only on binary merging. Essentially, our
structure is a single heap-ordered tree with binary mergers in the nodes and
buffers on the edges. It was inspired by the cache oblivious merge-sort algo-
rithm Funnelsort presented in [10] and simplified in [7]. As for the priority
queue of Arge et al., our data structure supports the operations Insert and
DeleteMin using amortized O( 1

B logM/B
N
B ) I/Os per operation, under the

so-called tall cache assumption M ≥ B2. Here, N is the total number of
elements inserted.

For a slightly different algorithm we give a refined analysis, showing
that the priority queue adapts to different profiles of usage. More precisely,
we show that the ith insertion uses amortized O( 1

B logM/B
Ni

B ) I/Os, with
Ni defined in one of the following three ways: (a) the number of elements
present in the priority queue when performing the ith insert operation, (b)
if the ith inserted element is removed by a DeleteMin operation prior to
the jth insertion then Ni = j − i, or (c) Ni is the maximum rank that
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the ith inserted element has during its lifetime in the priority queue, where
rank denotes the number of smaller elements present in the priority queue.
DeleteMin is amortized for free since the work is charged to the insertions.
These results extends the line of research taken in [9], where (a) and (c) are
called size profile and max depth profile, respectively.

This paper is organized as follows. In Section 2 we introduce the concept
of mergers and in Section 3 we describe our priority queue. Section 4 gives
the analysis of the presented data structure. Finally, Section 5 gives the
analysis based on different profiles of usage.

2 Mergers

Our data structure is based on binary mergers. A binary merger takes
as input two sorted streams of elements and delivers as output the sorted
stream formed by merging of these. One merge step moves an element
from the head of one of the input streams to the tail of the output stream.
The heads of the input streams and the tail of the output stream reside in
buffers holding a limited number of elements. A buffer is simply an array
of elements, plus fields storing the capacity of the buffer and pointers to the
first and last elements in the buffer.

Binary mergers may be combined to binary merge trees by letting the
output buffer of one merger be an input buffer of another—in other words,
binary merge trees are binary trees with mergers at the nodes and buffers
at the edges. The leaves of the tree contains the streams to be merged.

Procedure Fill(v)
while v’s output buffer is not full

if left input buffer empty
Fill(left child of v)

if right input buffer empty
Fill(right child of v)

perform one merge step

Figure 1: The merging algorithm

An invocation of a merger is a recursive procedure which performs merge
steps until its output buffer is full (or both input streams are exhausted).
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Figure 2: A 16-merger consisting of 15 binary mergers. Shaded regions are
the occupied parts of the buffers.

If during the invocation an input buffer gets empty (but the correspond-
ing stream is not exhausted), the input buffer is recursively filled by an
invocation of the merger having this buffer as its output buffer. If both
input streams of a merger get exhausted, the corresponding output stream
is marked as exhausted. The procedure (except for the issue of exhaustion)
is shown in Figure 1 as the procedure Fill(v). A single invocation Fill(r)
on the root r of the merge tree will produce a stream which is the merge of
the streams at the leaves of the tree.

One particular merge tree is the k-merger. In this paper, k = 2i for some
positive integer i. A k-merger is a perfect binary tree of k−1 binary mergers
with appropriate sized buffers on the edges, k input streams, and an output
buffer at the root of size k3. A 16-merger is illustrated in Figure 2.

The sizes of the buffers are defined recursively: Let the top tree be the
subtree consisting of all nodes of depth at most ⌈i/2⌉, and let the subtrees
rooted by nodes at depth ⌈i/2⌉ + 1 be the bottom trees. The edges be-
tween nodes at depth ⌈i/2⌉ and depth ⌈i/2⌉ + 1 have associated buffers of
size ⌈k3/2⌉, and the sizes of the remaining buffers is defined by recursion on
the top tree and the bottom trees.

To achieve I/O efficiency in the cache oblivious model, the layout of k-
merger is also defined recursively. The entire k-merger is laid out in memory
in contiguous locations, first the top tree, then the middle buffers, and finally
the bottom trees, and this layout is applied recursively within the top and
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Figure 3: The priority queue based on binary mergers.

each of the bottom trees.
The k-merger structure was defined by Frigo et al. [10] for use in their

cache oblivious mergesort algorithm Funnelsort. The algorithm described
above for invoking a k-merger appeared in [7], and is a simplification of the
original one. For both algorithms, the following lemma holds [7, 10].

Lemma 1 The invocation of the root of a k-merger uses O(k+ k3

B logM/B k3)

I/Os. The space required for a k-merger is O(k2), not counting the space
for the input and output streams.

3 The priority queue

In this section, we present a priority queue based solely on binary merg-
ers. Our data structure consists of a sequence of k-mergers of double-
exponentially increasing k, linked together in a list by binary mergers and
buffers as depicted in Figure 3. In the figure, circles denote binary mergers,
rectangles denote buffers, and triangles denote k-mergers. Note that the
entire structure constitutes a single binary merge tree.

More precisely, let ki and si be values defined inductively as follows,

(k1, s1) = (2, 8) ,

si+1 = si(ki + 1) ,

ki+1 = ⌈⌈si+1
1/3⌉⌉ ,

(1)
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where ⌈⌈x⌉⌉ denotes the smallest power of two above x, i.e. ⌈⌈x⌉⌉ = 2⌈log x⌉.
Link i in the linked list consists of a binary merger vi, two buffers Ai

and Bi, and a ki-merger Ki with ki input buffers Si1, . . . , Siki
. The output

buffer of vi is Ai, and its input buffers are Bi and the buffer Ai+1 from the
next link. The output buffer of Ki is Bi. The size of both Ai and Bi is k3

i ,
and the size of each Sij is si. Link i has an associated counter ci, which is
an integer between one and ki + 1 (inclusive), initially of value one. It will
be an invariant that Sici

, . . . , Siki
are empty.

Additionally, the structure contains one insertion buffer I of size s1.
All buffers contain a (possibly empty) sorted sequence of elements. The
structure is laid out in memory in the order I, link 1, link 2, . . . , and within
link i the layout order is Ai, Bi, Ki, Si1, Si2, . . . , Siki

.
The linked list of buffers and mergers constitute one binary tree T with

root v1 and with sorted sequences of elements on the edges. We maintain
the invariant that this tree is heap-ordered, i.e. when traversing any path
towards the root, elements will be passed in decreasing order. Note that
the invocation of a binary merger maintains this invariant. The invariant
implies that if buffer A1 is non-empty, the minimum element in the queue
will be in A1 or in I.

To perform a DeleteMin operation, we first check whether buffer A1

is empty, and if so invoke Fill(v1). We then compare the smallest element
in A1 to the smallest element (if any) in I, remove the smaller of these from
its buffer, and return it.

To perform an Insert operation, the new element is inserted in I while
rearranging the contents of the buffer to maintain sorted order. If the num-
ber of elements in I is now seven or less, we stop. If the number of elements
in I becomes eight, we perform the following sweep operation, where i is the
lowest index for which ci ≤ ki. The sweep operation will move the content
of links 1, . . . , i − 1 to the destination buffer Sici

. It traverses the path p
in T from A1 to Sici

and for each buffer on this path records how many
elements it currently contains. It forms a sorted stream σ1 of the elements
in the buffers on the part of p from Ai to Sici

by traversing that part of the
path. It forms a sorted stream σ2 of all elements in links 1, . . . , i− 1 and in
buffer I by marking Ai as exhausted and calling DeleteMin repeatedly. It
then merges σ1 and σ2 into a single stream σ, inserts the front elements of
σ in the buffers on the path p during a downwards traversal in such a way
that all these buffers contain the same numbers of elements as before the
insertion, and inserts the remaining part of σ in Sici

. Finally, it resets cℓ to
one for ℓ = 1, 2, . . . , i − 1 and increments ci.
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4 Analysis

4.1 Correctness

Correctness of DeleteMin is immediate by the heap-order invariant. For
Insert we must show that the invariant is maintained and that Sici

does
not overflow during a sweep ending in link i.

After an Insert, the new contents in the buffers on the path p are
the smallest elements in σ, with a distribution exactly as the old contents.
Hence, an element on this path can only be smaller than the element occu-
pying the same location before the operation. It follows that heap-order is
maintained.

Call Bℓ, Kℓ, and Sℓ1, . . . , Sℓkℓ
the lower part of link ℓ. The lower part

of link ℓ is emptied each time cℓ is reset, so it never contains more than
the number of elements inserted into Sℓ1, Sℓ2, . . . , Sℓkℓ

since last time cℓ was
reset. If follows by induction on i that the number of elements inserted
into Sici

during a sweep ending in link i is at most s1 +
∑i−1

j=1 kjsj = si.

4.2 Complexity

Most of the work performed is the movement of elements upwards in the
tree T during the invocations of the binary mergers in T . In the analysis,
we account for the I/Os incurred during the filling of an output buffer of
a merger by charging them evenly to the elements filled into the buffer.
The exception is when an Ai or Bi buffer is not filled completely due to
exhaustion of the corresponding input buffers, where we account for the
I/Os by other means.

We claim that the number of I/Os charged to an element during its
ascent in T from an input stream of Ki to the buffer A1 is O( 1

B logM/B si),
if we identify elements residing in buffers on the path p before a sweep with
those residing at the same positions in these buffers after the sweep.

To prove the claim, we assume that the maximal number of small links
are kept in cache always—the optimal cache replacement strategy of the
cache oblivious model can only incur fewer I/Os. More precisely, let ∆i be
the space occupied by links 1 to i. From (1) we have si

1/3 ≤ ki < 2si
1/3,

so the Θ(siki) space usage of Si1, . . . , Siki
is Θ(ki

4), which dominates the
space usage of link i. Also from (1) we have si

4/3 < si+1 < 3si
4/3, so si and

ki grows doubly-exponentially with i. Hence, ∆i is dominated by the space
usage of link i, implying ∆i = Θ(ki

4). We let iM be the largest i for which
∆i ≤ M and assume that links 1 to iM are kept in cache always.
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Consider the ascent of an element from Ki to Bi for i > iM . By Lemma 1,

each invocation of Ki incurs O(ki +
ki

3

B logM/B ki
3) I/Os. From M < ∆iM+1

and the above discussion, we have M = O(ki
4). The tall cache assumption

B2 ≤ M gives B = O(ki
2), which implies ki = O(ki

3/B). As we are not
counting invocations of Ki where Bi is not filled completely, i.e. where Ki

is exhausted, it follows that each element is charged O( 1
B logM/B ki

3) =

O( 1
B logM/B si) I/Os to ascend through Ki and into Bi. The element can also

be charged during insertion into Aj for j = iM , . . . , i. The filling of Aj incurs

O(1 + |Aj |/B) I/Os. From B = O(kiM +1
2) = O(kiM

8/3) and |Aj| = kj
3, we

see that the last term dominates. Therefore an element is charged O(1/B)
per buffer Aj , as we only charge when the buffer is filled completely. From
M = O(kiM +1

4) = O(siM
16/9), we by the doubly-exponentially growth of

the sj values have i − iM = O(log logM si) = O(logM si) = O(logM/B si),
where the last equality follows from the tall cache assumption. Hence, the
ascent through Ki dominates over insertions into the Aj’s, and the claim is
proved.

To prove the complexity stated in the introduction, we note that by
induction on i, at least si insertions take place between each sweep ending
in link i. A sweep ending in link i inserts at most si elements in Sici

. We
let the last si insertions preceeding the sweep pay for the I/Os charged to
these elements during their later ascent through T . By the claim above,
this cost is O( 1

B logM/B si) I/Os per insertion. We also let these insertions
pay for the I/Os incurred by the sweep during the formation and placement
of streams σ1, σ2, and σ, and for I/Os incurred by filling buffers which
become exhausted. We claim that these can be covered without altering the
O( 1

B logM/B si) cost per insertion.
The claim is proved as follows. The formation of σ1 is done by a traversal

of the path p. By the specified layout of the data structure (including the
layout of k-mergers), this traversal is part of a linear scan of the part of
memory between A1 and the end of Ki. Such a scan takes O((∆i−1 + |Ai|+
|Bi| + |Ki|)/B) = O(ki

3/B) = O(si/B) I/Os. The formation of σ2 has
already been accouted for by charging ascending elements. The merge of σ1

and σ2 into σ and the placement of σ are not more costly than a traversal
of p and Sici

, and hence also incur O(si/B) I/Os. To account for the I/Os
incurred when filling buffers which become exhausted, we note that Bi,
and therefore also Ai, can only become exhausted once between each sweep
ending in link i. From |Ai| = |Bi| = ki

3 = Θ(si) it follows that charging
each sweep ending in link i an additional cost of O(si

B logM/B si) will cover
all such fillings, and the claim is proved.
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In summary, charging the last si insertions preceeding a sweep ending
in link i a cost of O( 1

B logM/B si) I/Os each will cover all I/Os incurred
by the data structure. Given a sequence of operation on an initial empty
priority queue, let imax be the largest i for which a sweep ending in link i
takes place. We have simax

≤ N , where N is the number of insertions in
the sequence. An insertion can be charged by at most one sweep ending in
link i for i = 1, . . . , imax, so by the doubly-exponentially growth of si, the
number of I/Os charged to an insertion is

O

(

∞
∑

k=0

1

B
logM/B N (3/4)k

)

= O

(

1

B
logM/B N

)

.

5 Profile Adaptive Performance

To make the performance dependent on Nℓ, we make the following changes
to our priority queue. Let ri denote the number of elements residing in the
lower part of link i. The value of ri is stored at vi and will only need to be
updated when removing an element from Bi and when a sweep operation
creates a new Sij list (in the later case r1, . . . , ri−1 are reset to zero).

The only other modification is the following change to the sweep opera-
tion of the insertion algorithm. Instead of finding the lowest index i where
ci ≤ ki, we find the lowest index i where either ci ≤ ki or ri ≤ kisi/2. If
ci ≤ ki, the sweep operation proceeds as described Section 3, and ci is in-
cremented by one. Otherwise ci = ki + 1 and ri ≤ kisi/2, in which case we
will recycle one of the Sij buffers. If there exists an input buffer Sij which
is empty, we use Sij as the destination buffer for the sweep operation. If
all Sij are nonempty, the two input buffers Sij1 and Sij2 with the smallest
number of elements have a total of at most si elements. Assume without
loss of generality min Sij1 ≥ min Sij2. We merge the content of Sij1 and Sij2

into Sij2. By merging from the largest elements this merge only requires
reading and writing each element one. Since minSij1 ≥ min Sij2 the heap
order remains satisfied. Finally we apply the sweep operation with Sij1 as
the destination buffer.

5.1 Analysis

The correctness follows as in Section 4. For the complexity, we as in Sec-
tion 4 only have to consider the case where i > iM . We note that in the
modified algorithm, the additional number of I/Os required by a sweep op-
eration is O(ki + si/B) I/Os, which is dominated by the O(si

B logM/B si)
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I/Os required to perform the sweep operation. We will argue that the sweep
operation collects Ω(si) elements from links 1, . . . , i − 1 which have been
inserted since the last sweep ending in link i or larger. Furthermore, for half
of these elements the value Nℓ is Ω(si). The claimed amortized complex-
ity O( 1

B logM/B Nℓ) then follows as in Section 4, except that we now charge
the cost of the sweep operation to these Ω(si) elements.

The main property of the modified algorithm is captured by the fol-
lowing invariant: For each i, the links 1, . . . , i contain in total at most
∑i

j=1 |Aj | =
∑i

j=1 k3
j elements which have been removed from Ai+1 by the

binary merger vi since the last sweep ending a link i + 1 or larger. After
a sweep ending at link i + 1, we define all elements in Aj to have been re-
moved from Aℓ, where 1 ≤ j < ℓ ≤ i + 1. When an element e is removed
from Ai+1 and is output to Ai, then all elements in the lower part of link i
must be larger than e. All elements removed from Ai+1 since the last sweep
operation ending at link i+ 1 or larger were smaller than e. These elements
must either be stored in Ai or have been removed from Ai by the merger
in vi−1. It follows that at most

∑i−1
j=1 |Aj |+ |Ai| − 1 elements removed from

Aj+1 are present in links 1, . . . , i. Hence, the invariant remains valid after
moving e from Ai+1 to Ai. By definition, the invariant remains valid after
a sweep operation.

A sweep operation ending at link i will create a list with at least s1 +
∑i−1

j=1 kjsj/2 ≥ si/2 elements. From the above invariant at least t = si/2 −
∑i−1

j=1 k3
j = Ω(si) elements must have been inserted since the last sweep

operation ending at link i or larger. Finally, for each of the three definitions
of Nℓ in Section 1 we for at least t/2 of the elements have Nℓ ≥ t/2:

(a) For each of the t/2 most recently inserted elements, at least t/2 ele-
ments were inserted when these elements where inserted.

(b) For each of the t/2 earliest inserted elements, at least t/2 other ele-
ments have been inserted before they themselves get deleted.

(c) The t/2 largest elements each have (maximum) rank at least t/2.

This proves the complexity stated in Section 1.
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