Cache-Oblivious Algorithms

Cache-Oblivious Model

The Unknown Machine

Algorithm
\downarrow
C program
\downarrow gcc
Object code
\downarrow linux

Execution

Algorithm
\downarrow
Java program
\downarrow javac
Java bytecode
\downarrow java
Interpretation

Can be executed on machines with a specific class of CPUs

Can be executed on any machine with a Java interpreter

The Unknown Machine

Algorithm
\downarrow
C program
\downarrow gcc
Object code
\downarrow linux
Execution

Algorithm
\downarrow
Java program
\downarrow javac
Java bytecode
\downarrow java
Interpretation

Can be executed on machines with a specific class of CPUs

Can be executed on any machine with a Java interpreter

Goal Develop algorithms that are optimized w.r.t. memory hierarchies without knowing the parameters

Cache-Oblivious Model

- I/O model
- Algorithms do not know the parameters B and M
- Optimal off-line cache replacement strategy

Justification of the ideal-cache model

Optimal replacement
LRU $+2 \times$ cache size \Rightarrow at most $2 \times$ cache misses \quad Sleator an Tarjan, 1985

Corollary

$T_{M, B}(N)=O\left(T_{2 M, B}(N)\right) \Rightarrow$ \#cache misses using LRU is $O\left(T_{M, B}(N)\right)$
Two memory levels
Optimal cache-oblivious algorithm satisfying $T_{M, B}(N)=O\left(T_{2 M, B}(N)\right)$
\Rightarrow optimal \#cache misses on each level of a multilevel cache using LRU
Fully associativity cache
Simulation of LRU

- Direct mapped cache
- Explicit memory management
- Dictionary (2-universal hash functions) of cache lines in memory
- Expected $O(1)$ access time to a cache line in memory

Matrix Multiplication

Matrix Multiplication

Problem

$$
C=A \cdot B, \quad c_{i j}=\sum_{k=1 . . N} a_{i k} \cdot b_{k j}
$$

Layout of matrices

Row major

Column major 4×4-blocked Bit interleaved

Matrix Multiplication

Algorithm 1: Nested loops

- Row major
- Reading a column of B uses N I/Os
- Total $O\left(N^{3}\right)$ I/Os

$$
\begin{aligned}
& \text { for } i=1 \text { to } N \\
& \text { for } j=1 \text { to } N \\
& c_{i j}=0 \\
& \text { for } k=1 \text { to } N \\
& \quad c_{i j}=c_{i j}+a_{i k} \cdot b_{k j}
\end{aligned}
$$

Matrix Multiplication

Algorithm 1: Nested loops

- Row major
- Reading a column of B uses N I/Os
- Total $O\left(N^{3}\right)$ I/Os

$$
\begin{aligned}
& \text { for } i=1 \text { to } N \\
& \text { for } j=1 \text { to } N \\
& c_{i j}=0 \\
& \text { for } k=1 \text { to } N \\
& c_{i j}=c_{i j}+a_{i k} \cdot b_{k j}
\end{aligned}
$$

Algorithm 2: Blocked algorithm (cache-aware)

- Partition A and B into blocks of size $s \times s$ where $s=\Theta(\sqrt{M})$
- Apply Algorithm 1 to the $\frac{N}{s} \times \frac{N}{s}$ matrices where elements are $s \times s$ matrices

s	$\begin{array}{ll}0 & 1 \\ 8 & 9\end{array}$	$\begin{array}{cc}2 & 3 \\ 10 & 11\end{array}$	$\begin{array}{cc}4 & 5 \\ 12 & 13\end{array}$	$\begin{array}{cc}6 & 7 \\ 14 & 15\end{array}$
	1617	1819	2021	2223
	2425	2627	2829	3031
	3233	3435	3637	3839
	4041	4243	4445	4647
	4849	5051	5253	5455
	5657	5859	6061	6263

Matrix Multiplication

Algorithm 1: Nested loops

- Row major
- Reading a column of B uses N I/Os
- Total $O\left(N^{3}\right)$ I/Os

$$
\begin{aligned}
& \text { for } i=1 \text { to } N \\
& \text { for } j=1 \text { to } N \\
& c_{i j}=0 \\
& \text { for } k=1 \text { to } N \\
& \quad c_{i j}=c_{i j}+a_{i k} \cdot b_{k j}
\end{aligned}
$$

Algorithm 2: Blocked algorithm (cache-aware)

- Partition A and B into blocks of size $s \times s$ where $s=\Theta(\sqrt{M})$
- Apply Algorithm 1 to the $\frac{N}{s} \times \frac{N}{s}$ matrices where elements are $s \times s$ matrices
- $s \times s$-blocked or (row major and $M=\Omega\left(B^{2}\right)$)

s	$\begin{array}{ll}0 & 1 \\ 8 & 9\end{array}$	$\begin{array}{cc}2 & 3 \\ 10 & 11\end{array}$	$\begin{array}{cc}4 & 5 \\ 12 & 13\end{array}$	$\begin{array}{cc}6 & 7 \\ 14 & 15\end{array}$
	1617	1819	2021	2223
	2425	2627	2829	3031
	3233	3435	3637	3839
	4041	4243	4445	4647
	4849	5051	5253	5455
	5657	5859	6061	6263

$$
O\left(\left(\frac{N}{s}\right)^{3} \cdot \frac{s^{2}}{B}\right)=O\left(\frac{N^{3}}{s \cdot B}\right)=O\left(\frac{N^{3}}{B \sqrt{M}}\right) \mathrm{I} / \mathrm{Os}
$$

Matrix Multiplication

Algorithm 1: Nested loops

- Row major
- Reading a column of B uses N I/Os
- Total $O\left(N^{3}\right)$ I/Os

$$
\begin{aligned}
& \text { for } i=1 \text { to } N \\
& \text { for } j=1 \text { to } N \\
& c_{i j}=0 \\
& \text { for } k=1 \text { to } N \\
& c_{i j}=c_{i j}+a_{i k} \cdot b_{k j}
\end{aligned}
$$

Algorithm 2: Blocked algorithm (cache-aware)

- Partition A and B into blocks of size $s \times s$ where $s=\Theta(\sqrt{M})$
- Apply Algorithm 1 to the $\frac{N}{s} \times \frac{N}{s}$ matrices where elements are $s \times s$ matrices
- $s \times s$-blocked or (row major and $M=\Omega\left(B^{2}\right)$)

$$
O\left(\left(\frac{N}{s}\right)^{3} \cdot \frac{s^{2}}{B}\right)=O\left(\frac{N^{3}}{s \cdot B}\right)=O\left(\frac{N^{3}}{B \sqrt{M}}\right) \mathrm{I} / \mathrm{Os}
$$

- Optimal

Matrix Multiplication

Algorithm 3: Recursive algorithm (cache-oblivious)
$\left(\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right)\left(\begin{array}{ll}B_{11} & B_{12} \\ B_{21} & B_{22}\end{array}\right)=\left(\begin{array}{ll}A_{11} B_{11}+A_{12} B_{21} & A_{11} B_{12}+A_{12} B_{22} \\ A_{21} B_{11}+A_{22} B_{21} & A_{21} B_{12}+A_{22} B_{22}\end{array}\right)$

- 8 recursive $\frac{N}{2} \times \frac{N}{2}$ matrix multiplications $+4 \frac{N}{2} \times \frac{N}{2}$ matrix sums

Matrix Multiplication

Algorithm 3: Recursive algorithm (cache-oblivious)
$\left(\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right)\left(\begin{array}{ll}B_{11} & B_{12} \\ B_{21} & B_{22}\end{array}\right)=\left(\begin{array}{ll}A_{11} B_{11}+A_{12} B_{21} & A_{11} B_{12}+A_{12} B_{22} \\ A_{21} B_{11}+A_{22} B_{21} & A_{21} B_{12}+A_{22} B_{22}\end{array}\right)$

- 8 recursive $\frac{N}{2} \times \frac{N}{2}$ matrix multiplications $+4 \frac{N}{2} \times \frac{N}{2}$ matrix sums
- \# I/Os if bit interleaved or (row major and $M=\Omega\left(B^{2}\right)$)

$$
\begin{aligned}
& T(N) \leq \begin{cases}O\left(\frac{N^{2}}{B}\right) & \text { if } N \leq \varepsilon \sqrt{M} \\
8 \cdot T\left(\frac{N}{2}\right)+O\left(\frac{N^{2}}{B}\right) & \text { otherwise }\end{cases} \\
& T(N) \leq O\left(\frac{N^{3}}{B \sqrt{M}}\right)
\end{aligned}
$$

Matrix Multiplication

Algorithm 3: Recursive algorithm (cache-oblivious)
$\left(\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right)\left(\begin{array}{ll}B_{11} & B_{12} \\ B_{21} & B_{22}\end{array}\right)=\left(\begin{array}{ll}A_{11} B_{11}+A_{12} B_{21} & A_{11} B_{12}+A_{12} B_{22} \\ A_{21} B_{11}+A_{22} B_{21} & A_{21} B_{12}+A_{22} B_{22}\end{array}\right)$

- 8 recursive $\frac{N}{2} \times \frac{N}{2}$ matrix multiplications $+4 \frac{N}{2} \times \frac{N}{2}$ matrix sums
- \# I/Os if bit interleaved or (row major and $M=\Omega\left(B^{2}\right)$)

$$
\begin{aligned}
& T(N) \leq \begin{cases}O\left(\frac{N^{2}}{B}\right) & \text { if } N \leq \varepsilon \sqrt{M} \\
8 \cdot T\left(\frac{N}{2}\right)+O\left(\frac{N^{2}}{B}\right) & \text { otherwise }\end{cases} \\
& T(N) \leq O\left(\frac{N^{3}}{B \sqrt{M}}\right)
\end{aligned}
$$

- Optimal
- Non-square matrices

Matrix Multiplication

Algorithm 4: Strassen's algorithm (cache-oblivious)

- 7 recursive $\frac{N}{2} \times \frac{N}{2}$ matrix multiplications $+O(1)$ matrix sums

$$
\begin{aligned}
&\left(\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right)=\left(\begin{array}{cc}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)\left(\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right) \\
& m_{1}:=\left(a_{21}+a_{22}-a_{11}\right)\left(b_{22}-b_{12}+b_{11}\right) \\
& m_{2}:=a_{11} b_{11} \\
& m_{3}:=a_{12} b_{21} \\
& m_{4}:=\left(m_{11}-a_{21}\right)\left(b_{22}-b_{12}\right) \\
& m_{5}:=\left(a_{21}+a_{22}\right)\left(b_{12}-b_{11}\right) \\
& m_{6}:=m_{1}+m_{2}+m_{5}+m_{6} \\
& m_{7}\left.:=a_{12}-a_{21}+a_{11}-a_{22}\right) b_{22} \\
& c_{21}\left(b_{11}+b_{22}-b_{12}-b_{21}\right) \\
& c_{22}+m_{2}+m_{4}-m_{7} \\
& m_{1}:=m_{1}+m_{2}+m_{4}+m_{5} \\
& m_{2}
\end{aligned}
$$

Matrix Multiplication

Algorithm 4: Strassen's algorithm (cache-oblivious)

- 7 recursive $\frac{N}{2} \times \frac{N}{2}$ matrix multiplications $+O(1)$ matrix sums

$$
\begin{aligned}
&\left(\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right)=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)\left(\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right) \\
& m_{1}:=\left(a_{21}+a_{22}-a_{11}\right)\left(b_{22}-b_{12}+b_{11}\right) \\
& m_{2}:=a_{11} \\
& m_{11} b_{11}:=m_{2}+m_{3} \\
& m_{3}:=a_{12} b_{21} \\
& m_{4}:=\left(a_{11}-a_{21}\right)\left(b_{22}-b_{12}\right) \\
& m_{5}:=\left(m_{21}+m_{5}+m_{6}\right. \\
& m_{6}:=\left(a_{22}\right)\left(b_{12}-b_{11}\right) \\
& m_{6}:=m_{1}+m_{2}+m_{4}-m_{7} \\
& m_{7}:=a_{22}\left(a_{21}+a_{11}-a_{22}\right) m_{22}+m_{2}+m_{4}+m_{5} \\
&\left.c_{22}-b_{12}-b_{21}\right)
\end{aligned}
$$

- \# I/Os if bit interleaved or (row major and $M=\Omega\left(B^{2}\right)$)

$$
\begin{array}{ll}
T(N) \leq \begin{cases}O\left(\frac{N^{2}}{B}\right) & \text { if } N \leq \varepsilon \sqrt{M} \\
7 \cdot T\left(\frac{N}{2}\right)+O\left(\frac{N^{2}}{B}\right) & \text { otherwise }\end{cases} \\
T(N) \leq O\left(\frac{N^{\log _{2} 7}}{B \sqrt{M}}\right) & \log _{2} 7 \approx 2.81
\end{array}
$$

Cache-Oblivious Search Trees

Static Cache-Oblivious Trees

Recursive memory layout \equiv van Emde Boas layout

$$
\begin{array}{|l|l|l|l|}
\hline A & B_{1} & \cdots & B_{k} \\
\hline
\end{array}
$$

Degree $O(1)$

Searches use $\mathrm{O}\left(\log _{B} N\right)$ I/Os

Static Cache-Oblivious Trees

Recursive memory layout \equiv van Emde Boas layout

\square
Degree $O(1)$

Searches use $\mathrm{O}\left(\log _{B} N\right)$ I/Os
Range reportings use
O $\left(\log _{B} N+\frac{k}{B}\right)$ I/Os

Static Cache-Oblivious Trees

Recursive memory layout \equiv van Emde Boas layout

Degree $\mathrm{O}(1)$

Searches use $\mathrm{O}\left(\log _{B} N\right)$ I/Os
Range reportings use
O $\left(\log _{B} N+\frac{k}{B}\right)$ I/Os
Prokop 1999
Bender, Brodal, Fagerberg, Ge, He, Hu Iacono, López-Ortiz 2003

Dynamic Cache-Oblivious Trees

- Embed a dynamic tree of small height into a complete tree
- Static van Emde Boas layout
- Rebuild data structure whenever N doubles of halves

Search
$\mathrm{O}\left(\log _{B} N\right)$
Range Reporting
$\mathrm{O}\left(\log _{B} N+\frac{k}{B}\right)$
Updates
O $\left(\log _{B} N+\frac{\log ^{2} N}{B}\right)$

Example

Binary Trees of Small Height

- If an insertion causes non-small height then rebuild subtree at nearest ancestor with suffi cient few descendents
- Insertions require amortized time $\mathrm{O}\left(\log ^{2} N\right)$

Binary Trees of Small Height

- For each level i there is a threshold $\tau_{i}=\tau_{L}+i \Delta$, such that $0<\tau_{L}=\tau_{0}<\tau_{1}<\cdots<\tau_{H}=\tau_{U}<1$
- For a node v_{i} on level i defi nethe density

$$
\rho\left(v_{i}\right)=\frac{\# \text { nodes below } v_{i}}{m_{i}}
$$

where $m_{i}=\#$ possible nodes below v_{i} with depth at most H
Insertion

- Insert new element
- If depth $>H$ then locate neirest ancestor v_{i} with $\rho\left(v_{i}\right) \leq \tau_{i}$ and rebuild subtree at v_{i} to have minimum height and elements evenly distributed between left and right subtrees

Binary Trees of Small Height

Theorem Insertions require amortized time $O\left(\log ^{2} N\right)$
Proof Consider two redistributions of v_{i}

- After the fir rst redistribution $\rho\left(v_{i}\right) \leq \tau_{i}$
- Before second redistribution a child v_{i+1} of v_{i} has $\rho\left(v_{i+1}\right)>\tau_{i+1}$
- Insertions below $v_{i}: m\left(v_{i+1}\right) \cdot\left(\tau_{i+1}-\tau_{i}\right)=m\left(v_{i+1}\right) \cdot \Delta$
- Redistribution of v_{i} costs $m\left(v_{i}\right)$, i.e. per insertion below v_{i}

$$
\frac{m\left(v_{i}\right)}{m\left(v_{i+1}\right) \cdot \Delta} \leq \frac{2}{\Delta}
$$

- Total insertion cost per element

$$
\sum_{i=0}^{H} \frac{2}{\Delta}=O\left(\log ^{2} N\right)
$$

Memory Layouts of Trees

DFS

BFS

van Emde Boas (in theory best)

Searches in Pointer Based Layouts

- van Emde Boas layout wins, followed by the BFS layout

Searches with Implicit Layouts

- BFS layout wins due to simplicity and caching of topmost levels
- van Emde Boas layout requires quite complex index computations

Implicit vs Pointer Based Layouts

BFS layout

van Emde Boas layout

- Implicit layouts become competitive as n grows

Insertions in Implicit Layouts

- Insertions are rather slow (factor $10-100$ over searches)

Summary

- Dynamic cache-oblivious search trees

Search	$\quad \mathrm{O}\left(\log _{B} N\right)$
Range Reporting	$\mathrm{O}\left(\log _{B} N+\frac{k}{B}\right)$
Updates	$\mathrm{O}\left(\log _{B} N+\frac{\log ^{2} N}{B}\right)$

- Update time $\mathrm{O}\left(\log _{B} N\right)$ by one level of indirection (implies sub-optimal range reporting)
- Importance of memory layouts
- van Emde Boas layout gives good cache performance
- Computation time is important when considering caches

6	4	8	1	-	3	5	-	-	7	-	-	11	10	13

Cache-Oblivious Sorting

Sorting Problem

- Input : array containing x_{1}, \ldots, x_{N}
- Output: array with x_{1}, \ldots, x_{N} in sorted order
- Elements can be compared and copied

Binary Merge-Sort

Binary Merge-Sort

- Recursive; two arrays; size $O(M)$ internally in cache
- $O(N \log N)$ comparisons - $O\left(\frac{N}{B} \log _{2} \frac{N}{M}\right)$ I/Os

Merge-Sort

Degree

$$
\begin{gathered}
2 \\
d \\
\left(d \leq \frac{M}{B}-1\right)
\end{gathered}
$$

$$
\Theta\left(\frac{M}{B}\right)
$$

$$
O\left(\frac{N}{B} \log _{M / B} \frac{N}{M}\right)=O\left(\operatorname{Sort}_{M, B}(N)\right)
$$

Aggarwal and Vitter 1988

Funnel-Sort

$$
O\left(\frac{1}{\varepsilon} \operatorname{Sort}_{M, B}(N)\right)
$$

Frigo, Leiserson, Prokop and Ramachandran 1999
Brodal and Fagerberg 2002

Lower Bound

	Block Size	Memory	I/Os
Machine 1	B_{1}	M	t_{1}
Machine 2	B_{2}	M	t_{2}

One algorithm, two machines, $B_{1} \leq B_{2}$

Trade-off

$$
8 t_{1} B_{1}+3 t_{1} B_{1} \log \frac{8 M t_{2}}{t_{1} B_{1}} \geq N \log \frac{N}{M}-1.45 N
$$

Lower Bound

Assumption

I/Os

Lazy	$B \leq M^{1-\varepsilon}$	$\left(\right.$ a) $B_{2}=M^{1-\varepsilon}:$	$\operatorname{Sort}_{B_{2}, M}(N)$
Funnel-sort		(b) $B_{1}=1:$	$\operatorname{Sort}_{B_{1}, M}(N) \cdot \frac{1}{\varepsilon}$
Binary	$B \leq M / 2$	(a) $B_{2}=M / 2:$ Merge-sort	$\operatorname{Sort}_{B_{2}, M}(N)$
(b) $B_{1}=1:$	$\operatorname{Sort}_{B_{1}, M}(N) \cdot \log M$		

Corollary $(a) \Rightarrow(b)$

Funnel-Sort

k-merger

Frigo et al., FOCS'99

Sorted output stream

k sorted input streams

k-merger

Frigo et al., FOCS'99

k-merger

Frigo et al., FOCS'99

M_{0}	B_{1}	M_{1}	B_{2}	M_{2}	\ldots	$B_{\sqrt{k}}$	$M_{\sqrt{k}}$
Recursive Layout							

Lazy k-merger

Brodal and Fagerberg 2002

Lazy k-merger

 \longrightarrow

Procedure Fill(v)
Procedure Fill(v)
while out-buffer not full
while out-buffer not full
if left in-buffer empty
if left in-buffer empty
Fill(left child)
Fill(left child)
if right in-buffer empty
if right in-buffer empty
Fill(right child)
Fill(right child)
perform one merge step
perform one merge step

Lazy k-merger

Lemma
If $M \geq B^{2}$ and output buffer has size k^{3} then $O\left(\frac{k^{3}}{B} \log _{M}\left(k^{3}\right)+k\right)$ I/Os are done during an invocation of Fill(root)

Funnel-Sort

Frigo, Leiserson, Prokop and Ramachandran 1999
Divide input in $N^{1 / 3}$ segments of size $N^{2 / 3}$
Recursively Funnel-Sort each segment
Merge sorted segments by an $N^{1 / 3}$-merger

Funnel-Sort

Frigo, Leiserson, Prokop and Ramachandran 1999
Divide input in $N^{1 / 3}$ segments of size $N^{2 / 3}$
Recursively Funnel-Sort each segment
Merge sorted segments by an $N^{1 / 3}$-merger

Theorem Funnel-Sort performs $O\left(\operatorname{Sort}_{M, B}(N)\right)$ I/Os for $M \geq B^{2}$

Hardware

Processor type	Pentium 4	Pentium 3	MIPS 10000
Workstation	Dell PC	Delta PC	SGI Octane
Operating system	GNU/Linux Kernel version 2.4 .18	GNU/Linux Kernel version 2.4 .18	IRIX version 6.5
Clock rate	2400 MHz	800 MHz	175 MHz
Address space	32 bit	32 bit	64 bit
Integer pipeline stages	20	12	6
L1 data cache size	8 KB	16 KB	32 KB
L1 line size	128 Bytes	32 Bytes	32 Bytes
L1 associativity	4 way	4 way	2 way
L2 cache size	512 KB	256 KB	1024 KB
L2 line size	128 Bytes	32 Bytes	32 Bytes
L2 associativity	8 way	4 way	2 way
TLB entries	128	64	64
TLB associativity	Full	4 way	64 way
TLB miss handler	Hardware	Hardware	Software
Main memory	512 MB	256 MB	128 MB

Wall Clock

Page Faults

Cache Misses

TLB Misses

Conclusions

Cache oblivious sorting

- is possible
- requires a tall cache assumption $M \geq B^{1+\varepsilon}$
- comparable performance with cache aware algorithms

Future work

- more experimental justifi cation for the cache oblivious model
- limitations of the model - time space trade-offs ?
- tool-box for cache oblivious algorithms

