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The Unknown Machine

Algorithm Algorithm

↓ ↓
C program Java program

↓ gcc ↓ javac

Object code Java bytecode

↓ linux ↓ java

Execution Interpretation

Can be executed on machines with a

specific class of CPUs

Can be executed on any machine

with a Java interpreter

Goal Develop algorithms that are optimized w.r.t. memory

hierarchies without knowing the parameters
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Cache-Oblivious Model

Memory

CPU

Disk

I/O

• I/O model

• Algorithms do not know the parameters B and M

• Optimal off-line cache replacement strategy

Frigo et al. 1999
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Justification of the ideal-cache model

Optimal replacement
LRU + 2 × cache size ⇒ at most 2 × cache misses Sleator an Tarjan, 1985

Corollary
TM,B(N) = O(T2M,B(N)) ⇒ #cache misses using LRU is O(TM,B(N))

Two memory levels
Optimal cache-oblivious algorithm satisfying TM,B(N) = O(T2M,B(N))
⇒ optimal #cache misses on each level of a multilevel cache using LRU

Fully associativity cache
Simulation of LRU

• Direct mapped cache
• Explicit memory management
• Dictionary (2-universal hash functions) of cache lines in memory
• Expected O(1) access time to a cache line in memory
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Matrix Multiplication
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Matrix Multiplication

Problem

C = A · B , cij =
∑

k=1..N

aik · bkj
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Matrix Multiplication
Algorithm 1: Nested loops

– Row major

for i = 1 to N
for j = 1 to N

cij = 0
for k = 1 to N

cij = cij + aik · bkj

– Reading a column of B uses N I/Os
– Total O(N 3) I/Os

Algorithm 2: Blocked algorithm (cache-aware)

– Partition A and B into blocks of size s × s where s

s

1 2 3 4 5 6 7

9 10 11 12 13 14 15

17 18 19 20 21 22 23

25 26 27 28 29 30 31

33 34 35 36 37 38 39

41 42 43 44 45 46 47

49 50 51 52 53 54 55

57 58 59 60 61 62 6356

48

40

32

24

16

8

0

s = Θ(
√

M)

– Apply Algorithm 1 to the N
s
× N

s
matrices where

elements are s × s matrices
– s × s-blocked or ( row major and M = Ω(B2) )

O
(

(

N
s

)3
· s2

B

)

= O
(

N3

s·B

)

= O
(

N3

B
√

M

)

I/Os

– Optimal Hong & Kung, 1981
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Matrix Multiplication
Algorithm 3: Recursive algorithm (cache-oblivious)





A11 A12

A21 A22









B11 B12

B21 B22



 =





A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22





– 8 recursive N
2
× N

2
matrix multiplications + 4 N

2
× N

2
matrix sums

– # I/Os if bit interleaved or ( row major and M = Ω(B2) )

T (N) ≤







O(N2

B
) if N ≤ ε

√
M

8 · T
(

N
2

)

+ O
(

N2

B

)

otherwise

T (N) ≤ O

(

N 3

B
√

M

)

– Optimal Hong & Kung, 1981

– Non-square matrices Frigo et al., 1999
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Matrix Multiplication
Algorithm 4: Strassen’s algorithm (cache-oblivious)

– 7 recursive N
2
× N

2
matrix multiplications + O(1) matrix sums





C11 C12

C21 C22



 =





A11 A12

A21 A22









B11 B12

B21 B22





m1 := (a21 + a22−a11)(b22−b12 + b11) c11 := m2 + m3

m2 := a11b11 c12 := m1 + m2 + m5 + m6

m3 := a12b21 c21 := m1 + m2 + m4−m7

m4 := (a11−a21)(b22−b12) c22 := m1 + m2 + m4 + m5

m5 := (a21 + a22)(b12−b11)
m6 := (a12−a21 + a11−a22)b22
m7 := a22(b11 + b22−b12−b21)

– # I/Os if bit interleaved or ( row major and M = Ω(B2) )

T (N) ≤







O(N2

B
) if N ≤ ε

√
M

7 · T
(

N
2

)

+ O
(

N2

B

)

otherwise

T (N) ≤ O
(

N log2 7

B
√

M

)

log2 7 ≈ 2.81
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Cache-Oblivious Search Trees
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Static Cache-Oblivious Trees
Recursive memory layout ≡ van Emde Boas layout

Bk

A

B1

A B1 Bk· · ·

· · ·

h

dh/2e

bh/2c

· · ·

· · ·
· · · · · ·

· · ·

· · ·· · ·

· · ·

· · ·

· · ·· · ·

· · · · · ·

Degree O(1) Searches use O(logB N) I/Os

Range reportings use

O
(

logB N + k
B

)

I/Os

Prokop 1999

Best possible (log2 e + o(1)) logB N Bender, Brodal, Fagerberg, Ge, He, Hu
Iacono, López-Ortiz 2003
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Dynamic Cache-Oblivious Trees

• Embed a dynamic tree of small height into a complete tree

• Static van Emde Boas layout

• Rebuild data structure whenever N doubles of halves

6

4

1

3

5

8

7 11

10 13

Search O(logB N)

Range Reporting O
(

logB N + k
B

)

Updates O
(

logB N + log2 N
B

)

Brodal, Fagerberg, Jacob 2001
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Example

6

4

1

3

5

8

7 11

10 13

⇓
6 4 8 1 − 3 5 − − 7 − − 11 10 13
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Binary Trees of Small Height

6

4

1

3

5

8

7 11

10 13

2 New

6

3

1

2

4

8

7 11

10 135

• If an insertion causes non-small height then rebuild subtree at
nearest ancestor with sufficient few descendents

• Insertions require amortized time O(log2 N)

Andersson and Lai 1990
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Binary Trees of Small Height

• For each level i there is a threshold τi = τL + i∆, such that
0 < τL = τ0 < τ1 < · · · < τH = τU < 1

• For a node vi on level i definethe density

ρ(vi) =
# nodes below vi

mi

where mi = # possible nodes below vi with depth at most H

Insertion

• Insert new element

• If depth > H then locate neirest ancestor vi with ρ(vi) ≤ τi and
rebuild subtree at vi to have minimum height and elements evenly
distributed between left and right subtrees

Andersson and Lai 1990

16



Binary Trees of Small Height
Theorem Insertions require amortized time O(log2 N)

Proof Consider two redistributions of vi

• After the first redistribution ρ(vi) ≤ τi

• Before second redistribution a child vi+1 of vi has ρ(vi+1) > τi+1

• Insertions below vi : m(vi+1) · (τi+1 − τi) = m(vi+1) · ∆
• Redistribution of vi costs m(vi), i.e. per insertion below vi

m(vi)

m(vi+1) · ∆
≤ 2

∆

• Total insertion cost per element

H
∑

i=0

2

∆
= O(log2 N)

2

Andersson and Lai 1990
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Memory Layouts of Trees

DFS

1
2

3

4 5

6

7 8

9

10

11 12

13

14 15

inorder

8
4

2

1 3

6

5 7

12

10

9 11

14

13 15

BFS

1
2

4

8 9

5

10 11

3

6

12 13

7

14 15

van Emde Boas

1
2

4

5 6

7

8 9

3

10

11 12

13

14 15

(in theory best)
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Searches in Pointer Based Layouts

0.0001

0.001

1000 10000 100000 1e+06

pointer bfs
pointer dfs

pointer vEB
pointer random insert
pointer random layout

• van Emde Boas layout wins, followed by the BFS layout
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Searches with Implicit Layouts

0.0001

0.001

1000 10000 100000 1e+06

implicit bfs
implicit dfs

implicit vEB
implicit in-order

implicit 9-ary bfs

• BFS layout wins due to simplicity and caching of topmost levels

• van Emde Boas layout requires quite complex index computations
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Implicit vs Pointer Based Layouts

0.0001

0.001

1000 10000 100000 1e+06

pointer bfs
implicit bfs

0.0001

0.001

1000 10000 100000 1e+06

pointer vEB
implicit vEB

BFS layout van Emde Boas layout

• Implicit layouts become competitive as n grows
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Insertions in Implicit Layouts

0.0001

0.001

0.01

0.1

100000 1e+06

implicit bfs random inserts
implicit in-order random inserts

implicit vEB random inserts

• Insertions are rather slow (factor 10-100 over searches)
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Summary

• Dynamic cache-oblivious search trees

Search O(logB N)

Range Reporting O
(

logB N + k
B

)

Updates O
(

logB N + log2 N
B

)

• Update time O(logB N) by one level of indirection
(implies sub-optimal range reporting)

• Importance of memory layouts

• van Emde Boas layout gives good cache performance

• Computation time is important when considering caches

6 4 8 1 − 3 5 − − 7 − − 11 10 13
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Cache-Oblivious Sorting
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Sorting Problem

• Input : array containing x1, . . . , xN

• Output : array with x1, . . . , xN in sorted order

• Elements can be compared and copied

3 4 8 2 8 4 0 4 4 6

D E M E T R E S C U

⇓

0 2 3 4 4 4 4 6 8 8

C D E E E M R S T U
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Binary Merge-Sort

2 8 0 4

8 4 4 6402 843

2 830 4 4 4 864

3 4

3 4 8 4 62 8 40 4

4 68 2 8 4 0 4

Merging

Merging

Merging

Ouput

Input

Merging

• Recursive; two arrays; size O(M) internally in cache

• O(N log N) comparisons • O
(

N
B

log2
N
M

)

I/Os
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Binary Merge-Sort
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Merge-Sort

Degree I/O

2 O
(

N
B

log2
N
M

)

d O
(

N
B

logd
N
M

)

(d ≤ M
B
− 1)

Θ
(

M
B

)

O
(

N
B

logM/B
N
M

)

= O(SortM,B(N))

Aggarwal and Vitter 1988

Funnel-Sort

2 O(1
ε
SortM,B(N))

(M ≥ B1+ε) Frigo, Leiserson, Prokop and Ramachandran 1999

Brodal and Fagerberg 2002
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Lower Bound
Brodal and Fagerberg 2003

Block Size Memory I/Os

Machine 1 B1 M t1

Machine 2 B2 M t2

One algorithm, two machines, B1 ≤ B2

Trade-off

8t1B1 + 3t1B1 log
8Mt2
t1B1

≥ N log
N

M
− 1.45N

28



Lower Bound

Assumption I/Os

Lazy
Funnel-sort

B ≤ M 1−ε
(a) B2 = M 1−ε : SortB2,M(N)

(b) B1 = 1 : SortB1,M(N) · 1
ε

Binary
Merge-sort

B ≤ M/2
(a) B2 = M/2 : SortB2,M(N)

(b) B1 = 1 : SortB1,M(N) · log M

Corollary (a) ⇒ (b)
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Funnel-Sort
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k-merger
Frigo et al., FOCS’99

Sorted output stream

M

· · ·

k sorted input streams

=
Recursive def.

B1

· · ·

· · ·

· · ·

M1 M√
k

M0

B√
k
← buffers of size k3/2

← k1/2-mergers

· · ·M0 M1B1 B√
k

M√
k

B2 M2

Recursive Layout
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Lazy k-merger
Brodal and Fagerberg 2002

B1

· · ·

· · ·

· · ·

M1 M√
k

M0

B√
k →

Procedure Fill(v)

while out-buffer not full

if left in-buffer empty

Fill(left child)

if right in-buffer empty

Fill(right child)

perform one merge step

Lemma

If M ≥ B2 and output buffer has size k3

then O(k3

B logM (k3) + k) I/Os are done

during an invocation of Fill(root)
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Funnel-Sort
Brodal and Fagerberg 2002

Frigo, Leiserson, Prokop and Ramachandran 1999

Divide input in N1/3 segments of size N2/3

Recursively Funnel-Sort each segment

Merge sorted segments by an N1/3-merger

k

N1/3

N2/9

N4/27

...

2

Theorem Funnel-Sort performs O(SortM,B(N)) I/Os for M ≥ B2
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Hardware

141

Appendix B

Test Equipment 

For reference, we provide the details of the equipment used in the benchmarks of 
Chapters 5 and 6. 

B.1 Computers

We use three different computers for our tests. They are categorized as a Pentium 4, a 
Pentium 3 and a MIPS 10000 computer. Their specifications are as follows, according 
to [HSU+01], [MPS02], and vendor web sites: 

Processor type Pentium 4 Pentium 3 MIPS 10000 
Workstation Dell PC Delta PC SGI Octane
Operating system GNU/Linux Kernel 

version 2.4.18
GNU/Linux Kernel 

version 2.4.18
IRIX version 6.5

Clock rate 2400 MHz 800 MHz 175 MHz
Address space 32 bit 32 bit 64 bit
Integer pipeline stages 20 12 6
L1 data cache size 8 KB 16 KB 32 KB
L1 line size 128 Bytes 32 Bytes 32 Bytes
L1 associativity 4 way 4 way 2 way
L2 cache size 512 KB 256 KB 1024 KB
L2 line size 128 Bytes 32 Bytes 32 Bytes
L2 associativity 8 way 4 way 2 way
TLB entries 128 64 64
TLB associativity Full 4 way 64 way
TLB miss handler Hardware Hardware Software
Main memory 512 MB 256 MB 128 MB

B.2 Compilers

The following compilers were used to build the executables available as described in 
Appendix A and used in the tests of Chapters 5 and 6 

GNU Compiler Collection version 3.1.1. Common compiler flags: 

-DNDEBUG –O6 –fomit-frame-pointer –funroll-loops –fthread-jumps –ansi  
-Wall –Winline –pedantic 
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6.2.1 Key/Pointer pairs 

The results of measuring wall clock time when sorting pairs are as follows: 

Pentium 4, 512/512
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Chart C-61. Wall clock time sorting uniformly distributed pairs on 
Pentium 4.

The internal memory sorting algorithm used in TPIE is the fastest of the algorithms 
when the datasets fit in RAM. As a close second comes the cache tuned tiled mergesort. 
Relative to the tiled mergesort, the multi mergesort performs slightly worse. The reason 
for this is likely the overhead of managing the heap. While the cache-oblivious sorting 
algorithms cannot keep up with the memory tuned variants within RAM, it does 
outperform std::sort and perform on par with multi mergesort. As expected, the 
LOWSCOSA performs rather poorly. 

The picture changes, when dataset takes up half the memory. This is when the 
merge-based sorts begin to cause page faults, because their output cannot also fit in 
RAM. The tiled mergesort suddenly performs a factor 30 slower, due to the many 
passes it makes over the data. We see that both funnelsort and TPIE begins to take 
longer time, however the LOWSCOSA and ffunnelsort does not loose momentum until 
the input cannot fit in RAM. Writing the output directly to disk instead of storing it, 
really helps in this region. The LRU replacement strategy of the operating system does 
not know that the input is more important to keep in memory than the output, so it will 
start evicting pages from the input to keep pages from the output in memory. When 
writing the output directly to disk, the output takes up virtually no space so the input 
need not be paged out. 

When the input does not fit in memory, TPIE is again the superior sorting algorithm. 
This is indeed what it was designed for. It is interesting to see that it is so much faster 
than funnelsort, even though funnelsort incurs an optimal number of page faults. One 
explanation for this could be that TPIE uses double-buffering and overlaps the sorting 
of one part of the data set with the reading or writing of another, thus essentially sorting 
for free. Another explanation could be that is reads in many more blocks at a time. 
During the merge phase, usually no more than 8 or 16 streams are merged. Instead of 
reading in one block from each stream, utilizing only 16B of the memory, a cache aware 
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MIPS 10000, 1024/128
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Chart C-63. Wall clock time sorting uniformly distributed pairs on MIPS 
10000. 

On the MIPS, the picture is not that clear, when looking at the time for sorting 
datasets that fit in RAM. However, we can see that the cache-tuned algorithms perform 
rather poorly. This is likely to be because of the many TLB misses they incur. The 
MIPS uses software TLB miss handlers, so the cost of a TLB miss is greater here than 
on the Pentiums. We see the same trend of the performance of std::sort, ffunnelsort and 
the LOWSCOSA not degrading until the input cannot fit in RAM. Then, we see 
funnelsort as the fastest sorting algorithm and the performance of std::sort continuing to 
degrade. As on the Pentium 3, the LOWSCOSA settles in with a somewhat higher 
running time than the funnelsorts but is eventually faster than std::sort.

Let us see, if we can locate the cause of these performance characteristics in the 
number of page faults incurred by the algorithms. 

Pentium 4, 512/512
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Chart C-64. Page faults sorting uniformly distributed pairs on Pentium 4.
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MIPS 10000, 1024/128
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Chart C-67. Cache misses sorting uniformly distributed pairs on MIPS 
10000.

This is indeed an interesting result. It clearly shows that funnelsort is able to 
maintain a very high degree of cache utilization, even on lower level caches, where the 
ideal cache assumptions such as full associativity and optimal replacement most 
certainly does not hold. Even the LOWSCOSA incurs fewer cache misses than the 
other algorithms.  

It is interesting to see that even for such small datasets as less than one million pairs,
the high number of passes done by tiled mergesort causes a significant number of cache 
misses. It is also interesting to see that multi mergesort is not able to keep up with 
funnelsort. This is most likely due to a high number of conflict misses. 

MIPS 10000, 1024/128
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Chart C-68. TLB misses sorting uniformly distributed pairs on MIPS 
10000.

The std::sort incurs the fewest TLB misses. The reason funnelsort is not as 
dominating on the TLB level of the hierarchy is likely because the TLB is not as tall as 
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MIPS 10000, 1024/128
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Chart C-67. Cache misses sorting uniformly distributed pairs on MIPS 
10000.

This is indeed an interesting result. It clearly shows that funnelsort is able to 
maintain a very high degree of cache utilization, even on lower level caches, where the 
ideal cache assumptions such as full associativity and optimal replacement most 
certainly does not hold. Even the LOWSCOSA incurs fewer cache misses than the 
other algorithms.  

It is interesting to see that even for such small datasets as less than one million pairs,
the high number of passes done by tiled mergesort causes a significant number of cache 
misses. It is also interesting to see that multi mergesort is not able to keep up with 
funnelsort. This is most likely due to a high number of conflict misses. 

MIPS 10000, 1024/128
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Chart C-68. TLB misses sorting uniformly distributed pairs on MIPS 
10000.

The std::sort incurs the fewest TLB misses. The reason funnelsort is not as 
dominating on the TLB level of the hierarchy is likely because the TLB is not as tall as 
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Conclusions
Cache oblivious sorting

• is possible

• requires a tall cache assumption M ≥ B1+ε

• comparable performance with cache aware algorithms

Future work

• more experimental justification for the cache oblivious model

• limitations of the model — time space trade-offs ?

• tool-box for cache oblivious algorithms
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