Cache-Oblivious Algorithms

Cache-Oblivious Model

The Unknown Machine

Algorithm \downarrow C program \downarrow gcc Object code \downarrow linux Execution

Can be executed on machines with a specific class of CPUs

Algorithm ↓ Java program ↓ javac Java bytecode ↓ java Interpretation

Can be executed on any machine with a Java interpreter

The Unknown Machine

AlgorithmAlgorithm \downarrow \downarrow C programJava program \downarrow gcc \downarrow javacObject codeJava bytecode \downarrow linux \downarrow javaExecutionInterpretation

Can be executed on machines with a specific class of CPUs

Can be executed on any machine with a Java interpreter

Goal Develop algorithms that are optimized w.r.t. memory hierarchies without knowing the parameters

Cache-Oblivious Model

- I/O model
- Algorithms do not know the parameters B and M
- Optimal off-line cache replacement strategy

Justification of the ideal-cache model

Optimal replacement

 $LRU + 2 \times cache size \Rightarrow at most 2 \times cache misses$ Sleator an Tarjan, 1985

Corollary

 $T_{M,B}(N) = O(T_{2M,B}(N)) \Rightarrow$ #cache misses using LRU is $O(T_{M,B}(N))$

Two memory levels

Optimal cache-oblivious algorithm satisfying $T_{M,B}(N) = O(T_{2M,B}(N))$ \Rightarrow optimal #cache misses on each level of a multilevel cache using LRU

Fully associativity cache Simulation of LRU

- Direct mapped cache
- Explicit memory management
- Dictionary (2-universal hash functions) of cache lines in memory
- Expected O(1) access time to a cache line in memory

Problem

$$C = A \cdot B$$
, $c_{ij} = \sum_{k=1..N} a_{ik} \cdot b_{kj}$

Layout of matrices

Algorithm 1: Nested loops

- Row major
- Reading a column of B uses N I/Os
- Total $O(N^3)$ I/Os

for i = 1 to Nfor j = 1 to N $c_{ij} = 0$ for k = 1 to N $c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}$

Algorithm 1: Nested loops

- Row major
- Reading a column of B uses N I/Os
- Total $O(N^3)$ I/Os

for
$$i = 1$$
 to N
for $j = 1$ to N
 $c_{ij} = 0$
for $k = 1$ to N
 $c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}$

Algorithm 2: Blocked algorithm (cache-aware)

- Partition A and B into blocks of size $s \times s$ where $s = \Theta(\sqrt{M})$
- Apply Algorithm 1 to the $\frac{N}{s} \times \frac{N}{s}$ matrices where elements are $s \times s$ matrices

	<u>ب</u>	3 ──►						
	0	1	2	3	4	5	6	7
s v	8	9	10	11	12	13	14	15
	16	17	18	19	20	21	22	23
	24	25	26	27	28	29	30	31
	32	33	34	35	36	37	38	39
	40	41	42	43	44	45	46	47
	48	49	50	51	52	53	54	55
	56	57	58	59	60	61	62	63

Algorithm 1: Nested loops

- Row major
- Reading a column of B uses N I/Os
- Total $O(N^3)$ I/Os

for
$$i = 1$$
 to N
for $j = 1$ to N
 $c_{ij} = 0$
for $k = 1$ to N
 $c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}$

Algorithm 2: Blocked algorithm (cache-aware)

- Partition A and B into blocks of size $s \times s$ where $s = \Theta(\sqrt{M})$
- Apply Algorithm 1 to the $\frac{N}{s} \times \frac{N}{s}$ matrices where elements are $s \times s$ matrices
- $\ s \times s\text{-blocked}$ or (row major and $M = \Omega(B^2)$)

$$O\left(\left(\frac{N}{s}\right)^3 \cdot \frac{s^2}{B}\right) = O\left(\frac{N^3}{s \cdot B}\right) = O\left(\frac{N^3}{B\sqrt{M}}\right)$$
 I/Os

	<u>،</u>	3 						
	0	1	2	3	4	5	6	7
s v	8	9	10	11	12	13	14	15
	16	17	18	19	20	21	22	23
	24	25	26	27	28	29	30	31
	32	33	34	35	36	37	38	39
	40	41	42	43	44	45	46	47
	48	49	50	51	52	53	54	55
	56	57	58	59	60	61	62	63

Algorithm 1: Nested loops

- Row major
- Reading a column of B uses N I/Os
- Total $O(N^3)$ I/Os

for
$$i = 1$$
 to N
for $j = 1$ to N
 $c_{ij} = 0$
for $k = 1$ to N
 $c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}$

Algorithm 2: Blocked algorithm (cache-aware)

- Partition A and B into blocks of size $s \times s$ where $s = \Theta(\sqrt{M})$
- Apply Algorithm 1 to the $\frac{N}{s} \times \frac{N}{s}$ matrices where elements are $s \times s$ matrices
- $\ s \times s\text{-blocked}$ or (row major and $M = \Omega(B^2)$)

$$O\left(\left(\frac{N}{s}\right)^3 \cdot \frac{s^2}{B}\right) = O\left(\frac{N^3}{s \cdot B}\right) = O\left(\frac{N^3}{B\sqrt{M}}\right) \text{ I/Os}$$

– Optimal

Hong & Kung, 1981

	ج	3 						
	0	1	2	3	4	5	6	7
s	. 8	9	10	11	12	13	14	15
	16	17	18	19	20	21	22	23
	24	25	26	27	28	29	30	31
	32	33	34	35	36	37	38	39
	40	41	42	43	44	45	46	47
	48	49	50	51	52	53	54	55
	56	57	58	59	60	61	62	63

Algorithm 3: Recursive algorithm (cache-oblivious)

$$\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} = \begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix}$$

- 8 recursive $\frac{N}{2} \times \frac{N}{2}$ matrix multiplications + 4 $\frac{N}{2} \times \frac{N}{2}$ matrix sums

Algorithm 3: Recursive algorithm (cache-oblivious)

$$\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} = \begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix}$$

- 8 recursive $\frac{N}{2} \times \frac{N}{2}$ matrix multiplications + 4 $\frac{N}{2} \times \frac{N}{2}$ matrix sums
- #I/Os if bit interleaved or (row major and $M = \Omega(B^2)$)

$$T(N) \leq \begin{cases} O(\frac{N^2}{B}) & \text{if } N \leq \varepsilon \sqrt{M} \\ 8 \cdot T\left(\frac{N}{2}\right) + O\left(\frac{N^2}{B}\right) & \text{otherwise} \end{cases}$$
$$T(N) \leq O\left(\frac{N^3}{B\sqrt{M}}\right)$$

Algorithm 3: Recursive algorithm (cache-oblivious)

$$\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} = \begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix}$$

- 8 recursive $\frac{N}{2} \times \frac{N}{2}$ matrix multiplications + 4 $\frac{N}{2} \times \frac{N}{2}$ matrix sums
- #I/Os if bit interleaved or (row major and $M = \Omega(B^2)$)

$$T(N) \leq \begin{cases} O(\frac{N^2}{B}) & \text{if } N \leq \varepsilon \sqrt{M} \\ 8 \cdot T\left(\frac{N}{2}\right) + O\left(\frac{N^2}{B}\right) & \text{otherwise} \end{cases}$$
$$T(N) \leq O\left(\frac{N^3}{B\sqrt{M}}\right)$$

– Optimal

Hong & Kung, 1981

Non-square matrices

Frigo et al., 1999

Algorithm 4: Strassen's algorithm (cache-oblivious)

- 7 recursive $\frac{N}{2} \times \frac{N}{2}$ matrix multiplications + O(1) matrix sums

$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$

$$m_{1} := (a_{21} + a_{22} - a_{11})(b_{22} - b_{12} + b_{11}) \quad c_{11} := m_{2} + m_{3}$$

$$m_{2} := a_{11}b_{11} \quad c_{12} := m_{1} + m_{2} + m_{5} + m_{6}$$

$$m_{3} := a_{12}b_{21} \quad c_{21} := m_{1} + m_{2} + m_{4} - m_{7}$$

$$m_{4} := (a_{11} - a_{21})(b_{22} - b_{12}) \quad c_{22} := m_{1} + m_{2} + m_{4} + m_{5}$$

$$m_{5} := (a_{21} + a_{22})(b_{12} - b_{11})$$

$$m_{6} := (a_{12} - a_{21} + a_{11} - a_{22})b_{22}$$

$$m_{7} := a_{22}(b_{11} + b_{22} - b_{12} - b_{21})$$

Algorithm 4: Strassen's algorithm (cache-oblivious)

- 7 recursive $\frac{N}{2} \times \frac{N}{2}$ matrix multiplications + O(1) matrix sums

$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$

$$m_{1} := (a_{21} + a_{22} - a_{11})(b_{22} - b_{12} + b_{11}) \quad c_{11} := m_{2} + m_{3}$$

$$m_{2} := a_{11}b_{11} \quad c_{12} := m_{1} + m_{2} + m_{5} + m_{6}$$

$$m_{3} := a_{12}b_{21} \quad c_{21} := m_{1} + m_{2} + m_{4} - m_{7}$$

$$m_{4} := (a_{11} - a_{21})(b_{22} - b_{12}) \quad c_{22} := m_{1} + m_{2} + m_{4} + m_{5}$$

$$m_{5} := (a_{21} + a_{22})(b_{12} - b_{11})$$

$$m_{6} := (a_{12} - a_{21} + a_{11} - a_{22})b_{22}$$

$$m_{7} := a_{22}(b_{11} + b_{22} - b_{12} - b_{21})$$

– #I/Os if bit interleaved or (row major and $M = \Omega(B^2)$)

$$T(N) \leq \begin{cases} O(\frac{N^2}{B}) & \text{if } N \leq \varepsilon \sqrt{M} \\ 7 \cdot T\left(\frac{N}{2}\right) + O\left(\frac{N^2}{B}\right) & \text{otherwise} \end{cases}$$
$$T(N) \leq O\left(\frac{N^{\log_2 7}}{B\sqrt{M}}\right) & \log_2 7 \approx 2.81$$

Cache-Oblivious Search Trees

Static Cache-Oblivious Trees

Recursive memory layout \equiv van Emde Boas layout

Searches use $O(\log_B N)$ I/Os

Prokop 1999

Static Cache-Oblivious Trees

Recursive memory layout \equiv van Emde Boas layout

Searches use $O(\log_B N)$ I/Os

Range reportings use $O\left(\log_B N + \frac{k}{B}\right)$ I/Os

Prokop 1999

Static Cache-Oblivious Trees

Recursive memory layout \equiv van Emde Boas layout

Best possible
$$(\log_2 e + o(1)) \log_B N$$

Searches use $O(\log_B N)$ I/Os

Range reportings use $O\left(\log_B N + \frac{k}{B}\right)$ I/Os

Prokop 1999

Bender, Brodal, Fagerberg, Ge, He, Hu Iacono, López-Ortiz 2003

Dynamic Cache-Oblivious Trees

- Embed a dynamic tree of small height into a complete tree
- Static van Emde Boas layout
- Rebuild data structure whenever N doubles of halves

Search

 $O(\log_B N)$ Range Reporting $O\left(\log_B N + \frac{k}{B}\right)$ Updates $O\left(\log_B N + \frac{\log^2 N}{B}\right)$

Brodal, Fagerberg, Jacob 2001

Example

Binary Trees of Small Height

- If an insertion causes non-small height then rebuild subtree at nearest ancestor with suffi cient few descendents
- Insertions require amortized time $O(\log^2 N)$

Andersson and Lai 1990

Binary Trees of Small Height

- For each level *i* there is a threshold $\tau_i = \tau_L + i\Delta$, such that $0 < \tau_L = \tau_0 < \tau_1 < \cdots < \tau_H = \tau_U < 1$
- For a node v_i on level *i* define the density

$$\rho(v_i) = \frac{\# \text{ nodes below } v_i}{m_i}$$

where $m_i = \#$ possible nodes below v_i with depth at most H

Insertion

- Insert new element
- If depth > H then locate neirest ancestor v_i with ρ(v_i) ≤ τ_i and rebuild subtree at v_i to have minimum height and elements evenly distributed between left and right subtrees

Andersson and Lai 1990

Binary Trees of Small Height

Theorem Insertions require amortized time $O(\log^2 N)$

Proof Consider two redistributions of v_i

- After the first redistribution $\rho(v_i) \leq \tau_i$
- Before second redistribution a child v_{i+1} of v_i has $\rho(v_{i+1}) > \tau_{i+1}$
- Insertions below $v_i : m(v_{i+1}) \cdot (\tau_{i+1} \tau_i) = m(v_{i+1}) \cdot \Delta$
- Redistribution of v_i costs $m(v_i)$, i.e. per insertion below v_i

$$\frac{m(v_i)}{m(v_{i+1}) \cdot \Delta} \le \frac{2}{\Delta}$$

• Total insertion cost per element

$$\sum_{i=0}^{H} \frac{2}{\Delta} = O(\log^2 N)$$

Andersson and Lai 1990

Memory Layouts of Trees

van Emde Boas (in theory best)

Searches in Pointer Based Layouts

• van Emde Boas layout wins, followed by the BFS layout

Searches with Implicit Layouts

- BFS layout wins due to simplicity and caching of topmost levels
- van Emde Boas layout requires quite complex index computations

Implicit vs Pointer Based Layouts

• Implicit layouts become competitive as n grows

Insertions in Implicit Layouts

• Insertions are rather slow (factor 10-100 over searches)

Summary

• Dynamic cache-oblivious search trees

- Update time $O(\log_B N)$ by one level of indirection (implies sub-optimal range reporting)
- Importance of memory layouts
- van Emde Boas layout gives good cache performance
- Computation time is important when considering caches

Cache-Oblivious Sorting

Sorting Problem

- Input : array containing x_1, \ldots, x_N
- Output : array with x_1, \ldots, x_N in sorted order
- Elements can be compared and copied

Binary Merge-Sort

Binary Merge-Sort

- Recursive; two arrays; size O(M) internally in cache
- $O(N \log N)$ comparisons $O\left(\frac{N}{B} \log_2 \frac{N}{M}\right)$ I/Os

Merge-Sort

Funnel-Sort

 $2 \\ (M \ge B^{1+\varepsilon})$

$$O(\frac{1}{\varepsilon}\operatorname{Sort}_{M,B}(N))$$

Frigo, Leiserson, Prokop and Ramachandran 1999 Brodal and Fagerberg 2002

Lower Bound

Brodal and Fagerberg 2003

	Block Size	Memory	I/Os
Machine 1	B_1	M	t_1
Machine 2	B_2	M	t_2

One algorithm, two machines, $B_1 \leq B_2$

Trade-off

$$8t_1B_1 + 3t_1B_1\log\frac{8Mt_2}{t_1B_1} \ge N\log\frac{N}{M} - 1.45N$$

Lower Bound

	Assumption	I/Os
Lazy Funnel-sort	$B \le M^{1-\varepsilon}$	(a) $B_2 = M^{1-\varepsilon}$: Sort _{B₂,M} (N) (b) $B_1 = 1$: Sort _{B₁,M} (N) $\cdot \frac{1}{\varepsilon}$
Binary Merge-sort	$B \le M/2$	(a) $B_2 = M/2$: Sort _{B₂,M} (N) (b) $B_1 = 1$: Sort _{B₁,M} (N) $\cdot \log M$

Corollary $(a) \Rightarrow (b)$

Funnel-Sort

Frigo et al., FOCS'99

Sorted output stream

k sorted input streams

k-merger

k-merger

M_0	B_1	M_1	B_2	M_2		$B_{\sqrt{k}}$	$M_{\sqrt{k}}$
Recursive Layout							

Lazy k-merger

Brodal and Fagerberg 2002

Lazy k-merger

Brodal and Fagerberg 2002

Procedure Fill(v) while out-buffer not full if left in-buffer empty Fill(left child) if right in-buffer empty Fill(right child) perform one merge step

Lazy k-merger

Brodal and Fagerberg 2002

Procedure **Fill**(v) **while** out-buffer not full **if** left in-buffer empty **Fill**(left child) **if** right in-buffer empty **Fill**(right child) perform one merge step

Lemma

If $M \ge B^2$ and output buffer has size k^3 then $O(\frac{k^3}{B} \log_M(k^3) + k)$ I/Os are done during an invocation of **Fill**(root)

Funnel-Sort

Brodal and Fagerberg 2002

Frigo, Leiserson, Prokop and Ramachandran 1999

Divide input in $N^{1/3}$ segments of size $N^{2/3}$ Recursively **Funnel-Sort** each segment Merge sorted segments by an $N^{1/3}$ -merger

Funnel-Sort

Brodal and Fagerberg 2002

Frigo, Leiserson, Prokop and Ramachandran 1999

Divide input in $N^{1/3}$ segments of size $N^{2/3}$ Recursively **Funnel-Sort** each segment Merge sorted segments by an $N^{1/3}$ -merger

Theorem Funnel-Sort performs $O(\text{Sort}_{M,B}(N))$ I/Os for $M \ge B^2$

Hardware

Processor type	Pentium 4	Pentium 3	MIPS 10000
Workstation	Dell PC	Delta PC	SGI Octane
Operating system	GNU/Linux Kernel	GNU/Linux Kernel	IRIX version 6.5
	version 2.4.18	version 2.4.18	
Clock rate	2400 MHz	800 MHz	175 MHz
Address space	32 bit	32 bit	64 bit
Integer pipeline stages	20	12	6
L1 data cache size	8 KB	16 KB	32 KB
L1 line size	128 Bytes	32 Bytes	32 Bytes
L1 associativity	4 way	4 way	2 way
L2 cache size	512 KB	256 KB	1024 KB
L2 line size	128 Bytes	32 Bytes	32 Bytes
L2 associativity	8 way	4 way	2 way
TLB entries	128	64	64
TLB associativity	Full	4 way	64 way
TLB miss handler	Hardware	Hardware	Software
Main memory	512 MB	256 MB	128 MB

Wall Clock

Page Faults

Cache Misses

TLB Misses

Conclusions

Cache oblivious sorting

- is possible
- requires a tall cache assumption $M \geq B^{1+\varepsilon}$
- comparable performance with cache aware algorithms

Future work

- more experimental justification for the cache oblivious model
- limitations of the model time space trade-offs ?
- tool-box for cache oblivious algorithms

