Homework Exercises 9 - Probabilistic Method

9-1 Crossing lemma. Let G be a graph drawn on a plane such that no three edges coincide at a point except at vertices. Let $c(G), m$ and n be the number of edge intersections, the number of edges, and the number of vertices. If $m \geq 4 n$, show that $c(G) \geqslant m^{3} / 64 n^{2}$.
Hint: Euler formula gives us a linear lower bound: $c(G) \geq m-3 n+6$. Apply this lower bound to a random subgraph of G where each vertex is chosen by a probability of p for some appropriate value of p that you have to find it.

9-2 Incidence problem. Let P and L be a set of n points and a set of m lines. We say $p \in P$ is incident with $\ell \in L$ if p lies on ℓ. Show that the number of incidence is $O\left(m^{2 / 3} n^{2 / 3}+m+n\right)$.

Hint: Use Crossing lemma.

