Exercise 7 - Random Walks

Deadline: 21st May, 2009

- 7-1 What is the expected length of a random walk of a queen that starts and ends on field b3 of an otherwise empty chessboard.
- 7-2 A non-aperiodic irreducible transition matrix P can be changed into an aperiodic transition matrix P' as follows:
 - $p'_{ij} = \frac{p_{ij}}{2}$, for $i \neq j$
 - $p'_{ii} = \frac{1}{2}, \forall i.$

Show that an invariant π of P is also an invariant of P'.

- 7-3 (optional) Consider a 1-dimensional random walk with a reflection barrier, which is defined as follows. For each natural number i, there is a state i. At state 0, with probability 1 the walk will move to state 1. At every other state i > 0, the walk will move to state i + 1 with probability q and to state i 1 with probability 1 q. Prove the following for the resulting Markov chain:
 - For $q > \frac{1}{2}$, each state is transient.
 - For $q = \frac{1}{2}$, each state is null persistent.
 - For $q < \frac{1}{2}$, each state is non-null persistent.