Exercise 7-Random Walks

Deadline: 21st May, 2009
7-1 What is the expected length of a random walk of a queen that starts and ends on field b3 of an otherwise empty chessboard.

7-2 A non-aperiodic irreducible transition matrix P can be changed into an aperiodic transition matrix P^{\prime} as follows:

- $p_{i j}^{\prime}=\frac{p_{i j}}{2}$, for $i \neq j$
- $p_{i i}^{\prime}=\frac{1}{2}, \forall i$.

Show that an invariant π of P is also an invariant of P^{\prime}.
7-3 (optional) Consider a 1-dimensional random walk with a reflection barrier, which is defined as follows. For each natural number i, there is a state i. At state 0 , with probability 1 the walk will move to state 1 . At every other state $i>0$, the walk will move to state $i+1$ with probability q and to state $i-1$ with probability $1-q$. Prove the following for the resulting Markov chain:

- For $q>\frac{1}{2}$, each state is transient.
- For $q=\frac{1}{2}$, each state is null persistent.
- For $q<\frac{1}{2}$, each state is non-null persistent.

