Exercise 4 - PRAM Algorithms

4-1 (i) Finding the first one: Given an array $A[1 \ldots n]$ of boolean elements, the problem of finding the first one is to find an index l such that $A[l]=1$ and $\forall j<l, A[j]=0$. Give a $O(n / \log n)$-processor EREW PRAM algorithm that finds the first one in $O(\log n)$ time.
(ii) Array Compaction: Given an array $A[1 \ldots n]$, compute an array B such that $B[i]$ contains the i-th non-zero element of A. Show that it can be done using a $O(n / \log n)$-processor EREW PRAM algorithm that runs in $O(\log n)$ time.

4-2 Sorting Integers: Let $A[1 \ldots n]$ be an array with $A[i] \in\{1, \ldots, \sqrt{n}\}$ such that for all $1 \leqslant k \leqslant \sqrt{n}$, the frequency of k (number of indices such that $A[i]=k$) is bounded by $O(\sqrt{n} \log n)$. Give a $O(n)$-processor PRAM algorithm that sorts A in $O(\log n)$ time with high probability.

