Homework Exercises for Lecture 2

Deadline: 23 April

2-1 Consider a range space (X, R) in which X is a set of N points in \mathbb{R}^{d}.
(i) Assume $d=1, X=\{1,2, \ldots, N\}$ and R is the set of all the intervals $I_{a, b}:=[a ; b]$ for all $1 \leq a \leq b \leq N$. Find an ε-net of smallest size for this range space.
(ii) Assume $d=2, X=\{(x, y) \mid 1 \leq x, y \leq \sqrt{N}\}$ and R is the set of all the boxes $B_{a, b, c, b}:=[a ; b] \times[c ; d]$ for all $1 \leq a, b, c, d \leq N$ where $a \leq b$ and $c \leq d$. Find an ε-net of size $O\left(\varepsilon^{-1} \log \left(\varepsilon^{-1}\right)\right)$ for this range space.
(optional) (iii) Is the bound obtained in (ii) asymptotically optimal?
(optional) (iii) Assume $d=3, X=\left\{(x, y, z) \mid 1 \leq x, y, z \leq N^{1 / 3}\right\}$ and R is the set of all the boxes $I_{a, b, c, d, e, f}:=[a ; b] \times[c ; d] \times[e ; f]$ for all $1 \leq a, b, c, d, e, f \leq N$ where $a \leq b, c \leq d$ and $e \leq f$. What is the smallest ε-net that you can find for this range space?

