Homework Exercises for Lecture 2

Deadline: 23 April

- 2-1 Consider a range space (X,R) in which X is a set of N points in \mathbb{R}^d .
 - (i) Assume $d = 1, X = \{1, 2, ..., N\}$ and R is the set of all the intervals $I_{a,b} := [a; b]$ for all $1 \le a \le b \le N$. Find an ε -net of smallest size for this range space.
 - (ii) Assume $d=2, X=\left\{(x,y)\,|\, 1\leq x,y\leq \sqrt{N}\right\}$ and R is the set of all the boxes $B_{a,b,c,b}:=[a;b]\times [c;d]$ for all $1\leq a,b,c,d\leq N$ where $a\leq b$ and $c\leq d$. Find an ε -net of size $O(\varepsilon^{-1}\log(\varepsilon^{-1}))$ for this range space.
- (optional) (iii) Is the bound obtained in (ii) asymptotically optimal?
- (optional) (iii) Assume $d=3, X=\{(x,y,z)\,|\,1\leq x,y,z\leq N^{1/3}\}$ and R is the set of all the boxes $I_{a,b,c,d,e,f}:=[a;b]\times[c;d]\times[e;f]$ for all $1\leq a,b,c,d,e,f\leq N$ where $a\leq b,\ c\leq d$ and $e\leq f$. What is the smallest ε -net that you can find for this range space?