Homework Exercises for Lecture 1

A.1-1 (i) Compute the VC-dimension of the space dual to $\left(\mathbb{R}^{2}, L\right)$ where L is the set of all the lines.
(ii) Compute the VC-dimension of $\left(\mathbb{R}^{2}, S\right)$ where S is the set of all the line segments.
(iii) Compute the VC-dimension of the set system dual to the one defined in (ii).
A.1-2 Consider a set R of n disjoint regions in \mathbb{R}^{2} with simply connected boundaries (in other words, each $r \in R$ is the set of all the points contained inside a closed curve). Let C be a set of curves in \mathbb{R}^{2}. We say two curves $c_{1}, c_{2} \in C$ are equivalent if the set of regions crossed by them is identical.
(i) What is the maximum size of C if we know no two curves in C are equivalent?
(ii) Show that if we add an additional assumption to (i) that the curves are disjoint then $|C|=O\left(n^{4}\right)$.

