Homework Exercises for Lecture 1

- A.1-1 (i) Compute the VC-dimension of the space dual to (\mathbb{R}^2, L) where L is the set of all the lines.
 - (ii) Compute the VC-dimension of (\mathbb{R}^2, S) where S is the set of all the line segments.
 - (iii) Compute the VC-dimension of the set system dual to the one defined in (ii).
- A.1-2 Consider a set R of n disjoint regions in \mathbb{R}^2 with simply connected boundaries (in other words, each $r \in R$ is the set of all the points contained inside a closed curve). Let C be a set of curves in \mathbb{R}^2 . We say two curves $c_1, c_2 \in C$ are *equivalent* if the set of regions crossed by them is identical.
 - (i) What is the maximum size of C if we know no two curves in C are equivalent?
 - (ii) Show that if we add an additional assumption to (i) that the curves are disjoint then $|C| = O(n^4)$.