
Certifying Algorithms

[MNS11] R.M. McConnell, K. Mehlhorn, S. Näher, P. Schweitzer. Certifying algorithms.
Computer Science Review, 5(2), 119-161, 2011.

Correctnesss of algorithms ?

 Formal proof of algorithm correctness
– only simple problems ?
– implementation  algorithm

 Compare output of two algorithms
– one algorithm often simple and slow (only small input)

 Assertions / exceptions

 Unit testing

– systematic testing, random input

Certifying Algorithm

 Algorithms output proof w of correctnes or illegal input

 Strongly certifying  halts on all input; identifies illegal input

 Certifying  halts on all input; illegal input or correct output

 Weakly certifying  halts on valid input; if halts, correct out

 Motivation: Ensure correctnes of algorithms in the
Library of Efficient Data Types and Algorithms

Sorting ?

 Input: Unsorted array

 Output: Input elements in sorted order

 Checker:
– Verify output sorted

– Verify output = input elements

Greatest Common Divisor - GCD

 Input: Positive integers a and b

 Output: g = gcd(a, b)

 Certificate:
– Integers x, y: where g = ax + by

 Checker:
– Check ga, gb, and g = ax + by

– Sufficient by [MMNP11, Lemma 1]

Bipartite Graph ?

 Input: Undirected Graph G=(V,E)

 Output: Boolean, is the graph bipartite

 Certificate:
– True: Partition of the vertices, V = V1  V2

– False: Odd length cycle

 Checker:
– Verify partition or cycle

Connected Components ?

 Input: Undirected graph G = (V, E)

 Output: Partition of V into the c.c.

 Certificate:
– Each vertex labeled (i, j), where i=component number, j=the

node’s number in the component, such that all nodes except one
in a c.c. have a neighbor with smaller j (e.g., BFS numbering)

 Checker:
– Edges connect identical i

– Mark non-root nodes (j larger than a neighbor)

– Check roots different labels

Shortest Path st ?

 Input: Directed weighted graph G = (V, E), s,tV

 Output: Shortest distance st

 Certificate:
– Distance vector D, with distances from s to all nodes

– Shortest path tree

 Checker:
– Check shortest path tree implies D

– Check that no edge can improve any distance

Planarity Graph ?

 Input: An undirected graph G

 Output: Boolean, is G planar
– can G be drawn without edges intersecting ?

 Certificate:
– Yes = (Combinatorial) Embedding (twin edges, face information)

– No = K3,3 og K5 (Kuratowski subgraphs)

 Checker:
– Yes: Check if n+f =m+2, n=#nodes, m=#edges, f=#boundary cycles

(sufficient by [MMNS11, Lemma 3])

– No: Verify Kuratowski subgraphs

Maximum Flow ?

 Input: Flow network G, with capacity constraints c

 Output: Value of maximum flow

 Certificate:
– Flow along each edge

– Minimum cut, i.e. partition of the vertices

 Checker:
– Check if valid flow

– Find capacity of cut

– Check if cut capacity is equal to value of flow

Dynamic Dictionary

 Operations: Insert, Delete, Search, ...

 Checker / Monitor:
– Checker maintains a doubly-linked list of handles into dictionary

 Checker identifies wrong queries immediately

Priority Queue

 Operations: Insert, DeleteMin ...

 Checker / Monitor: (see figure)
– check element against lower bound on deletion

 Checker identifies wrong queries delayed

p
ri

o
ri

ty

elements with no lower bound
 (no DeleteMin since insertion)

insertion time

elements currently
in priority queue

union find
data structure

lower bound

