
Getting to Know the Captain’s Mistress
with Reinforcement Learning
Thor Bagge, 20114756
Kent Grigo, 20114876

Master’s Thesis, Computer Science

June 2016

Advisor: Kasper G. Larsen

DEPARTMENT OF COMPUTER SCIENCE

AARHUS

UNIVERSITY AU

ii

Abstract

Reinforcement learning has been used to beat professional human players
at Checkers, Chess, and Go. Reinforcement learning is a machine-learning
method that uses rewards to train an agent in order to achieve some goal.
The aim of this thesis is to develop a reinforcement-learning agent that
learns how to play Connect Four by training against itself. The agent uses
a neural network to evaluate board positions and trains the network using
the TD(λ) algorithm. Furthermore, the agent is combined with the search
methods minimax and Monte-Carlo Tree Search (MCTS). Configuring the
hyperparameters of each algorithm turns out to be the most time-consuming
process. The results of our experiments indicate that the number of states
in Connect Four is not large enough to warrant a reinforcement-learning ap-
proach compared to MCTS. However, we find that increasing the complexity
of the game makes it more difficult for MCTS to compete with reinforcement
learning. This suggests that reinforcement-learning methods can be used as
a powerful tool when solving problems that have a large state space.

iii

iv

Acknowledgements

We want to thank our advisor Kasper G. Larsen for discussing problems
that we had while writing this thesis.

We want to thank Allan Madsen, Amanda T. L. Sandegaard, Janus B.
Kristensen, Kasper G. Larsen, Laila Grahl-Madsen, Lasse B. Kristensen,
Mathias V. Pedersen, Michael Nielsen, and Rolf Bagge for detailed feedback
on previous drafts. A special thanks goes to Lasse B. Kristensen who vigi-
lantly caught errors in our math and helped discuss the properties of partial
differentiation that led to the proofs in the appendix.

Kent Grigo
I want to thank Thor Bagge with whom I had the pleasure to write this
thesis. His detailed understanding of the concepts and his splendid ability
to convey helped keeping me up-to-date.

I want to thank my family and friends for their interest in my ways of
computer science.

I want to thank Amanda T. L. Sandegaard for her loving support.

Kent Grigo,
Aarhus, June 21, 2016

Thor Bagge
My deepest gratitude goes to Kent Grigo for not only his work, but also his
companionship. If not for his immaculate attention to detail and inspiring
work ethic, this thesis would only be a shadow of what it is today.

I want to thank my family for their unconditional love and support.
Finally, I want to thank of all of my friends for always being there for

me whenever I need them.

Thor Bagge,
Aarhus, June 21, 2016

v

vi

Contents

1 Introduction 1
1.1 Connect Four . 1
1.2 Motivation for Reinforcement Learning 2
1.3 Machine Learning . 3

1.3.1 Reinforcement Learning 3
1.4 Structure . 5

2 Related Work 7

3 Reinforcement Learning 11
3.1 Agent and Environment . 11
3.2 Markov Property . 12
3.3 Policies and Value Functions 13
3.4 Prediction and Control Problems 17
3.5 Exploration versus Exploitation 19
3.6 Eligibility Traces . 20
3.7 TD(λ) . 22
3.8 Model . 23
3.9 Self-Play in Games . 25

4 Neural Networks 27
4.1 Perceptrons . 27
4.2 Sigmoid Neurons . 29
4.3 Networks of Neurons . 30
4.4 Training a Neural Network 34

4.4.1 Gradient Descent . 35
4.4.2 Stochastic Gradient Descent 36
4.4.3 Backpropagation . 37

vii

5 Search Methods 41
5.1 Minimax . 41
5.2 Monte-Carlo Tree Search . 46

6 Putting It All Together 51
6.1 Connect Four as a Reinforcement-Learning Problem 51
6.2 Reducing the State Space through Afterstates 52
6.3 Combining Reinforcement Learning and Neural Networks . . 53
6.4 Board Encoding . 55
6.5 Benchmarking . 57
6.6 Addressing the Problems of Self-Play 58
6.7 Incorporating Search Methods 58

6.7.1 Minimax search . 59
6.7.2 Monte-Carlo Tree Search 59

7 Experiments 61
7.1 Different Hyperparameters . 62
7.2 Different Noise-Injection Methods 64
7.3 Different Architectures . 67
7.4 Different Parameter Decay Factors 71
7.5 Different Board Encodings . 74
7.6 Different Sides . 76
7.7 Different Search Methods . 77
7.8 Different Board Sizes . 78
7.9 Using What We Learned . 79

8 Conclusion 81

9 Future Work 85

Bibliography 86

Appendix 91

viii

Chapter 1

Introduction

1.1 Connect Four

“An amusing story is that the game is [called the Captain’s Mistress] from
the fact that Captain Cook hid away in his cabin for hours playing this game,
his crew supposing that he was locked away with a mistress. Whether true
or not, it certainly gives the game a charming name” (Cyningstan, 2016).
Today, The Captain’s Mistress is more commonly known as Connect Four.
Therefore, we will refer to it as Connect Four for the rest of the thesis.

Connect Four is a two-player, turn-based game that is played on an
empty grid with 6 rows and 7 columns. Each player takes turns dropping
a piece in a free column, and the piece is placed in the lowest free row of
that column. As a result, the board always fills up from the bottom row.
The objective is to have a sequence of four pieces: horizontally, vertically,
or diagonally. Whoever completes such a sequence first wins the game. The
game ends in a draw if neither player completes a sequence before the board
is filled. Physical pieces are usually colored disks but we denote the players
and the pieces as x© and o©, where x© always starts.

In order to address moves and positions in Connect Four, we introduce
a notation inspired by the algebraic notation used in Chess. Each column
is denoted by the letters a through g, where a is the first column and g is
the last column. The rows are denoted by the numbers 1 through 6, where
1 is the bottom row and 6 is the top row. Figure 1.1 shows the notation.
For example, dropping a piece in the first column of the bottom row will be
denoted a1 or dropping a piece in the middle column of the fourth row will
be denoted d4. Even though a piece can only be placed in the first free row
of a column, we will explicitly state the row for the sake of clarity.

1

a b c d e f g

1

2

3

4

5

6

Figure 1.1: Example of a position in Connect Four.

A valid board position is called a state and figure 1.1 shows an example
of a valid state. Looking at the state, we conclude that x© is about to make
a move since there are an even number of pieces and x© always starts. In
this state, x© has three pieces in a row and needs a fourth to complete a
sequence and win the game. We refer to three such pieces as a threat if there
is an open space where the sequence can be completed. x© would prefer to
put his piece in c4 to complete the sequence, but a piece has to be placed
in c3 first.

1.2 Motivation for Reinforcement Learning

Allis (1988) weakly solved Connect Four using a knowledge-based approach
where he presented an algorithm with a winning strategy for the starting
player from the beginning of the game. Since the solution is weak, the algo-
rithm may not make optimal plays when the opponent makes non-optimal
moves. This solution required expert knowledge about the game and the
strategies applied to high-level play.

To strongly solve a game means to provide an algorithm that can pro-
duce perfect moves from any game position. The number of possible game
positions is 4.5 · 1012 for Connect Four (Edelkamp and Kissmann, 2008).
Even with so many possible states, Connect Four has been strongly solved
by brute force (Tromp, 2015). However, this result only applies to the stan-
dard 6×7 board. Increasing the board size will greatly increase the running
time of a brute-force method and quickly render it infeasible.

Our motivation for using reinforcement learning is two-fold. First, we
can create an algorithm without knowing anything about the game other
than its rules. Second, a reinforcement-learning approach can be applied to
variations of the game.

2

1.3 Machine Learning

In the most general sense, machine learning is learning from data to make
predictions or decisions without being explicitly programmed to do so. The
field of machine learning is broadly divided into three types of tasks based on
the feedback given to the learner: supervised learning, unsupervised learn-
ing, and reinforcement learning. Supervised learning is training on a set of
labeled data. The learner has to generalize from training and predict the
label of new unseen data. The signal given during training is the correct
label for each data point. Unsupervised learning is training on a set of unla-
beled data. The goal of unsupervised learning can be discovering patterns.
Alternatively, the goal could be to give meaning to new data by clustering
it with old data. Reinforcement learning is training by interacting with an
environment. The learner interacts with the environment to achieve some
goal, being rewarded along the way based on performance. The goal of the
learner is then to maximize the reward (Abu-Mostafa et al., 2012).

1.3.1 Reinforcement Learning

This section presents reinforcement learning informally, and chapter 3 gives
a more formal presentation. In reinforcement learning, the task is decid-
ing which actions to take in order to achieve some goal. The learner and
decision maker is called the agent and what it interacts with is called the
environment. The environment is composed of everything outside the agent,
and the state contains all the information of the environment that the agent
needs to make decisions. The agent is not told what actions to take but is
instead given a numerical reward by the environment based on which action
is chosen. This means that the agent must try different actions in order to
figure out which rewards they give through a process of trial and error. The
agent chooses an action based on its evaluation of the environment’s state.

Since “many researchers seemed to believe that they were studying rein-
forcement learning when they were actually studying supervised learning”
(Sutton and Barto, 1998), we address the differences between these two
paradigms. In reinforcement learning, the agent is not told whether an ac-
tion is correct. In fact, there might not be a correct action. Instead the agent
is given a reward signaling how good the action was. The agent must learn
to control the environment by influencing it based on these rewards. This
contrasts with supervised learning, where the feedback concerns whether
the given answer is correct. The result is that the learner must change its
behavior to match the instructions given by the environment.

3

The agent selects actions based on a policy, which is a mapping from
states to actions. Whenever the agent encounters a state, the policy deter-
mines which action to take. Thus, the agent interacts with the environment
according to its current policy. The ideal scenario is finding an optimal
policy, i.e., a policy that selects the most rewarding action from every state.

When rewarding the agent, we must not reward a subgoal, such as getting
a sequence of three pieces in Connect Four, because the agent may prioritize
completing these subgoals rather than completing the ultimate goal. The
reward is our way of telling the agent what to achieve and not how to achieve
it. There are other aspects of rewarding an agent. Sometimes, a task should
be solved with as few actions as possible. This can be achieved by punishing
the agent with a negative reward for every action.

Most reinforcement learning methods are based on estimating value func-
tions. These are functions of states that estimate how good that state is for
the agent. These functions are defined with respect to some policy and the
function approximates the expected return if the agent starts in a given state
and follows the policy from that state.

Some algorithms search through the policy space without using a value
function. Such algorithms are called evolutionary algorithms and are based
on the ideas of biological evolution. This means that evolutionary algo-
rithms do not interact with the environment, which is the opposite of rein-
forcement learning. Therefore, evolutionary algorithms are not included in
reinforcement learning (Sutton and Barto, 1998). Evolutionary algorithms
have advantages when dealing with problems where the agent cannot sense
the state of the environment. Evolutionary algorithms play according to a
set of policies many times. Only the outcome of a play is taken into account
when evaluating a given policy. This means that bad moves and moves that
were not made are evaluated equally to the good moves. After assessing the
current set of policies, a new set of policies is chosen based on a combina-
tion of mutation, reproduction, and natural selection. This cycle of policy
evaluation and selection continues until a sufficiently good policy is found.

One caveat of reinforcement learning, and machine learning in general,
is that there are often many hyperparameters to set. Most parameters are
learned by the algorithm through training, but hyperparameters are values
that we have to set beforehand. The hyperparameters change how the al-
gorithms work, e.g., by controlling how much we adjust our value function
estimation after observing a reward. The problem with hyperparameters
is that there are only suggestions for how to choose them. This means
that finding good values for all hyperparameters becomes a time-consuming
process of trial and error. Section 7.1 optimizes the hyperparameters.

4

1.4 Structure

We present related work on reinforcement learning in chapter 2. We present
the concepts that are needed for this thesis independently and self-contained:
reinforcement learning in chapter 3, neural networks in chapter 4, and
search methods in chapter 5. We combine these concepts and further exten-
sions to create a game-playing agent in chapter 6. We optimize the agent
and its extensions in chapter 7.

5

6

Chapter 2

Related Work

Connect Four was weakly solved using a knowledge-based approach by Allis
(1988). A program, referred to as VICTOR, uses a set of high-level strategic
rules and search algorithms to evaluate board positions. The result is that
if x© plays optimally, x© can win if the first piece is placed in the middle
column. If x© starts in any other column, the game can be forced into a
draw by o©. By using a database of approximately half a million board
positions, VICTOR was able to play in real-time against opponents on a
full 6 × 7 board. These results required expert knowledge on how to play
Connect Four in order to derive the necessary strategic rules. As future
work, Allis (1988) suggests to automatically derive strategic rules instead of
implementing rules suggested by a human expert.

Numerous attempts have been made at creating game-learning programs
based on reinforcement learning. Tesauro (1995)’s TD-Gammon is a neural
network trained to be an evaluation function for Backgammon. Given a
board position, the network estimates the probability of winning from that
position. The neural network was trained using the TD(λ) algorithm with
λ = 0 by self-play. Chapter 3 describes TD(λ) and self-play, and chapter 4
describes neural networks. This result was especially significant because
the program was able to achieve a high level of play without the assistance
of a knowledgeable teacher. It was noted that the program in many cases
evaluated board positions in a different way than human players would. It
even turned out that some of the plays made by TD-Gammon were superior
to the strategies of the top human players. Part of the program’s success
was attributed to the stochastic nature of Backgammon. There is a problem
of training on only a small number of positions during self-play, but the
high influence of the die forces the network to experience a larger state

7

space. Another factor was that the outcome of Backgammon is a real-
valued function with continuity such that small changes to board positions
are reflected by small changes in the outcome of the game. This factor helps
the network during training since small adjustments to weights are apparent
in the terminal outcome of the game. In contrast, games like Chess and
Connect Four have discrete outcomes, so small changes in play are harder to
measure in the final outcome. This means that it will be harder to measure
any difference in performance and thus presumably harder to learn.

Go has been the ultimate challenge for machine-learning algorithms for
a long time, as the high branching factor defeats the conventional search
approaches, which we will describe in chapter 5. A TD-learning approach
to Go was made by Schraudolph et al. (1994) where the authors trained
the network by self-play, against knowledgeable teachers, and by letting the
network observe high-level games. Bootstrapping the learning algorithm by
self-play was noted to be sluggish as thousands of games were required to
obtain a low level of play. The authors mentioned that letting the network
observe recorded games between human players or random move generators
helped speed up the learning process of the network in the early stages.
Furthermore, it was noted that while playing against a conventional Go
program could help the network, it turned out that training too long against
the same opponent could cause the network to overfit and thus end up
hindering the network’s performance. To greatly reduce the complexity, the
authors exploited the fact that Go positions retain their properties with
respect to the eight-fold symmetry of the game board. This reduction in
the number of states significantly reduced the number of training games
required to beat conventional Go programs.

In more recent times, the program AlphaGo by Silver et al. (2016) has
managed to reach and possibly even exceed professional levels of play in
Go. Their approach was based on two neural networks: a policy network
and a value network combined with a variation of Monte-Carlo Tree Search
(MCTS). Section 5.2 describes MCTS in more detail. The policy network
is used to quickly perform game simulations and provide move suggestions
fast. The value network is used to compute the probability of winning from a
given state. Both networks were trained using a combination of supervised
and reinforcement learning. To avoid overfitting against a single policy
during self-play training, an opponent was randomly selected from a pool of
previous iterations of the policy network. AlphaGo defeated European Go
champion Fan Hui 5-0 and later defeated world champion Lee Sedol 4-1.

A comparison between hand-tuned weights and TD-learned weights was
made by Schaeffer et al. (2001). The authors compared the performance

8

of the hand-tuned weights of the Checkers program Chinook with weights
learned by training the program using the TD-learning algorithm TDLeaf.
The weights of the original Chinook program were hand-tuned over 5 years,
assigning weights to knowledge-based features of Checkers. Results indi-
cated that self-play learning was sufficient to achieve the same level of play
as the hand-tuned version of Chinook. This result was partly attributed
to the relatively low number of parameters to fit. The authors also noted
that training the program specifically to play White or Black did not have a
statistically significant impact on the performance of the program when play-
ing the other color. All results were obtained from machine-versus-machine
games, and Schaeffer et al. (2001) comments that situations that occur less
frequently during self-play were valued differently to the hand-tuned weights.
As humans have a unique way of playing the game, the authors concluded
that playing against humans would be necessary to complete the training of
the program.

9

10

Chapter 3

Reinforcement Learning

3.1 Agent and Environment

In reinforcement learning, the learner and decision maker is called the agent
and what it interacts with is called the environment. The agent chooses
an action to perform on the environment and the environment returns a
reward, which the agent tries to maximize. These interactions happen at
discrete time steps t ∈ N. For a given time step t, the agent is presented
with state st ∈ S from the environment, where S is the set of states. For
a given state st, the agent chooses an action at ∈ A(st), where A(st) is the
set of actions available in state st. This leads to a state st+1 and a reward
rt+1 ∈ R, where R is the set of rewards. Figure 3.1 shows this interaction
between the agent and the environment. These interactions can be episodic
or continuous. Episodic tasks are broken into episodes of interactions that
start in some initial state and end in a terminal state. Continuous tasks
also start in an initial state but can potentially go on forever. We will only
investigate episodic tasks.

Agent

Environment

at

st+1

st
rt+1

rt

Figure 3.1: Interaction between agent and environment in reinforcement
learning (Sutton and Barto, 1998).

11

A state of the environment consists of any information that the agent
needs to make its decisions. The information contained in a state can be
low-level, such as the pieces placed in a board game, or it can be high-level,
such as whether a complex strategic setup is present.

Another important factor is where the line between agent and environ-
ment is drawn. We define the environment as everything that is outside of
the agent’s control. This means that things that are physically part of the
agent could be made a part of the environment if the agent cannot control
them. For instance, consider a person who is deciding whether he should get
something to eat. This decision involves several factors like: “How hungry
am I?”, “What is the distance to the nearest food?”, and “How expensive
is the food?”. Even though hunger is something that comes from inside the
agent’s own body, it would be a part of the environment since the agent
is not directly in control of hunger. When the problem at hand is playing
board games, the distinction between environment and agent is often easy to
make, but it can be an important factor to keep in mind for some problems.

The questions above are examples of control problems, where an agent
tries to determine what action to make in a given state. Another type
of problems that arise in reinforcement learning are prediction problems.
Framing the examples above as prediction problems, the questions could
be: “When will I be hungry?” for time scheduling or “What is the proba-
bility of becoming hungry in this time interval?” for likelihood estimation.
Section 3.4 describes these types of problems.

3.2 Markov Property

If the current state contains all the information needed to choose an action,
it is said to have the Markov property. For example, states that capture
the position of the pieces on the board in Connect Four have the Markov
property since the states capture all that has happened in the past except for
the order of moves. But the order is not needed to determine what is possible
in the future. The order says something about the opponent’s mindset and
what his strategy might be, but the agent is not better off knowing this
information, since the opponent’s possibilities stay the same. This stands in
contrast to Poker where the mindset and gestures of the opponents should
be taken into consideration, because not all the information about the game
is available, which makes bluffing a big part of the game.

12

Formally, a reinforcement-learning problem has the Markov property if
and only if

Pr
[
st+1 = s′, rt+1 = r | st, at, rt, st−1, at−1, . . . , r1, s0, a0

]
= Pr

[
st+1 = s′, rt+1 = r | st, at

]
,

for all s′, r, st, at, rt, st−1, at−1, . . . , r1, s0, a0.

A reinforcement-learning problem that has the Markov property is called
a Markov decision process (MDP). If the state and action space of an MDP
is finite, then it is referred to as a finite MDP. A finite MDP is defined by its
state and action sets, its transition probabilities, and the expected rewards.
The transition probabilities of a finite MDP are defined as

Pass′ = Pr
[
st+1 = s′ | st = s, at = a

]
,

where Pass′ is the probability of the next state being s′, given that the current
state is s and the action a is made. Similarly, the expected rewards are
defined as

Rass′ = E
[
rt+1 | st = s, at = a, st+1 = s′

]
,

where Rass′ is the expected reward when the agent is in state s, performs
action a, and transitions to state s′.

For the rest of this thesis, we will assume that the reinforcement-learning
problems are finite MDPs because that is the case for most games and,
especially, Connect Four.

3.3 Policies and Value Functions

The agent’s actions are determined by its policy. A policy can either be
deterministic or stochastic. A deterministic policy is a mapping π(s) = a
from all possible states s ∈ S to the action a ∈ A(s) that the agent should
make in state s. A stochastic policy π(s, a) maps all pairs of possible states
s ∈ S and actions a ∈ A(s) to the probability of making action a when in
state s. Section 3.5 gives concrete examples of policies.

The expected reward can be re-defined to fit a specific policy. The ex-
pected reward from state s given a policy π is

Eπ [rt+1 | st = s] =
∑

a∈A(s)

π(s, a)
∑
s′∈S
Pass′Rass′ .

13

All the reinforcement-learning algorithms that we will consider are based
on estimating value functions. A value function maps states to the state’s
expected return, or it maps state-action pairs to the expected return when
performing that action from that state. The return from some time step t
is defined as

Rt =
T∑
k=0

γkrt+k+1,

where T is the number of time steps until the end of the episode and γ is
the discount rate. The discount rate γ ∈ [0, 1] decreases the value of rewards
in the future. The point of decreasing the future rewards is to motivate the
learning agent to be as fast as possible. If the discount rate is close to 0,
the agent will be focused on obtaining immediate rewards without thinking
far into the future. If the discount rate is close to 1, the agent will be more
farsighted and will forego a reward now if it leads to a higher reward in the
long run. The discount rate can thus be used to alter the behavior of the
agent.

With the definition of return, we can formally define value functions.
Since the value of a state depends on the policy of the agent, its state-
value function is defined as the expected return when starting in state s and
following policy π

V π(s) = Eπ [Rt | st = s] = Eπ

[
T∑
k=0

γkrt+k+1 | st = s

]
,

where t is some time step. Similarly, the action-value function is defined
as the expected reward when performing action a in state s and thereafter
following policy π

Qπ(s, a) = Eπ [Rt | st = s, at = a]

= Eπ

[
T∑
k=0

γkrt+k+1 | st = s, at = a

]
,

(3.1)

where t is some time step. If the state and action space of our problem
is sufficiently small, our value function can be kept as a table that maps
states or state-action pairs to their expected return. However, for big state
spaces, it is necessary to maintain parameterized functions that compute
the expected return for each state or state-action pair.

14

An important property of value functions is that they satisfy the follow-
ing Bellman equation

V π(s) = Eπ

[
T∑
k=0

γkrt+k+1 | st = s

]

= Eπ

[
rt+1 + γ

T∑
k=0

γkrt+k+2 | st = s

]

=
∑

a∈A(s)

π(s, a)
∑
s′∈S
Pass′

(
Rass′ + γEπ

[
T∑
k=0

γkrt+k+2 | st+1 = s′

])

=
∑

a∈A(s)

π(s, a)
∑
s′∈S
Pass′

(
Rass′ + γV π(s′)

)
.

(3.2)

Intuitively, this equation says that the value of state s is the expected reward
from each of its possible successor states, multiplied by the probability of
transitioning to those states. The value function is the unique solution to
its Bellman equation (Sutton and Barto, 1998).

Notice that there is a dependency between value function and policy.
This leads to the idea of generalized policy iteration (GPI), which has two
simultaneous, interacting processes: policy evaluation that makes the value
function consistent with respect to the current policy and policy improve-
ment that makes the policy greedy with respect to the current value function.
These two processes of GPI work together on finding a joint solution and the
processes can only stabilize if we find a policy that is greedy with respect to
its own value function. For now, let us assume that our policy is determinis-
tic. Given a policy π and a value function V π, policy improvement chooses
a new policy π′ that is defined as

π′(s) = arg max
a∈A(s)

Qπ(s, a)

= arg max
a∈A(s)

Eπ [rt+1 + γV π(st+1) | st = s, at = a]

= arg max
a∈A(s)

∑
s′∈S
Pass′

(
Rass′ + γV π(s′)

)
,

which selects the action that maximizes the value function in each state. We
want to be sure that the new policy π′ is an improvement over π, i.e., we
want to make sure that V π(s) ≤ V π′(s) for all s ∈ S. We have chosen π′(s)

15

such that for all s ∈ S,

V π(s) ≤ Qπ(s, π′(s)), (3.3)

as we are choosing the action that maximizes V π(s). Let s ∈ S be some
state. By repeatedly applying equation (3.3) and equation (3.1), we get that

V π(s) ≤ Qπ(s, π′(s))

= Eπ′ [rt+1 + γV π(st+1) | st = s]

≤ Eπ′
[
rt+1 + γQπ(st+1, π

′(st+1)) | st = s
]

= Eπ′ [rt+1 + γEπ′ [rt+2 + γV π(st+2)] | st = s]

= Eπ′
[
rt+1 + γrt+2 + γ2V π(st+2) | st = s

]
≤ Eπ′

[
rt+1 + γrt+2 + γ2Qπ(st+2, π

′(st+2)) | st = s
]

...

= Eπ′
[
rt+1 + γrt+2 + γ2rt+3 + · · ·

]
= V π′(s).

This shows that V π(s) ≤ V π′(s) for all s ∈ S, i.e., it shows that the new
policy π′ is actually an improvement.

When GPI stabilizes, we have found the optimal value function V ∗ and
an optimal policy π∗. To see why, let us look at the Bellman equation for
the optimal value function, also called the Bellman optimality equation. The
optimal value function must also satisfy equation (3.2). The intuition behind
this equation is that the value of a state following an optimal policy must
equal the expected return for the best action from that state. The Bellman
optimality equation is given by

V ∗(s) = max
a∈A(s)

Qπ
∗
(s, a)

= max
a∈A(s)

Eπ∗ [Rt | st = s, at = a]

= max
a∈A(s)

Eπ∗

[
T∑
k=0

γkrt+k+1 | st = s, at = a

]

= max
a∈A(s)

Eπ∗

[
rt+1 + γ

T∑
k=0

γkrt+k+2 | st = s, at = a

]
= max

a∈A(s)
Eπ∗ [rt+1 + γV ∗(st+1) | st = s, at = a]

= max
a∈A(s)

∑
s′∈S
Pass′ (Rass′ + γV ∗(st+1)) .

16

The optimal value function is expressed in terms of itself without referring to
a specific policy. If both GPI processes have stabilized, it must be because
the optimal value function has been found. The policy found by policy
improvement must be an optimal policy as it is greedy with regard to the
optimal value function, but there could be many optimal policies because
the best action for a state might not be unique.

While the above sounds motivating, it is not realistic to find the optimal
value function and an optimal policy in practice. However, the methods we
present in the following chapters are based on this idea of GPI and uses
estimations to do policy evaluation.

3.4 Prediction and Control Problems

Prediction problems are about trying to estimate a state-value function
V π(s) where s is a given state. A prediction algorithm’s objective is to
predict the outcome of a given state. Control problems are about trying to
estimate an action-value function Qπ(s, a) where s is a given state and a
is a given action. A control algorithm’s objective is to control the environ-
ment by finding the best actions for some given states. In both cases, if we
have a good value function, it can be used to solve the task. For prediction
problems, we can predict the outcome of state s by applying the state-value
function to s. For control problems, we can find the best action for a state
s by looking ahead at each possible action a and applying the action-value
function to each state-action pair.

We want to develop methods for policy evaluation, i.e., we want to make
the value function consistent with regard to the current policy. Let us as-
sume for simplicity that we are in the tabular case, meaning that there are
few enough states that we can keep our value function as a table with one
entry for each state. We are going to improve our value function by inter-
acting with the environment and by adjusting our estimates based on these
interactions. A natural way of estimating the value of each state is to go
through episodes of interaction and adjust the value of each state to be closer
to the return seen after visiting that state. This is known as a Monte-Carlo
method. That is, we want to make the following update to the value of each
state st visited after finishing an episode

V π(st) := V π(st) + α (Rt − V π(st)) .

This update is read as: The estimate is updated from the prior estimate
towards a target, which is the newly seen return, with a learning rate

17

α ∈ [0, 1]. We are only interested in α values inside this bound because
an α value smaller than 0 or greater than 1 will update the estimate away
from the target. An α value of 1 means that the algorithm will ignore the old
estimate and set it to the target. An α value of 0 means that the algorithm
will ignore the target and keep the old estimate.

The first intuition might be to set α to 1 because we want to get the
best estimate as fast as possible. But we cannot fully rely on the return if
the input is noisy. It is not wrong to depend on a noisy input because it
does give an insight into the valuation of a state, but we need a combination
of estimates from the same state to get the best estimate. In a game, the
input will be noisy if the agent or the opponent does not play optimally.
Therefore, α should be set in the interval [0, 1] and decrease as the agent
gets a good estimate of the states.

A problem with the Monte-Carlo method is that we cannot update the
value of an estimate before the end of an episode, as we do not know the
return before this. Temporal-difference methods (TD methods) provide an
alternative that addresses this issue. The simplest TD method is TD(0),
which makes updates after every time step according to the update rule

V π(st) := V π(st) + α (rt+1 + γV π(st+1)− V π(st)) .

That is, the target for TD(0) is rt+1 + γV π(st+1), i.e., the observed reward
after making an action and the estimated value of the resulting state. This
means that we can make an update to our value function after every observed
reward instead of after each episode. Notice that the value function applied
to the next state is part of the target for TD(0). In general, TD methods are
based on the idea of bootstrapping, i.e., using the current value function to
form a target for the next update. According to Sutton and Barto (1998),
TD methods will converge to an optimal policy if the learning rate decreases
properly.

An example that might shed some light on the difference between Monte-
Carlo methods and TD methods is trying to estimate the time to get home
(Sutton and Barto, 1998). Initially, you estimate that it takes 30 min to
get home from the office but, when you get to your car, 5 min have already
passed. The estimate of the total time is changed to 35 min. When you get
to the highway, the weather is good and there is little traffic. This decreases
the estimate to 25 min. When you get off the highway, you get stuck behind
a tractor with no possibility of by-passing it. This increases the estimate to
32 min.

Changing your estimate along the way without seeing the final result is
exactly the benefit of using TD methods. After traveling part of the way, we

18

can adjust our estimate by combining what we have seen with our current
estimate of how long the rest of the journey will take. This contrasts with
Monte-Carlo methods, where we cannot make adjustments until the journey
is complete and we have seen the total travel time. The two methods also
differ in how the adjustments are made. For TD methods, the estimate
for each part of the road is adjusted toward the observed travel time from
that point to the next and the estimated time for the rest of the journey.
For Monte-Carlo methods, the estimate of every part of the road is adjusted
toward the observed travel time from that point until the end of the journey.
This also means that a delay at the end of the journey is not reflected in the
travel time of the parts before the delay when using TD-learning, as updates
have already been made. Section 3.6 introduces eligibility traces, which gives
a middle ground between Monte-Carlo methods and TD-learning.

For many real-world problems, the state space is too big to keep our value
function as a table. For these problems, the value function can be approx-
imated by a parameterized function where updates are made by changing
the values of the function’s parameters. Section 3.7 describes the TD(λ)
algorithm, a generalization of TD(0) with eligibility traces and without the
assumption of a small state space.

3.5 Exploration versus Exploitation

A recurring problem in reinforcement learning is the trade-off between ex-
ploration and exploitation. The agent does not know the reward for making
an action in a state, and the agent cannot explore the entire state space if
it gets too big. At some point, the agent has to exploit the knowledge that
it has obtained from exploring, even though the agent does not have a com-
plete picture of the valuation of the states. For instance, consider a person
who wants to earn as much money as possible by playing slot machines but
he can only play a limited number of times. There are many slot machines,
each with a random reward from a probability distribution specific to that
machine. The problem is that he does not know which machine provides
the biggest payout. This means that he has to try the machines and figure
out which machine is the best, but it is necessary to try each machine many
times since the reward is random. He will never get to exploit the knowledge
that he obtains if he wastes all of his limited tries exploring. This is precisely
the issue of balancing exploration and exploitation. We will investigate two
policies that handle this problem: ε-greedy and softmax.

19

An ε-greedy policy chooses a random action with a probability of ε,
otherwise the policy chooses an action greedily based on a value function,
i.e., it will choose the highest-valued action in the given state. When the
policy makes a random selection, all actions are chosen uniformly at random
regardless of their estimated value. This is beneficial when our value function
is randomly initialized as it is not accurate at this point. However, once the
agent gets a better estimate for each action, it is preferable to explore only
the actions that look good.

A softmax policy prioritizes high-valued states by choosing every action
randomly but with a probability proportional to the action’s estimated val-
uation so that actions with high estimates are more likely to be chosen.
Formally, we define

p(s, a) =
eQ(s,a)/τ∑

a∈A(s) e
Q(s,a)/τ

,

where p(s, a) is the probability of choosing action a in state s and τ is the
temperature. The temperature determines how much the value of an action
affects the probability of choosing the action. As τ → ∞, softmax tends
towards a uniform random choice. As τ → 0+, softmax tends towards the
greedy choice.

We call ε and τ the exploration rates. We want a high-valued exploration
rate to explore the unknown state space in the beginning, but we also want
to exploit our knowledge at some point. This can be done by decreasing
the exploration rate over time by some decay factor. The literature gives
no optimal initial value or decay factor for the exploration rate. Section 7.2
compares ε-greedy and softmax policies and looks for a good initial value.
Section 7.4 looks for a good decay factor.

3.6 Eligibility Traces

As mentioned in section 3.4, Monte-Carlo methods run through an entire
episode to propagate the evaluation backwards to the visited states. The
problem is that the states are not updated while playing, so it will take a
long time for the agent to learn if the episodes are long. This is different
from temporal-difference learning (TD learning) where the given states are
updated when visited. However, this raises a new problem. The fact that
the previous states might result in a bad state is not reflected on them.
Therefore, eligibility traces are introduced. The intuition behind eligibility
traces is that they keep track of how influential previous states have been.

20

These traces give a middle ground between Monte-Carlo methods and TD
learning by remembering the states that were visited during the episode.
For each visited state, the update for that state is propagated backwards
with some decay factor λ. The update is decayed because the states that
were visited a long time ago are presumably not as influential on the current
result as the recently visited states. Section 3.4 describes the updates made
by TD(0) algorithm. TD(0) is a special case of the more general TD(λ)
algorithm. Here, we describe TD(λ) and eligibility traces in the tabular
case. Section 3.7 describes how to extend the algorithm to larger state
spaces by using a parameterized function. When encountering a new state,
TD(λ) makes updates to its value function for all states s according to

V π(s) = V π(s) + α (rt+1 + γV π(st+1)− V π(st)) et(s), (3.4)

where et(s) is the eligibility trace for state s and is initialized to be zero.
There are two common ways of defining eligibility traces. One way is

additive traces, which are defined as

et(s) =

{
γλet−1(s) + 1, if s = st

γλet−1(s), otherwise.

That is, the trace of a state is always decayed by a factor γλ, but it is
increased by 1 if it is visited in that time step.

A problem with additive eligibility traces is that cycles can increase the
eligibility trace of the cycled states arbitrarily, resulting in those states being
weighted too high. This problem can be solved by setting the trace of a state
to 1 after each visit instead of adding 1. These alternative type of traces are
called replacing traces. Replacing traces are formally defined as

et(s) =

{
1, if s = st

γλet−1(s), otherwise.

For non-cyclic problems, these two approaches are equivalent.
The value of λ controls how fast the eligibility trace of a state decays

after visiting it. Choosing λ = 1 makes TD(λ) learning equivalent to Monte-
Carlo methods, except that learning still takes place after each time step as
opposed to after an episode finishes. This is because each reward is only
decayed by γ when going back one step, as is the case for the Monte-Carlo
method that we saw earlier. Choosing λ = 0 gives the TD(0) algorithm that
does not update previous states after visiting them. Choosing 0 < λ < 1
gives a middle ground between Monte-Carlo methods and TD learning.

21

Sutton and Barto (1998) note that the traces of states that were visited
a long time ago will become near-zero. Therefore, it will not make sense to
follow the trace all the way back to the beginning since the impact will be too
small compared to the time that it will take. However, this is only a problem
for long episodes. Since episodes of Connect Four are at most 42 steps long,
short-circuiting the computation will not make much of a difference. But
this might be a problem for other games such as Backgammon and Chess.
For such games, we might have to set traces to 0 when they drop below
some threshold.

3.7 TD(λ)

In the previous sections, we have presented TD methods and eligibility traces
in the tabular case. In this section, we are going to extend those ideas to
bigger state spaces where the value function is approximated by a param-
eterized function. TD(λ) is a reinforcement-learning prediction algorithm,
e.g., TD(λ) can be used to predict the likelihood of winning from a given
state in a game. The idea behind the algorithm is to start in some initial
state and repeatedly make actions according to a policy derived from the
current value function. After making an action, the resulting reward and
next state is used to update the value function. This process is repeated
until a terminal state is reached. The algorithm can be seen as an extreme
form of GPI: Making an update to the value function after seeing a reward
corresponds to policy evaluation since we are making the value function more
consistent with regard to our policy. The next action is chosen by a policy
according to the value function, thus an iteration of policy improvement is
made implicitly.

Since the value function is approximated by a parameterized function,
TD(λ) makes updates to these parameters in order to adjust the value func-
tion. If we let θ be the vector whose components are the parameters of our
value function, the update made by TD(λ) to these parameters is

θt+1 = θt + α(rt+1 + γVt(st+1)− Vt(st))et, (3.5)

where et is a vector of eligibility traces for each parameter of the value
function. For each step, et is updated according to

et = γλet−1 +∇θVt(st),

where ∇θVt(st) is the gradient of Vt(st), i.e., the vector of partial derivatives
of the value function with regard to its parameters. Notice that the eligibility
traces are decayed by a factor of γλ after each update as before.

22

function TD-lambda(α, γ, λ)
initialize θ arbitrarily
for each episode
initialize s
e := 0
while s is non-terminal
choose a from s using policy derived from V
take action a, observe reward r and next state s′

e := γλe+∇θV (s)
θ := θ + α(r + γV (s′)− V (s))e
s := s′

Figure 3.2: Pseudocode for TD(λ) (Sutton and Barto, 1998).

The update made by equation (3.5) closely resembles the update made
to the value function in the tabular case made by equation (3.4). The big
differences are that the eligibility traces are now over function parameters
rather than states and updates are made to the parameters rather than
table entries. However, the update made to the value function is essentially
the same. For each parameter, its eligibility trace tells us how a small
change to that parameter will affect the output of the function. Intuitively,
equation (3.5) says that the parameters of the value function are changed
such that its output for state st is moved towards the target rt+1+γVt(st+1).
This is the same target used for updates in both TD(0) and TD(λ) in the
tabular case. The values of previous states are also adjusted toward the new
target if λ > 0. The downside of having to use a parameterized function is
that updates made to one state may affect the value of other states.

Figure 3.2 shows the complete pseudocode for TD(λ). The only re-
quirement for the value function is that we can find its partial derivatives.
Chapter 4 describes neural networks, which can be used as value functions
since they have an efficient algorithm for finding partial derivatives. Sec-
tion 6.3 describes how neural networks are used with TD(λ) to create a
game-playing agent.

3.8 Model

Some reinforcement-learning agents use a model of the environment to look
ahead and improve their decision making. A model is anything that can be

23

a b c d e f g

1

2

3

4

5

6

a b c d e f g

1

2

3

4

5

6

Figure 3.3: Example of reflection symmetry in Connect Four.

used to predict how the environment will respond to actions. For games, a
model is often used by a search method that looks through many different
possible actions and gets a statistical insight into the quality of the possible
actions. For deterministic games, it is possible to get a perfect model that
can accurately predict how an action will affect the environment. This
allows the agent to look ahead and simulate many possible plays using the
model before making a decision. However, the state space may be too large
for a search method to give a good insight into the state space by itself,
so a combination with another heuristic may be necessary, this heuristic
could be the reinforcement-learning agent. Thus, the search method can use
the reinforcement-learning agent to guide its search and, in turn, the agent
can improve its approximation of a given state-value or state-action pair
using the search method. Chapter 5 describes search methods further and
section 6.7 describes how they are incorporated into reinforcement-learning
agents.

A model represents the environment, and sometimes the environment
might have setups that are the same up to some transformation. Rotational
symmetry and reflection symmetry are often applicable in games. Tic-tac-
toe is an example of rotational symmetry, since it does not make a difference
which of the four corners the first player marks. Connect Four is an exam-
ple of reflection symmetry, since it does not make a difference whether the
first player places a piece in the outer-most field to the left or to the right.
Figure 3.3 shows an example of reflection symmetry in Connect Four. Ex-
ploiting symmetry reduces the size of the model with a factor depending on
the order of symmetry. In the two examples, the factor will be four and two
respectively. Reducing the size of the model will reduce the space consump-
tion and therefore the time consumption. The time consumption will also
decrease because we have a smaller state space that we have to explore.

24

3.9 Self-Play in Games

When we say that we want to train a game-playing agent, we want to gener-
ate episodes that the agent can learn from using an algorithm such as TD(λ).
There are many ways to train. We can train the agent by letting it play
against humans but that will take a long time per game. We can train the
agent by letting it play against other computer programs but that requires
that such programs are available. We could make a random opponent, or an
opponent that uses a search method such as minimax or Monte-Carlo Tree
Search, which we will return to in chapter 5. However, these opponents do
not work well for complex games, which we will show in section 7.8, and
they do not adapt, which could lead to overfitting.

We want to use an opponent that is fast, scales well to complex games,
and changes over time to avoid overfitting. But that is exactly the benefits of
our reinforcement-learning agent. So, we will let it play against itself, which
we will refer to as self-play. However, this introduces new problems because
the process will be sluggish in the beginning according to Schraudolph et al.
(1994) since the agent “must bootstrap itself out of ignorance without the
benefit of exposure to skilled opponents.” To address this issue, we could
use supervised learning on sampled training data, or we could let the agent
train against the random player or one of the search-method players in the
beginning of the training session, but that is out of the scope of this thesis.
Besides, according to Schaeffer et al. (2001), there is no evidence that playing
against a well-trained opponent is required to reach a competitive level.

If the purpose of an agent is to play against human players, the agent
should also train against humans because humans will make moves that
an agent might not consider. Therefore, the agent might not encounter
these moves during training that will be common in play against a human
(Schaeffer et al., 2001; Tesauro, 1995).

25

26

Chapter 4

Neural Networks

The brain consists of many neurons that are connected. Neurons commu-
nicate by sending electrical impulses to other neurons, which will in turn
send the charge to other neurons depending on the charge of the impulse.
A neural network is inspired by the brain and uses a directed network of
neurons to approximate functions. In a neural network, a neuron receives
input and computes an activation by applying an activation function to a
weighting of its inputs. The neuron then sends this activation to all the
neurons that it is connected to within the network. How the activation is
computed depends on the type of neuron.

An infinite number of different types of neurons exist, but we will only
look at perceptrons and sigmoid neurons. We focus on the perceptron first
because it is useful for explaining the basic concepts of neurons. But the per-
ceptron has problems that the sigmoid neuron solves. The sigmoid neuron
also has the properties required for explaining the theory behind gradient
descent and backpropagation. Section 4.4.1 describes gradient descent, and
section 4.4.3 describes backpropagation.

4.1 Perceptrons

A perceptron weighs a number of real-valued inputs and gives a binary
output. The activation function of a perceptron checks if the weighted input
is less than or equal to some threshold t and outputs 0 if that is the case,
otherwise it outputs 1. Formally, the activation function of the perceptron

27

is defined as

f(x1, . . . , xn) =

{
0, if

∑n
i=1wixi ≤ t

1, otherwise,
(4.1)

where i is the index of all neurons connected to this neuron, wi ∈ R is the
weight of input i, xi ∈ R is the value of input i,

∑
iwixi is what we refer to

as the weighted input, and t ∈ R determines when this neuron will activate,
i.e., output 0 or 1.

The weighted input in the activation function of the perceptron can be
written as w ·x where w is a vector of the weights for the inputs leading into
the perceptron and x is a vector of those inputs. Another common rewriting
of the activation function is to use a bias instead of the current threshold.
This is done by choosing bias b = −t and rewriting equation (4.1) into

f(x) =

{
0, if w · x+ b ≤ 0

1, otherwise.

It might not be immediately obvious why introducing a bias is better
than having a threshold, but when dealing with other types of neurons the
bias allows for simpler notation. Intuitively, the bias can be thought of as
how easy it is to get a neuron to activate. The neuron will activate with
smaller inputs if the bias is high, and the neuron will require higher inputs
to activate if the bias is low.

Figure 4.1 depicts a perceptron with two inputs, x1 and x2. To better
understand how such a perceptron computes a function, let us try to assign
weights to the inputs in order to make the perceptron compute the logical
NAND function. To that end, we will set w1 = w2 = −2 and b = 3. We
check that the perceptron correctly computes the NAND function of its
inputs. If both inputs are 1, then

w1x1 + w2x2 + b = (−2) · 1 + (−2) · 1 + 3 = −1 ≤ 0.

So, the perceptron will output 0. If any inputs are different from 1, then
w1x1+w2x2 ≥ −2, which means that w1x1+w2x2+b > 0 and the perceptron
outputs 1 as required.

Since a perceptron can compute the NAND function, we can conclude
that a network of perceptrons has the ability to compute any logical func-
tion. In fact, a neural network can approximate any continuous function to
arbitrary accuracy (Hornik et al., 1989).

28

x1

x2

output

Figure 4.1: A perceptron with two inputs.

In the above example, we manually selected the weights and bias such
that the perceptron computed exactly what we wanted. The point of a
neural network is to automatically learn values for the weights and biases
of the neurons in the network such that the network learns how to compute
some desired function. In a supervised setting, this is done using training
examples that consist of input and the desired output. To learn values for
the weights and biases, we want to use a learning algorithm that makes
small changes to the network’s weights and biases in order to nudge the
values towards computing the output that we want. In other words, given a
training example, we change the weights and biases of the network such that
its output is closer to the desired output for that input. Section 4.4 explains
the process of training a neural network in the supervised setting. A problem
with the perceptron is that a small change to its weights or bias either does
not affect the output of the perceptron at all or flips it completely. This will
make it difficult to figure out what changes to make in order to improve the
network, as a small change that fixes the output for one training example
might flip it for another training example. The next section introduces the
sigmoid neuron, which addresses this problem.

4.2 Sigmoid Neurons

In the previous section, it was stated that figure 4.1 showed a perceptron
with two inputs. In fact, the figure could be seen as any type of neuron, and
it applies equally well to a sigmoid neuron. The sigmoid neuron has two
major differences compared to the perceptron: it produces output between
0 and 1 instead of binary values and it uses a different activation function.
The activation function of a sigmoid neuron is the sigmoid function

σ(z) =
1

1 + e−z
.

When writing the activation of a neuron with weights w, input x, and
bias b, we will use the notation

a = σ(w · x+ b),

29

where a is the activation. We also introduce the weighted input z = w ·x+b.
The weighted input turns out to be important when doing backpropagation,
which we will describe in section 4.4.3. The activation can now be written
as

a = σ(z).

The sigmoid function behaves similarly to the activation function of a per-
ceptron for large inputs. At the limits, e−z → 0 as z → ∞ and therefore

1
1+e−z → 1, so the sigmoid neuron approximately outputs 1. Similarly,

e−z → ∞ as z → −∞ and therefore 1
1+e−z → 0, so the sigmoid neuron ap-

proximately outputs 0. This tells us that a sigmoid neuron outputs roughly
the same thing as a perceptron at its limits. However, when inputs are
smaller, the sigmoid neuron produces outputs between 0 and 1.

To understand how the function behaves for smaller input values, it helps
to look at the shape of the function. Figure 4.2 shows the sigmoid function
for input values between −5 and 5. The smoothness of the function means
that small changes to the weights and bias of a sigmoid neuron will result
in a small change in its output. In fact, if we make small changes ∆wi to
the weights and ∆b to the bias of a neuron, the change in its output is

∆a = ∆σ(w · x+ b) ≈
∑
i

∂σ(w · x+ b)

∂wi
∆wi +

∂σ(w · x+ b)

∂b
∆b. (4.2)

This is a key component of gradient descent, which we explain in sec-
tion 4.4.1.

We have described perceptron and sigmoid neurons in isolation. The
remainder of this chapter explains how these neurons are connected to form
a neural network and subsequently how this network can be trained.

4.3 Networks of Neurons

A neural network consist of three different types of layers: input, hidden, and
output. Each layer consists of a set of neurons connected to other neurons.

We will discuss how to represent a neural network with regard to the
following examples: recognizing numbers from 0 to 9 based on the MNIST
data set (LeCun et al., 1998) and the book of Nielsen (2015), and playing
Connect Four. The MNIST data set is a collection of images of hand-written
numbers and corresponding labels. Each image consists of 28 × 28 = 784
gray levels, one for each pixel. For each image, the corresponding label tells
us which number the image represents.

30

−4 −2 0 2 4

0.2

0.4

0.6

0.8

1

z

σ
(z

)

Figure 4.2: Plot of the sigmoid function for input values between -5 and
5.

There is one input layer that accepts some representation of a given
state. For recognizing numbers, this layer may consist of 784 neurons to
represent the 28 × 28 pixels of each picture in the MNIST data set. For
playing Connect Four, this layer may consist of 42 neurons to represent the
6× 7 squares of the board.

The neurons in the input layer are a different type of neuron that we
have not addressed yet. These input neurons directly output whatever they
are given as input, in other words, they have no bias and their activation
function is the identity function.

There is one output layer. The activation of the neurons in the output
layer represents an evaluation of a given state. For recognizing numbers,
this layer may consist of 10 neurons to represent the estimated probability
that the given picture shows one of the 10 different numbers. For playing
Connect Four, this layer may consist of 1 neuron to represent the probability
of winning in the given state of the game.

When designing a neural network, the number of neurons in the input
and output layers are determined mostly by the problem. The number of
inputs depends on the available information and the number of outputs
depends on what we want to compute. However, it is not always trivial to
find the best number of input and output neurons. For recognizing numbers,
it seems plausible that having an input neuron for each pixel and an output
neuron for each possible number is a good approach, but there is no a
priori reason why this is the case. The output layer could have consisted
of dlog2(10)e = 4 neurons but this encoding performs worse in practice

31

Input
layer

Hidden
layer

Hidden
layer

Output
layer

Figure 4.3: Neural network with two hidden layers.

(Nielsen, 2015). Unfortunately, there is no mechanical way of determining
the best number of neurons to use.

The hidden layers are a little different from the input and output layers.
There may be an arbitrary amount of hidden layers and each layer can have
any number of hidden neurons. Increasing the number of hidden neurons and
number of hidden layers increases the potential complexity of the network.
This allows the network to compute more complicated functions or more
accurately estimate a simpler function, but it also increases the number of
weights and biases to train. Thus there is a trade-off between having a
network that can be trained efficiently while being complex enough for the
problem one is solving. A neural network with one hidden layer is called
shallow and a network with more layers is called deep. Figure 4.3 shows a
neural network with two hidden layers.

There are different kinds of neural networks, e.g., feed-forward, convolu-
tional, and recurrent. For a feed-forward network, the neurons in a layer l
are fully connected to the neurons in the next layer l+1 in the network. For
a convolutional network, the neurons in a layer l are partially connected to
the neurons in the next layer l+ 1 in the network. For a recurrent network,
the neurons may be connected to any other neuron, even creating loops.
Note that figure 4.3 is a feed-forward network because all of its layers are
fully connected to the next layer in the network. A feed-forward network is
easier to setup because we only have to decide the number of layers and the
number of neurons per layer. This is in contrast to both convolutional and
recurrent networks where connections are not fixed to a particular pattern.

32

Recurrent networks are more similar to how the brain works but the net-
works are less used than the other two variants (Nielsen, 2015). In addition,
recurrent networks require more complex training algorithms. Recurrent
networks are especially useful when dealing with problems that require data
segmentation such as handwriting or speech recognition (Graves et al., 2009).
Because feed-forward networks are fully connected, they may be slower to
train and evaluate than sparsely connected convolutional networks. How-
ever, making a sparsely connected convolutional network requires insight
into which of the connections in the network that are useful. This addi-
tional insight can be used to encode features of the input directly in the
network by only connecting selected neurons. For the rest of this thesis, we
will use feed-forward networks with sigmoid neurons since they are simpler
to set up than convolutional networks and are the most commonly used
variant.

A neural network transforms an input vector into an output vector by a
process called feed-forward. This process works by sending the input vector
as input to the input layer. For each neuron, the result of its activation is
then sent to every neuron in the next layer. The activation function of the
neurons in the next layer are then computed for their respective weighted
input. Feed-forward is repeated for the remaining layers until the output
layer is reached, where the result of the activation functions of the neurons
in that layer is the output of the network.

So, what is a neural network actually computing through this process?
To understand this, we first look at what a single sigmoid neuron in a net-
work is computing. Say we are looking at the j’th neuron in layer l. The
neuron’s activation can be written as

alj = σ(zlj) = σ

(∑
k

wljka
l−1
k + blj

)
,

where wljk is the weight from neuron k in layer l − 1 to neuron j in layer l,

al−1
k is the activation of neuron k in layer l− 1, blj is the bias of neuron j in

layer l, the sum is over all neurons k in layer l − 1, and zlj is the weighted
input of neuron j in layer l.

To avoid an index nightmare, we introduce a matrix-based notation. Let
wl be the weight matrix of layer l, i.e., the j’th row and k’th column is wljk.

Let bl be the bias vector of layer l, and let al be the activations for layer l.
We can then write the activation of layer l as

al = σ(zl) = σ(wlal−1 + bl), (4.3)

33

where σ applied to a vector means that σ is applied to each element of the
vector, i.e., σ(zl)j = σ(zlj). This gives a simple way of thinking about
the activation of a layer: multiply the weights by the activation of the
previous layer, add the bias, and apply the activation function. This way
of writing the activation also makes it simpler to reason about the network
in its entirety. If we let L be the output layer of a network with a single
hidden layer, the activation of the output layer can be written as

aL = σ(wLaL−1 + bL).

By applying equation (4.3), we get

aL = σ(wLaL−1 + bL) = σ
(
wLσ(wL−1aL−2 + bL−1) + bL

)
. (4.4)

As the network only has one hidden layer, L− 2 is the input layer and aL−2

is the input to the network. If the network had more hidden layers, we
would expand the activation further by using equation (4.3). Equation (4.4)
shows that the output of a neural network is just a function of the weights
and biases of the network.

4.4 Training a Neural Network

In this section, we want to figure out how to make adjustments to the
weights and biases of equation (4.4) in order to make the network compute
a desired function. From equation (4.2), the change in the network’s output
is a well-approximated linear function of these adjustments as long as these
adjustments are small. Because of this, we can look at a particular input
where the network is not computing the right output, and then make a small
adjustment such that the network’s output becomes closer to what we want.
This paradigm of looking at training examples and adjusting the network
towards a correct output is what is called supervised learning.

We denote the input by x and the correct output by y(x). The goal of
training is to make the network output y(x) for all training examples x. In
order to evaluate a network for a set of training examples, we introduce a
cost function. An example of a cost function is the quadratic cost :

C =
1

2n

∑
x

||y(x)− aL(x,w, b)||2,

where aL(x,w, b) is the output of the network on input x, w is the weights
of the network, b is the biases, and n is the number of training examples.

34

Up until now we have left the input, weights, and biases as implicit input to
both the activations and weighted inputs of the network. We will continue
to do so when there is no confusion about which training example, weights,
and biases we are talking about.

The cost function is a function of the output activation of the network.
It is small when the network outputs aL(x) ≈ y(x) for all x. On the other
hand, the cost function is large if aL(x) is not close to y(x) for a large
number of training examples x. Therefore, if we can find weights and biases
such that the cost function is as small as possible, the network is computing
aL(x) as close to y(x) as possible for all examples x.

4.4.1 Gradient Descent

One technique for minimizing a function is gradient descent. Let us say that
we are trying to minimize the cost function of a neural network by changing
its weights and biases. The idea of gradient descent is to figure out how the
cost function behaves when we make a small change to any of the weights
or biases. Once we know how the cost function behaves, we make a small
change to each weight and bias such that the cost function decreases. We
keep making these small changes for some set amount of time or until the
cost is sufficiently small. Let w = w1, . . . , wr be the weights of a neural
network and b = b1, . . . , bt be the biases. As long as we are only making
small changes to the weights and biases of a network, the change in the cost
function is

∆C ≈
r∑
i=1

∂C

∂wi
∆wi +

t∑
j=1

∂C

∂bj
∆bj . (4.5)

We want to rewrite this in terms of the gradient of the cost function. The
gradient is defined as

∇C =

(
∂C

∂w1
, . . . ,

∂C

∂wr
,
∂C

∂b1
, . . . ,

∂C

∂bt

)T
. (4.6)

Furthermore, we write the vector of changes in weights and biases as

∆(w, b) = (∆w1, . . . ,∆wr,∆b1, . . . ,∆bt)
T .

We can then rewrite equation (4.5) into

∆C ≈ ∇C ·∆(w, b). (4.7)

35

Now, we choose the small positive hyperparameter µ such that

∆(w, b) = −µ∇C (4.8)

is small enough for equation (4.7) to be a good approximation. The update
rules for making changes to a single weight or bias in the network are

wi := wi − µ
∂C

∂wi

bi := bi − µ
∂C

∂bi
.

Applying these update rules for all weights and biases is equivalent to the
update defined by equation (4.8). We can write the change in the cost
function as

∆C ≈ ∇C ·∆(w, b) = ∇C(−µ∇C) = −µ||∇C||2. (4.9)

This tells us that C will decrease if we make changes to the weights and
biases of the network in accordance with equation (4.8). Note that this only
holds when equation (4.7) is a good approximation, but this is the case if
µ is chosen small enough. One concern is that if µ is chosen too small, the
changes made to weights and biases will be too small for gradient descent
to make noticeable progress.

4.4.2 Stochastic Gradient Descent

One issue with gradient descent is that the quadratic cost function is an
average over the cost of each training example. We can write the cost as

C =
1

2n

∑
x

||y(x)− aL(x)||2 =
1

n

∑
x

Cx,

where Cx = 1
2 ||y(x)− aL(x)||2 is the cost of training example x. Computing

the gradient ∇C would require us to compute the gradient ∇Cx for all
training examples x since ∇C = 1

n

∑
x∇Cx. In practice, this takes a long

time if the number of training examples is large. Instead, the technique
known as stochastic gradient descent is used. Stochastic gradient descent
works by picking a mini-batch of m training examples X1, . . . , Xm. If m is
large enough, we expect that

1

m

m∑
i=1

∇CXi ≈
1

n

∑
x

∇Cx = ∇C.

36

This gives us new update rules for the weights and biases of our network

wi := wi −
µ

m

m∑
j=1

∂CXj

∂wi
(4.10)

bi := bi −
µ

m

m∑
j=1

∂CXj

∂bi
. (4.11)

After making these updates, pick a new mini-batch of m training examples
and repeat the process until all training examples have been used. This is
referred to as an epoch of training. Like µ, it is important to choose a good
value for m, i.e., it must be large enough to ensure good approximations
and small enough so that the batches can be processed quickly.

In order to train using stochastic gradient descent, what remains is to find
an efficient way of computing the partial derivatives from equation (4.10)
and equation (4.11). This is exactly what the backpropagation algorithm
does.

4.4.3 Backpropagation

In the sections above, we only worked with the quadratic cost function, but
we can use any cost function for backpropagation that satisfies the following
two assumptions. First, it must be possible to write the cost as an average
of individual training examples, i.e.,

C =
1

n

n∑
x

Cx,

We already saw that this assumption holds for the quadratic cost. This
is important because the backpropagation algorithm computes the partial
derivatives for individual training examples. We can recover the partial
derivative for all training examples by averaging over the sum of the deriva-
tive for each training example. Second, we must be able to write the cost as
a differentiable function of the output activations of the network, i.e., the
components of aL. This assumption holds for the quadratic cost, where the
cost of a single training example x is

Cx =
1

2
||y(x)− aL(x)||2 =

1

2

∑
j

(y(x)j − aL(x)j)
2.

37

The sum is over the neurons in the output layer. This assumption is neces-
sary because we compute ∂Cx

∂aL(x)j
as part of the backpropagation algorithm.

We will now describe how the backpropagation algorithm works. Back-
propagation computes the partial derivatives of the cost function with re-
gard to a fixed training example x. Backpropagation computes these partial
derivatives by computing the errors δlj for every neuron j in every layer l.
The error is defined as

δlj =
∂Cx

∂zlj
. (4.12)

The error tells us how the cost function changes when making small adjust-
ments to the weighted input of neuron j in layer l. The error is then related
to the gradient from equation (4.6). The name backpropagation comes from
the fact that the error is computed at the output layer and then propagated
back to the previous layers. The error at the output layer, L, is given by

δLj =
∂Cx

∂zLj
=
∂Cx

∂aLj

∂aLj

∂zLj
=
∂Cx

∂aLj

∂σ(zLj)

∂zLj
=
∂Cx

∂aLj
σ′
(
zLj
)
. (4.13)

From our second assumption, we know how to compute ∂Cx

∂aLj
. Further-

more, the sigmoid function has the attribute that its derivative is σ′(z) =
σ(z)(1 − σ(z)), which we can also compute. This means that everything
in equation (4.13) can be computed from the input, output, and weighted
input that we already know how to compute by the feed-forward process.
Once again, we can avoid the cumbersome index notation by writing equa-
tion (4.13) in a vector-based form

δL = ∇aCx � σ′
(
zL
)
, (4.14)

where ∇aCx is the vector of partial derivatives ∂Cx

∂aLj
of the cost function with

regard to the activation of the neurons in the output layer and � is the
Hadamard product, i.e., the element-wise product.

The error can be propagated back through the network using

δl =
(

(wl+1)T δl+1
)
� σ′(zl). (4.15)

Equation (4.14) combined with equation (4.15) allows us to compute the
error δl for any layer l.

38

Finally, we want to relate the error δlj of a neuron to the partial deriva-
tives of the cost function with regard to our fixed training example x. For
a specific bias, we have

∂Cx

∂blj
= δlj (4.16)

and, for a specific weight, we have

∂Cx

∂wljk
= al−1

k δlj , (4.17)

all of which we already know how to compute.

Before we explain how to combine these four equations to form the full
backpropagation algorithm, let us look at their proofs. All of the equations
can be proven by using the chain rule and the definitions that are already
stated in this chapter. We will only prove equation (4.15) as the proofs of
the three other equations are similar. However, we present the three other
proofs in the appendix for completeness.

What we want to prove is

δl =
(

(wl+1)T δl+1
)
� σ′(zl). (4.15)

Starting with the definition of the error from equation (4.12), we get

δlj =
∂Cx

∂zlj

(1)
=
∑
k

∂Cx

zl+1
k

∂zl+1
k

∂zlj

(2)
=
∑
k

δl+1
k

∂zl+1
k

∂zlj

(3)
=
∑
k

δl+1
k wl+1

kj σ
′(zlj),

where (1) is application of the chain rule with regard to the weighted input
of the neurons in the next layer l + 1. (2) is substituting equation (4.12),
the definition of the error. (3) comes from the fact that we can write

zl+1
k =

∑
i

wl+1
ki a

l
i + bl+1

k =
∑
i

wl+1
ki σ(zli) + bl+1

k (4.18)

by using the definition of the weighted input and the activation. This gives
us that

∂zl+1
k

∂zlj
=

∂

∂zlj

(∑
i

wl+1
ki σ(zli) + bl+1

k

)
= wl+1

kj σ
′(zlj) (4.19)

39

by substitution of equation (4.18) and differentiation. We substitute equa-
tion (4.19) into the appropriate term. This shows that

δlj =
∑
k

δl+1
k wl+1

kj σ
′(zlj),

which is equation (4.15) in component form.
Combining equation (4.3) and equation (4.14) – (4.17), we can define

the full backpropagation algorithm for computing the gradient for equa-
tion (4.6):

• Input: a set of training examples X1, . . . , Xm.
For each training example:

1. Complete a forward pass through the network to compute the
weighted input zl and the activation al for each layer by repeat-
edly applying equation (4.3).

2. Find the error δL at the output layer by equation (4.14).

3. Complete a backwards pass through the network to compute the
error δl for each layer by repeatedly applying equation (4.15).

4. Compute the gradient ∇CXi according to equation (4.16) and
equation (4.17).

• Output: the gradient ∇C = 1
m

∑m
i=1∇CXi .

The components of the gradient’s output are exactly the partial derivatives
needed to perform stochastic gradient descent. Combining the backprop-
agation algorithm with stochastic gradient descent thus gives us a way of
training neural networks using a set of training examples.

40

Chapter 5

Search Methods

In the context of playing games, search methods are algorithms that search
through the state space of the game to select moves. We describe search
methods for discrete, two-player games with alternating moves. One ap-
proach to finding good moves is to look ahead by trying every possible
move to figure out what will happen. For games with few possible moves,
brute-force methods such as this can be effective, but more intelligent search
methods are required for games with large state spaces and many possible
moves. This chapter describes the search methods: minimax and Monte-
Carlo Tree Search (MCTS). Both search methods build up a game tree to
look ahead in the game and determine a move based on this tree. A game
tree is a tree where nodes correspond to game states and child nodes corre-
spond to the states resulting from taking some legal action from the parent
node’s state. MCTS builds an asymmetric game tree by randomly sampling
playthroughs while minimax looks at all possible moves of both players,
building a complete game tree to a certain depth. Section 6.7 describes how
a learning agent can be integrated with these search methods to improve its
performance.

5.1 Minimax

We call the current player the maximizing player because he wants to max-
imize the outcome of his moves, and we call the opponent the minimizing
player because he wants to minimize the maximizing player’s outcome, since
this will maximize the minimizing player’s own outcome in a zero-sum game.
For a given state of the game, the idea of the minimax algorithm is to evalu-
ate all of the maximizing player’s moves, then evaluate all of the minimizing

41

player’s counter-moves, then the maximizing player’s counter-moves, and so
forth. Minimax repeats this process until a terminal state or a specified
depth has been reached. It is assumed that the maximizing player will make
the move with the highest value and that the minimizing player will make
the move with the lowest value, i.e., the move that is rated worst for the
maximizing player. In other words, the algorithm assumes optimal play
from both players. This means that the best value found by minimax is a
guaranteed lower bound for the maximizing player.

The value of a move is a measure of how good the resulting state is for
the maximizing player. If the resulting state is terminal, a value is assigned
to the node based on the result of the game. If the resulting state is not
terminal, minimax can use a heuristic function in order to determine the
state’s value. A simple heuristic is to randomly choose a move if all the
best moves are ones that result in non-terminal states. Using this heuristic
and given sufficient search depth, minimax will make moves that guarantee
a win and avoid a loss if it is possible. With a good heuristic function, we
can assess moves that do not result in terminal states and make informed
decisions even when none of the best moves result in terminal states.

Figure 5.1 shows the pseudocode for the minimax algorithm in its basic
form. The initial call for minimax and the maximizing player is
minimax(root, depth, TRUE), where root is a node with the cur-
rent state of the game. This pseudocode only returns the highest value that
the maximizing player is guaranteed and would have to be modified to also
return the move corresponding to that value.

To select the best moves, we want to search as deep into the game tree
as possible. The complexity of doing a minimax search can be described
in terms of the branching factor of the game and the depth of the search.
The branching factor of a game is the number of possible moves that lead to
new states for each player. As an example, the branching factor of Connect
Four is at most 7 since there are 7 possible moves corresponding to the 7
free columns at the start of the game. For most games, the branching factor
decreases as the game goes on, allowing deeper searches later in the game
when there are fewer possible moves. With branching factor b and search
depth d, the cost of doing minimax search is O(bd).

Figure 5.2 shows an example of a minimax search tree with depth d = 3
for a game with branching factor b = 2. The game rules are such that a
player can only win on their own turn, and there are only two outcomes:
winning and losing. Once the search reaches a terminal node or a depth
of three, the search stops. The filled nodes indicate nodes with terminal
state and the dashed lines indicate where the search would continue if the

42

function minimax(node, depth, maximizingPlayer)
if depth = 0 or node is a terminal node
return the heuristic value of node

if maximizingPlayer
bestValue := -∞
for each child of node

v := minimax(child, depth-1, FALSE)
bestValue := max(bestValue, v)

return bestValue
else (* minimizing player *)

bestValue := ∞
for each child of node

v := minimax(child, depth-1, TRUE)
bestValue := min(bestValue, v)

return bestValue

Figure 5.1: Pseudocode for the basic minimax algorithm.

s1

s2

Final nodes considered during search

Maximizing player’s possible moves

Resulting game states

Minimizing player’s possible moves

Resulting game states

Maximizing player’s possible moves

Current game state
m1 m2

Figure 5.2: Example of a game tree for minimax with search depth three
and two possible moves per player. Black nodes represent terminal states.

43

search depth was increased. The leaf nodes that are non-terminal are where
a heuristic function would be required in order to evaluate the game state.
But we can determine which of the moves m1 or m2 that is the best move
for the maximizing player even without a heuristic function. Since a player
can only win on their own turn, we can see that making move m1 moves the
game to a state where the minimizing player has a winning move. Thus, we
can conclude that the maximizing player has to make the move m2 to avoid
losing the game immediately.

From the game tree in figure 5.2, we can gain another insight: sometimes
the search in a branch can be stopped early without affecting the final result.
When considering the minimizing player’s possible moves at s1, we would
like to prune the rest of the search tree when finding a winning move for
the minimizing player. We can safely prune the tree because there is no
better move than a winning move, so we know that the search cannot find
any nodes with lower value for the maximizing player than what is already
discovered. For more complex games, a winning move might not always be
optimal, e.g., a move that is not an immediate win can secure more points
for the maximizing player than a move that immediately ends the game.
This leads to the idea of using alpha-beta pruning to prune the search tree
when it is guaranteed that it will not affect the final result.

Figure 5.3 shows the pseudocode for the alpha-beta pruning version of
minimax. The initial call for minimax with alpha-beta pruning and the
maximizing player is minimax(root, depth, -∞, ∞, TRUE). The
intuition behind the α and β values is that α is the maximum lower bound
of node values and β is the minimum upper bound. We only increase α and
decrease β while searching through child nodes. At any node, if β is smaller
than α, the remaining unvisited children will be pruned.

Let us return to the example minimax game tree in figure 5.2. We assign
a value of ∞ to winning terminal states and value −∞ to losing terminal
states. If child nodes are visited from left to right, alpha-beta pruning would
prune the right child of s1 as β would be −∞ after visiting the left child.
However, notice that we are unable to prune the left child of s2 because of
the order of child nodes, as it will already have been visited when we discover
a winning state in the right child. This is assuming that it is pruned as a
result of the heuristic values found at the leaf nodes. If we visited the right
child of s2 first, the left child would be pruned.

The above example shows how the order in which child nodes are tra-
versed is an important factor in the running time of minimax with alpha-
beta pruning. If child nodes are searched through in the worst possible
order, i.e., the best value is discovered last, alpha-beta pruning reduces to

44

function minimax(node, depth, α, β, maximizingPlayer)
if depth = 0 or node is a terminal node

return the heuristic value of node

if maximizingPlayer
bestValue := -∞
for each child of node

v := minimax(child, depth-1, α, β, FALSE)
bestValue := max(bestValue, v)
α := max(α, bestValue)
if β ≤ α
break

return bestValue
else (* minimizing player *)

bestValue := ∞
for each child of node

v := minimax(child, depth-1, α, β, TRUE)
bestValue := min(bestValue, v)
β := min(β, bestValue)
if β ≤ α
break

return bestValue

Figure 5.3: Pseudocode for the minimax algorithm with alpha-beta prun-
ing.

45

normal minimax search. In this case, the complexity is still O(bd). How-
ever, the complexity of the algorithm drops to O(

√
bd), assuming d is even,

if the nodes are searched through in the optimal order, i.e., the best node is
considered first (Russell and Norvig, 2003). This means that ordering the
nodes correctly reduces the effective branching factor from b to

√
b, allowing

the search to look twice as deep in the same amount of time.

5.2 Monte-Carlo Tree Search

MCTS is a family of algorithms that build an asymmetric game tree in-
crementally by performing simulations. In this section, we describe the
Upper Confidence Bounds for Trees (UCT) algorithm, which is an instance
of MCTS.

For each iteration of the algorithm, the tree policy selects a promising
node of the tree. A promising node is either one that has been visited often
and has a high estimated value, or one that has been visited infrequently.
This is to ensure that all nodes are eventually selected even if their estimated
value is low. If the selected node is terminal, it is returned directly. If it is
non-terminal, a new child node that corresponds to an unexplored action is
added to the tree and is returned. Once a node has been returned by the
tree policy, a game is simulated until termination from the board state of
the returned node, and the tree is updated according to the result of this
simulation. The moves made during a simulation are chosen according to a
default policy. In the simplest case, the default policy makes random moves.

One of the benefits of MCTS is that little knowledge about the game is
required in order to apply the algorithm. Minimax search requires that non-
terminal nodes are given a heuristic value, which means that some knowledge
about game states is necessary. In contrast, MCTS only requires that we
can assign values to terminal states and simulate the rules of the game.
Another property of MCTS is that it can be interrupted at any time, whereas
minimax search is started with a certain target depth and must run until
this search depth has been reached.

Figure 5.4 shows the pseudocode for UCT. Each node v in the tree has
four values associated with it: s(v) is the state of the node, N(v) is the
number of times the node has been visited, Q(v) is the sum of simulation
rewards in this node and its children, a(v) is the action that generates this
node’s state from its parent node’s state, and f(s(v), a) is the function that
returns the state resulting from performing action a in the state s(v). A
new node is initialized with Q(v) = 0 and N(v) = 0.

46

function UCTSearch(s0)
initialize root node v0 with state s0

while within computational budget
vl := treePolicy(v0)
∆ := defaultPolicy(s(vl))
backup(vl, ∆)

return a(bestChild(v0, 0))

function treePolicy(v)
while v is non-terminal

if v not fully expanded
return expand(v)

else
v := bestChild(v, Cp)

return v

function expand(v)
choose a from untried actions from A(s(v))
add new child v′ to v
where s(v′) := f(s(v), a)

a(v′) := a
return v′

function bestChild(v, c)

return arg max
v′∈children of v

Q(v′)
N(v′) + c

√
2 lnN(v)
N(v′)

function defaultPolicy(s)
while s is non-terminal

choose a from A(s) uniformly at random
s := f(s, a)

return reward of state s

function backup(v,∆)
while v is not NULL
N(v) := N(v) + 1
Q(v) := Q(v) + ∆
∆ := −∆
v := parent of v

Figure 5.4: The UCT algorithm pseudocode with two-player backup
(Browne et al., 2012). 47

backup is applicable to two-player, zero-sum games with alternating
moves, e.g., Connect Four or Chess. This assumption for backup is neces-
sary because we need to adapt the reward ∆ for every change of turn to the
player in question. Since the game is zero-sum, we can negate ∆.

treePolicy uses bestChild to select promising child nodes. The
following two terms of the equation in bestChild attempt to balance ex-
ploration and exploitation in the tree search.

arg max
v′∈children of v

Q(v′)

N(v′)
+ c

√
2 lnN(v)

N(v′)

The first term Q(v′)
N(v′) is the average return of playouts that have passed

through this node and, as such, it is an approximation of the node’s game-

theoretic value. The second term c
√

2 lnN(v)
N(v′) ensures that all child nodes

are eventually explored. Whenever a node is visited, the value of this term
decreases for that node. However, when a node’s sibling is visited, the value
of this term increases. This ensures that the search continues to visit all
nodes at some point. The value of c controls the amount of exploration.
Higher values of c increase the amount of exploration while lower values
encourage less exploration and more exploitation of current knowledge. Cp
is a hyperparameter that is chosen based on the problem domain.

Figure 5.5 shows an example of a game tree built by UCT for Connect
Four. In this game, a player has two possible actions in each state. The
selected node represents a non-terminal state, which has not yet been fully
expanded. A new child corresponding to a random action is added and
returned by the tree policy. The default policy then runs a simulation from
the newly returned node, which results in a win for the player who made
the last move. The new node is updated with the result of the simulation
and this result is backed up to the root of the tree. This results in the game
tree shown on the right side.

In this instance of MCTS, the action returned by the search is the action
of the child with the highest game-theoretic value. Another way of choosing
an action is to return the action of the most visited child. The most visited
child must have been chosen often by the tree policy, thus it must have a high
estimated value, and a child that has been visited many times should have
a stable estimated value. Alternatively, the two methods can be combined,
allowing the search to terminate only if the child with the highest game-
theoretic value is also the most visited child, but this means that the search
method may have to exceed its budget.

48

1/5

−1/1 0/4

2/2

−1/1

−1/1

−→

2/6

−2/2

1/1

0/4

2/2

−1/1

−1/1

Figure 5.5: Example of a game tree built by UCT. All nodes v are an-
notated with the current value of Q(v) and N(v), written as Q(v)/N(v).
Gray nodes indicate states where the opponent makes a move. White nodes
indicate states where the searching player makes a move. The bold nodes
indicate the children selected by the tree policy in the current iteration.

49

50

Chapter 6

Putting It All Together

6.1 Connect Four as a Reinforcement-Learning
Problem

This section formalizes Connect Four as a reinforcement-learning control
problem. We need to define the states, actions, transitions, action-value
function, and rewards for the problem. The set of possible states S is the
set of all legal board positions. Terminal states are the states where some
player has won or where the board is filled without a winner, resulting in a
draw. For a state s, the set of possible actions A(s) is the set of columns
where there exists an unoccupied row. For example, the state sa shown in
figure 6.1 has the possible actions A(sa) = {a1, b2, e2, f2, g1}. The agent
is only rewarded upon reaching a terminal state where the reward is 1 for
a win, 0 for a draw, and 0 for a loss. This definition of Connect Four
has the Markov property, since the current board position and some action
completely defines the next state and reward. We consider the opponent to
be a part of the environment as it is not something our agent can control.

a b c d e f g

1

2

3

4

5

6

Figure 6.1: Board state sa.

51

Since Connect Four is finite and has the Markov property, we have a finite
Markov decision process.

Our action-value function maps state-action pairs (s, a) to the estimated
probability that the agent will win by performing action a in state s. The
interpretation is that if Q(s, a) ≈ 1, the agent is confident that it will win
from state s by performing action a. Conversely, if Q(s, a) ≈ 0, the agent is
confident that it will lose from state s by performing action a.

Since Connect Four is deterministic, we know that performing some ac-
tion a in some state s will always lead to the same state s′. This means that
we can incorporate the notion of afterstates described by Sutton and Barto
(1998). The next section describes how we can incorporate afterstates and
why they are interesting.

6.2 Reducing the State Space through Afterstates

When dealing with a control problem, the agent usually wants to approx-
imate an action-value function Q(s, a) that gives the value of performing
action a in state s. For some problems, the immediate result of an action
is already known. For example, consider the Connect Four board shown in
figure 6.2a. In this case, the agent plays x©. The state tells us that it is
the agent’s turn to move as there is an even number of pieces. Let us call
the state in figure 6.2a s1. If our agent chooses to make the move e1, the
resulting board will be s′1, which is shown in figure 6.2c. The learning agent
can then make an update to its action-value function after the opponent has
made his move and the learning agent gets a reward from the environment.
The idea of afterstates is that we only estimate the value of states instead
of estimating the value of every action from every state. We can do this be-
cause being in state s1 and performing action e1 always results in entering
state s′1. Instead of estimating the pair s1 and e1, we estimate the value of
state s′1 and make use of the fact that it is the result of performing action e1
in state s1. It is not immediately clear why this reduces our state space as
we still have to estimate the value of seven afterstates for each state as op-
posed to seven state-action pairs. Looking at one more example illustrates
why afterstates are actually an improvement. Say we instead find ourselves
in the state s2, which is shown in figure 6.2b, and choose to make the move
d3. This action will result in the state s′1, which is shown in figure 6.2c, even
though the previous state and action were different from before. Because
the two state-action pairs result in the same state, we only have to esti-
mate V (s′1) instead of estimating the values of both Q(s1, e1) and Q(s2, d3).

52

a b c d e f g

1

2

3

4

5

6

(a) Board state s1, x©’s turn to move.

a b c d e f g

1

2

3

4

5

6

(b) Board state s2, x©’s turn to move.

a b c d e f g

1

2

3

4

5

6

(c) Board state s′1, result of move e1
from s1 or move d3 from s2.

Figure 6.2: Example board states.

The result is that the state space of the problem is reduced with the branch-
ing factor for each state.

6.3 Combining Reinforcement Learning and
Neural Networks

Chapter 3 describes reinforcement learning and chapter 4 describes neural
networks. We want to combine these concepts in order to create an agent
that learns from playing Connect Four. The basic idea is that we will train
a neural network to be the value function of our learning agent. In order
to choose which action to take for a state, we evaluate the possible actions
and use the neural network to find the approximate value of each action.
We then choose an action based on the values returned by the network. As
actions are chosen and the environment responds, we can use the rewards
and resulting states to improve the approximation done by our network. In
section 6.7, it is also described how we can incorporate the search methods
described in chapter 5 to improve the decision making of our learning agent.

53

We will use TD(λ) to train our agent. The parameters θ of our value
function are the weights and biases of the neural network. Recall that the
updates made to these parameters in TD(λ) are

θt+1 = θt + α(rt+1 + γVt(st+1)− Vt(st))et,

where et is the vector of eligibility traces for each parameter

et = γλet−1 +∇θVt(st).

We need to be able to compute ∇θVt(st), which is the vector of the partial
derivatives of the output of the network with regard to its weights and biases.

Recall also that the backpropagation algorithm for neural networks al-
lows us to compute the partial derivatives of a cost function with regard to
the weights and biases of the networks. Fortunately, there is a small change
to the backpropagation algorithm that makes it compute what we need. We
change the definition of the error at each neuron to

δlj =
∂aL

∂zlj
,

i.e., we define the error of a neuron to be the partial derivative of the output
activation of the network with regard to the weighted input of that neuron.
Since the activation at the output layer is defined as

aL = σ
(
zL
)
,

this new error can easily be computed at the output layer by

δL =
∂aL

∂zL
= σ′

(
zL
)
.

The rest of the backpropagation algorithm remains unchanged. Through
proofs identical to those for the original backpropagation algorithm, it can
be shown that

∂aL

∂blj
= δlj

∂aL

∂wljk
= al−1

k δlj

for our new definition of error. These are exactly the values that we need to
compute in order to run TD(λ).

54

A potential problem with Connect Four is the discrete outcome of each
game, but it is not obvious whether this is truly a problem in practice. Since
our neural network approximates the value function by a continuous func-
tion, it may not find the optimal value function. However, the probability of
winning from each state might still be closely approximated by a continuous
function.

6.4 Board Encoding

As described in chapter 4, a neural network takes as input a vector of num-
bers, which feeds through the network to produce an output. Therefore, we
need to translate board positions into vectors that the network can take as
input. The choice of board encoding has an impact on the performance of
the network since only features present in the encoding can affect the out-
put of the network. The board encodings described in this section assume a
standard Connect Four board of size 6 × 7, but they can extend to boards
of any size.

The first board encoding uses 42 entries to encode the pieces placed
on the board using one number per square. Let us call it the naive board
encoding. A square occupied by an agent’s piece is given a value of 1. A
square occupied by an opponent’s piece is given a value of -1. A square that
is not occupied is given a value of 0. In addition, a value is used to indicate
whose turn it is to move, i.e., the value is set to 1 if it is the agent’s turn to
move and -1 if it is the opponent’s turn to move.

There are some potential problems with the naive encoding. A piece in
a square has to be given the same weight for the agent and the opponent.
This puts an unnecessary restriction on our network as there is no a priori
reason for why this should be the case. Another restriction made by this
board encoding is that a blank square cannot be weighted in the evaluation
of a state since blank squares are given an entry of zero in the input vector.

In the light of these potential problems, we draw inspiration from the
encoding used in TD-Gammon as described by Sutton and Barto (1998) in
their case study. The resulting encoding uses 126 bits to encode the squares
on the board, i.e., it has three bits per square on the board and two bits
to indicate turn. For the three bits corresponding to a square, the first bit
is set if the agent has a piece in the square. The second bit is set if the
opponent has a piece in the square, and the third bit is set if the square is
empty. In this way, blank squares can also be given a weight and possession
of a square can be weighted differently for the agent and the opponent.

55

a b c d e f g

1

2

3

4

5

6

Figure 6.3: The square f1 is a threat to o©.

The two additional bits indicate turn in a binary fashion. Let us call this
the extended board encoding.

Finally, we experiment with a board encoding that has a set of hand-
crafted features in its input in addition to the input encoded by the ex-
tended board encoding. We look at the feature that encodes all threats on
the board. This feature uses an additional 84 bits compared to the extended
board encoding, resulting in 212 bits in total. This gives us one more bit per
square on the board per player. A bit is set if the square that it corresponds
to is blank and the player that it corresponds to will win if they place a
piece in that square. For example, in the state shown in figure 6.3, the bit
corresponding to square f1 and player x© would be set since the square is
currently blank and x© wins by dropping a piece in that square. We call
this the feature board encoding. When including these handcrafted features,
it is important to keep in mind that increasing the number of inputs to the
network also increases the number of weights and biases, thus increasing the
complexity of the network. This means that we also increase the number of
training games that are required to appropriately tune the additional weights
and biases. Therefore, we have to consider the trade-off between including
more input information and increasing the complexity of the network. On
top of this, one of the main motivations for using reinforcement learning
was that we did not have to know about the game beforehand. However, if
we want to construct more interesting features, we have to develop a deeper
understanding of the game, which goes against our goal of automatically
learning the important features of the game.

We compare the different board encodings in section 7.5.

56

6.5 Benchmarking

In order to evaluate the progress of an agent’s training, some form of bench-
mark is required. One way to evaluate an agent is to make the agent play
against an opponent player between training epochs and keep track of the
record against this benchmark opponent. We present three benchmark op-
ponents: a random player, a minimax player, and an MCTS player.

A random player chooses a move uniformly at random from the set of
legal moves. This opponent should be easily beaten as it will rarely make
sensible plays. Nevertheless, it works as a sanity check to make sure that
progress is made during training.

A minimax player uses the minimax algorithm described in section 5.1
to look for moves. If no good move is found, a move is selected uniformly at
random from the set of possible moves. This opponent plays like a random
opponent at first, but will block immediate threats and foresee future threats
with appropriate search depth. The benefit of minimax is that its strength
can be scaled by increasing the search depth, but this has the downside of
slowing benchmarking down to the point where it becomes the bottleneck
of training if the search depth is too high. We found that a search depth
of five provided a good measurement of the agent without taking too much
time compared to the training. Performance against a minimax opponent
also seemed to be a good indication of the difficulty of playing against the
agent as a human.

An MCTS player uses the MCTS algorithm described in section 5.2 to
look for moves. As with the minimax player, this benchmark opponent’s
strength can be scaled by varying its search time. This opponent outper-
forms our agent with just 10 ms to search for a move on a standard board.
Because of this, the MCTS player is only used for benchmarking when the
size of the board is increased or when the learning agent is also allowed to
use search methods to make its moves. We experiment with increasing the
size of the board in section 7.8.

Another way to benchmark an agent is to make it play against human
players. Using humans as a benchmark opponent during training is a tedious
process as many games are needed to accurately assess the agent’s play
and humans usually make moves slowly compared to computer opponents.
So, with a lot of training, benchmarking against humans becomes a time-
consuming process.

57

6.6 Addressing the Problems of Self-Play

Section 3.9 introduced self-play, but Tesauro (1995) and Schraudolph et al.
(1994) noted that deterministic games need noise injection in order to make
self-play feasible. Since Connect Four is deterministic, we need to ensure
that the agent does not play the same games over and over, thus not learning.

One way to address noise injection is exploratory starts. The idea is to
randomize the starting state of each self-play game, i.e., each self-play game
can be started after a number of random moves has been played by both
sides. In this way, the number of random initial pieces can be adjusted as
a parameter for the amount of noise. One potential problem is that adding
too many initial pieces can make the game meaningless since one side might
already have won because of a stronger opening. Over time, the number of
games decided by the random opening should be even for both sides, but
this might result in wasted training games.

Another way to ensure varied play is to keep the policies, i.e., the action
selection, exploratory during training, which is described in section 3.5. For
both the ε-greedy policy and the softmax policy, we want to keep the explo-
ration rates ε and τ high enough such that we keep exploring new moves.
As the agent becomes better at estimating state values, the exploration rate
should decrease to improve these estimates.

The exploration rate, i.e., ε or τ , should decrease gradually as training
progresses such that the agent eventually converges towards an optimal value
function. However, lowering the exploration rate too much will make the
learning stagnate and produce overfitting during self-play. To avoid stagna-
tion, we maintain some level of exploration during training at all times. In
section 7.2, we compare the noise-injection methods outlined above and find
initial values for the exploration rate and the number of initial pieces.

6.7 Incorporating Search Methods

Chapter 5 describes two search methods: minimax and Monte-Carlo Tree
Search (MCTS). This section explains how these search methods can be
incorporated into our learning agent in order to improve its performance.

Without search methods, an action is selected by letting the agent eval-
uate the resulting state of each possible action. Then a policy chooses one of
the actions based on their estimated value. As an alternative, we can utilize
a search method to find an action using the agent to improve the search.

58

6.7.1 Minimax search

An agent can enhance minimax with alpha-beta pruning in two ways. First,
minimax needs a heuristic function to evaluate non-terminal states. We can
use the agent’s value function to estimate these heuristic values. Second,
we can evaluate the states of the children of each node and order them by
the value that they are estimated to have according to the agent’s value
function. As a result, the better the agent’s value function is at evaluating
board positions, the more efficiently we can prune our search tree and the
more accurately we can evaluate non-terminal positions.

When playing against a human, the agent is able to use minimax with
search depth 9 and alpha-beta pruning, but increasing the search depth
makes the agent slow to play against as it takes about 15 seconds to make a
move at the beginning of the game on a standard laptop. The search depth
can be increased as the game goes on because the state space that we search
through is reduced significantly as more pieces are placed on the board.

6.7.2 Monte-Carlo Tree Search

When using MCTS, the agent can be used to try to improve the two policies:
the tree policy that selects nodes and the default policy that is used to select
actions during simulations.

The easiest policy to modify is the default policy. Instead of choosing
actions uniformly at random during a simulation, the agent can be used to
find the best action according to its value function. This should provide a
great improvement in accuracy over random simulations, but it comes at
the cost of slower simulations. A way to improve the speed is to only allow
the network to consider some of the legal moves from each state (Drake and
Uurtamo, 2007). This increases the speed of each simulation by reducing the
branching factor and ensures that the simulations are still randomized such
that the same simulation is not run every time. We compared an MCTS
player that uses random simulation to an MCTS player that uses the agent’s
value function to make simulation. Using random simulations turned out
to be better because the player was able to make more simulations, which
made up for the randomness.

With regard to the tree policy, several extensions have been suggested
and experimented with in the literature. These extensions include the
evaluation of a heuristic function when selecting the best child. That is,

59

the extensions modify the equation

arg max
v′∈children of v

Q(v′)

N(v′)
+ c

√
2 lnN(v)

N(v′)

such that it also includes a term with an estimation from some heuristic
function. Recall that Q(v) is the sum of rewards from playouts that went
through node v and N(v) is the number of visits to node v during search.
In Silver et al. (2016), the results of simulations are combined with the
evaluation of a trained value function using a mixing parameter λ that de-
termines the importance of the simulations and the function evaluation.
A different approach by Gelly and Silver (2011) is to initialize the values
Q(v) and N(v) according to a heuristic evaluation function H(s, a) and a
heuristic confidence function C(s, a). New tree nodes are initialized with
Q(v) = H(s(v), a(v)) and N(v) = C(s(v), a(v)). The confidence is equiva-
lent to how many simulations would be required in order to achieve a value
of similar accuracy to the heuristic value. We experiment with initializing
Q(v) with the agent’s value function and choosing a corresponding N(v) in
section 7.7.

60

Chapter 7

Experiments

This chapter describes the experiments that were done in order to optimize
the hyperparameters for TD(λ) and verify some of the hypotheses from the
previous chapters. One issue with these experiments is that they depend on
each other. We chose the order of these experiments such that the parame-
ters that we estimate to have the biggest impact are optimized first.

We evaluate agents in two ways: The agent can play against a search
method, which we will refer to as a benchmark. The agent can play against
another agent, which we will refer to as a tournament game. Section 7.3
explains tournaments and tournament games.

When an agent is benchmarked or plays in a tournament, we want the
agent to play greedily with regard to its value function and we do not want
the agent to change its value function. Making the agent play with these
settings makes it deterministic, which will make the two players repeat the
same game if the opponent is also deterministic. To keep the games from
repeating, we use a softmax policy instead of a greedy policy. The reason
for using softmax rather than ε-greedy is that the randomness in softmax is
dependent on the evaluations of the value function, whereas the exploratory
moves in an ε-greedy policy are chosen uniformly at random. In the following
sections, all benchmark games are played with learning disabled and with
a greedy policy since we benchmark against minimax and MCTS, which
are both non-deterministic. When we benchmark against minimax, we give
it a search depth of five and the heuristic function that returns 0 for non-
terminal states, 1 for winning states, and -1 for losing states. All tournament
games are played with learning disabled but with a softmax policy with a
temperature of 0.1.

61

The experiments involve training and doing benchmarks with many dif-
ferent agents and parameter settings. Determining how many games to train
and how many benchmark games to run between each epoch is a trade-off
between time spent and accuracy. More training yields a better result in
most cases, but it is more time consuming. Another concern is the mutual
dependency between hyperparameters and the number of training games.
Hyperparameters are optimized for a certain number of training games, and
the number of training games required to reach good performance depends
on the hyperparameters found. We choose to run each experiment with
10,000 training games for 10 epochs, resulting in 100,000 training games,
unless otherwise stated. This number of training games allowed the settings
that we found during our initial experiments to reach peak performance
against a minimax benchmark opponent. We later experiment with addi-
tional training games in section 7.3 and section 7.9. During benchmark
games, we are trying to assess the agent’s win rate against its benchmark
opponent. Since the benchmark games are independent, the chance of be-
ing a constant factor away from the true win rate decreases exponentially
with more benchmark games by a Chernoff bound. The benchmark games
are independent because we disable learning during benchmarks. Because
of this, we have settled on 1,000 benchmark games after each epoch. All
experiments will use these settings and train with self-play unless otherwise
stated.

We have to decide on which board encoding to use and whether to switch
sides during training, until we run those experiments in section 7.5 and
section 7.6. With regard to board encoding, we will use the feature board
encoding described in section 6.4 for all agents. With regard to switching
sides, we let the agent start in benchmark games. For all other games, we
make the players switch starting positions between each game. The reason
for letting the agent start in benchmark games is that we know from Allis
(1988) that the starting player is always able to win. Thus, we know that
our agent is not playing optimally if it is unable to win every game.

7.1 Different Hyperparameters

To compare the different training setups, we need to have the best param-
eters for each scenario. To find the best hyperparameters, we use a com-
bination of grid search and random search. In grid search, we define a set
of values for each parameter and then test all combinations of those values.

62

For example, with two hyperparameters γ and λ, we could define

γ ∈ {0.25, 0.5, 0.75, 1}
λ ∈ {0, 0.5, 1}.

A grid search tries all combinations of γ and λ from the two sets.

One requirement for a reasonable grid search is that these sets of possible
values must be defined beforehand, i.e., we need a way to figure out what
values might work. We use random search over the different parameters to
help find initial values. The random search simply creates combinations of
uniformly distributed random values on the intervals of each hyperparameter
(Bergstra and Bengio, 2012).

Both random search and grid search produce a lot of training and bench-
mark data. To avoid manually looking at the data for every combination of
parameters, we sort and filter the results by benchmark performance. Com-
binations of parameters that do not improve their benchmark performance
are removed and the results are sorted. In this way, we only have to look at
the best performing combinations even if thousands of combinations were
tried during the search. Due to the random nature of network initialization
and early training, we train and benchmark each set of parameters three
times and average over the results.

Benchmark performance can be measured in several ways. The best
performing combination can be the one whose benchmark win rate is: the
highest; most increasing; the most stable, i.e., does not suddenly fall and
then increase again; or a weighted combination of the above. We have chosen
the settings that give the highest win rate because that is our ultimate goal
and we want to evaluate the networks on how well they are doing, not on
how they are achieving it.

The hyperparameters to determine consist of the exploration rate, learn-
ing rate, discount rate, and decay rate. Exploration rate is ε when using an
ε-greedy policy and the temperature τ when using a softmax policy. A good
value for the exploration rate will be determined in section 7.2. Learning
rate is the α value for the reinforcement-learning algorithm. Discount rate γ
is the amount of decay on rewards in the reinforcement-learning algorithm.
Decay rate λ is the trace-decay parameter that controls how much rewards
affect previous states. This means that there are four hyperparameters to
set for TD(λ). To reduce the number of parameters that we vary at the
same time, we exploit that the exploration rate is sufficiently independent
of the other hyperparameters and optimize it after the others. Furthermore,
we keep α constant while varying γ and λ and vice versa.

63

Parameter TD(λ)

Learning rate (α) 0.1
Discount rate (γ) 1
Decay rate (λ) 0

Table 7.1: Best hyperparameter settings for TD(λ).

All parameters were evaluated by doing self-play training and bench-
marking against a minimax opponent. The initial grid searches had 10
epochs with 1,000 training games per epoch and 100 benchmark games af-
ter each epoch to allow rapid evaluation of many parameters. The best
parameters found from these searches were then used for further searches
with 10 epochs of 10,000 training games and 1,000 benchmark games after
each epoch. Training was done with an ε-greedy policy and a randomly
initialized board with up to 6 pieces each game. Randomly initializing the
board is discussed in section 7.2 along with the exploration rate.

We trained networks with one hidden layer and 100 hidden neurons.
Table 7.1 shows the best combination of parameters found for TD(λ). Sec-
tion 3.6 introduced eligibility traces, but it turns out that using λ = 0
performed best. Setting the decay rate to 0 is equivalent to disabling eligi-
bility traces and only making one-step updates. This is not surprising, since
“in off-line applications in which data can be generated cheaply, perhaps
from an inexpensive simulation, then it often does not pay to use eligibility
traces” (Sutton and Barto, 1998). It is worth noting that for other games,
other decay rates are used, e.g., Schaeffer et al. (2001) used λ = 0.95 for
their TD approach to Checkers.

With these settings, TD(λ) achieved an average win rate of 78.5% in
benchmark games after the final epoch of training. The experiments in the
following sections use these settings for training unless otherwise stated.
Note that these settings were found without changing parameters during
training. Section 7.4 describes experiments where we let some of these pa-
rameters decay over time.

7.2 Different Noise-Injection Methods

Since learning stagnates during self-play in deterministic games (Sutton and
Barto, 1998; Schraudolph et al., 1994; Tesauro, 1995), we introduce non-
determinism through noise injection. We inject noise in two ways: explo-
ration rate and exploratory starts by randomly placing initial pieces.

64

Exploration Rate. The exploration rate is set for two policies: ε-greedy
and softmax. ε-greedy has a probability of ε to choose a random move or
otherwise choose a move greedily. Softmax chooses every move randomly but
softmax is more likely to choose the best estimated moves. The temperature
τ determines how greedy the selection is.

Exploratory Starts. Exploratory starts perform noise injection by start-
ing the game at a random state instead of always starting with an empty
board. We initialize the board by placing up to n random initial pieces,
letting the game proceed from the resulting state.

What we want to determine is how these two methods can be most effec-
tively combined to train networks. Benchmarks are done against minimax.
All settings are run three times and results are averaged.

We want to vary both the exploration rate and the number of random
pieces n used during exploratory starts. For ε-greedy policies, we try ε
values of 0, 0.25, 0.5, 0.75, and 1. For softmax, we try τ values of 0.1, 1, 10,
100, 500, and 1000. Finally, we try n values of 0, 5, and 10.

Table 7.2 shows the results of the most interesting settings. With an ε-
greedy policy, the first result indicates that ε = 0 with 0 initial pieces cannot
do any learning because the agent does not explore at all. However, if we
initialize the board with 5 or 10 initial pieces, some learning can take place
even with ε = 0, i.e., with a policy that is greedy with regard to its network.
It is also noteworthy that with ε = 0.5 or even ε = 1, a lot of meaningful
learning can take place. In fact, ε = 0.5 and no initial pieces achieved
the highest win rate out of all the ε-greedy settings that were tested. The
performance of agents with high values of ε or τ seem unaffected by the
number of initial pieces as their benchmarks with 0, 5, and 10 initial pieces
are within 3% of each other.

With a softmax policy, it turns out that τ = 0.1 performed best out of
all settings, regardless of the number of initial pieces. In fact, these were
the only softmax settings to achieve a win rate above 70% in benchmarks.
As opposed to the values tested for ε-greedy, all softmax settings seemed
to have meaningful learning. The worst performing softmax settings were
τ = 100 with 5 initial pieces, which achieved a benchmark win rate of 63%.

A natural conclusion from these results is that the softmax values for τ
might have been set too high. It would seem plausible that lower values of
τ could produce more interesting results as the lowest value performed best
in all cases. As a follow-up, we ran the same experiment again for softmax
with τ values of 0.05, 0.01, and 0.005.

65

Policy Exploration rate Initial pieces Benchmark win rate

ε-greedy 0 0 8.0%
ε-greedy 0 5 60.3%
ε-greedy 0 10 61.9%
ε-greedy 0.5 0 80.5%
ε-greedy 0.5 5 74.7%
ε-greedy 0.5 10 75.3%
ε-greedy 1 0 66.3%
ε-greedy 1 5 67.9%
ε-greedy 1 10 66.7%

Softmax 0.1 0 75.5%
Softmax 0.1 5 80.5%
Softmax 0.1 10 82.6%
Softmax 1000 0 68.7%
Softmax 1000 5 66.6%
Softmax 1000 10 69.1%

Table 7.2: Partial noise-injection experiment results. The benchmark win
rate shows the percentage of games won against minimax in the 1,000 bench-
mark games after the final epoch of training.

Table 7.3 shows the results from this follow-up experiment. All of these
temperatures performed worse than τ = 0.1, regardless of the number of ini-
tial pieces. The best performing settings were τ = 0.05 with 5 initial pieces,
which achieved a benchmark win rate of 80.7%. The lower temperatures
show the same behavior as low values of ε for the ε-greedy policies.

We can conclude the following about noise injection: For both ε-greedy
and softmax policies, it is sufficient to have exploration and noise imple-
mented by the policy. We observed that there was little change in bench-
mark by randomly initializing the board when using a high exploration rate.
However, adding initial pieces was beneficial for the policies with a low ex-
ploration rate. The conclusion is that we need some amount of noise to
keep the training games from stagnating, which is also concluded by Sutton
and Barto (1998); Schraudolph et al. (1994); Tesauro (1995). Whether that
noise comes from exploratory starts or the policy of the agent does not seem
to matter. Since we plan to decay the exploration rate over time, it makes
sense to keep exploratory starts in order to ensure that learning does not
stagnate once the exploration rate becomes low.

66

Temperature Initial pieces Benchmark win rate

0.05 0 76.0%
0.05 5 80.7%
0.05 10 78.5%
0.01 0 66.0%
0.01 5 62.6%
0.01 10 71.7%
0.005 0 50.6%
0.005 5 63.6%
0.005 10 75.0%

Table 7.3: Results from the follow-up noise-injection experiment with soft-
max policies. The benchmark win rate shows the percentage of games won
against minimax in the 1,000 benchmark games after the final epoch of
training.

From now on, we use softmax with a temperature of 0.1 and 10 initial
pieces since these settings produced the best results. We will use these
settings for the experiment in section 7.3, but afterwards we are going to
decay the exploration rate over time, which might require a new initial value.

7.3 Different Architectures

The hidden layers of the network architecture can be varied in two different
ways: the number of neurons per hidden layer and the number of hidden lay-
ers. More of both gives the ability to approximate more complex functions.
However, more neurons and layers also increases the number of training
games required to achieve peak performance, and more complexity is not
necessarily better. So, we look for a golden mean.

In order to determine what kind of architecture performs best, we train
several different architectures and compare their performance. We do this
by making all of the trained networks play against each other in a round-
robin tournament, i.e., every network plays against every other network. For
each architecture, we train three networks and select the network with the
highest benchmark to represent that architecture in the tournament. Each
matchup in the tournament will consist of 10,000 games between the two
contestants.

67

As mentioned in chapter 4, there are no precise rules for how many
hidden neurons or how many hidden layers a network should have. Some
general recommendations and rules of thumb by Bengio (2012), and Sheela
and Deepa (2013) do exist:

• Increasing the number of hidden neurons usually does not hurt gener-
alization.

• Using the same size for all hidden layers generally works better than
varying the amount of neurons per layer.

• Having only one hidden layer should be sufficient, but more layers can
be beneficial in some cases.

• The number of hidden neurons should be somewhere between the num-
ber of input neurons and number of output neurons.

• The number of hidden neurons should be smaller than two times the
number of input neurons.

What we can conclude from these rules of thumb is that the architecture
mostly comes down to the problem at hand, but the guidelines can help us
choose some sensible candidates.

Table 7.4 shows the results of the round-robin tournament. An entry in
the table lists the win rate of the architecture in that row against the archi-
tecture in that column. For each architecture, only the number of hidden
neurons in each hidden layer is listed since all of the networks have the same
number of inputs and outputs. The champion of this tournament is the
shallow network with 100 hidden neurons, but the other shallow networks
perform similarly. The results show that the shallow networks perform bet-
ter than the deeper networks. However, it could be the case that the simpler
architectures have an advantage due to the number of training games not
being high enough. We will attempt to test this hypothesis by running a sec-
ond tournament. All of the settings for the second tournament are kept the
same as for the previous tournament except the number of training epochs
is increased to 20, increasing the number of training games to 200,000. The
results of this tournament can be seen in table 7.5. The additional training
games allow the more complex networks to perform better than before, and
we see that the shallow network with 500 hidden neurons has a win rate
of more than 50% against all other networks. The shallow network with
100 hidden neurons, which championed the first tournament, still wins all of
its matches against the deeper networks but loses against both of the more

68

Architecture 500 250× 250 250 100× 100× 100 100× 100 100

100 51.8% 70.1% 51.6% 60.3% 54.0% -
100× 100 48.0% 67.1% 47.8% 56.2% -
100× 100× 100 43.7% 56.7% 43.2% -
250 50.3% 67.9% -
250× 250 31.8% -
500 -

Table 7.4: Results from the round-robin tournament to optimize the net-
work architecture. An entry lists the win rate of the architecture in that
row against the architecture in that column. x × y represents a network
architecture with x neurons in the first hidden layer and y neurons in the
second hidden layer.

Architecture 500 250× 250 250 100× 100× 100 100× 100 100

100 46.1% 55.2% 49.3% 57.5% 51.5% -
100× 100 43.7% 54.5% 49.1% 59.2% -
100× 100× 100 37.3% 54.5% 40.8% -
250 45.1% 55.0% -
250× 250 40.2% -
500 -

Table 7.5: Results from the second round-robin tournament to test the
effect of more training games.

complex shallow networks. The tendency seems to be that increasing the
number of training games allows the more complex networks to outperform
the simpler ones.

To verify whether this is the case, we run a third tournament with 50
epochs of training for each network, increasing the number of training games
to 500,000. Since the shallow network with 500 hidden neurons won the last
tournament, we include some more complex architectures in this tourna-
ment. We exclude the network with three layers and the shallow network
with 250 hidden neurons from this tournament but keep the shallow network
with 100 hidden neurons because it won the first tournament. The results
of the third tournament can be seen in table 7.6.

One thing to note about this tournament is that there was a huge dif-
ference between the time spent training for each network architecture. The
previous tournaments both finished within less than a day. In the third
tournament, the simpler architectures also finished all of their training runs
within a day. However, the most complex architectures, i.e., the 500 × 500

69

Architecture 500× 500 1,000 750 500 250× 250 100× 100 100

100 67.0% 57.6% 48.2% 57.4% 58.8% 57.6% -
100× 100 59.4% 51.9% 43.4% 49.3% 51.7% -
250× 250 57.1% 49.1% 40.7% 48.1% -
500 60.5% 49.4% 42.9% -
750 66.0% 56.9% -
1,000 57.5% -
500× 500 -

Table 7.6: Results from the third round-robin tournament with additional
training games.

network and the shallow network with 1,000 hidden neurons, took almost
five days to complete 50 epochs of training on a standard laptop.

As for the tournament itself, the shallow networks still perform better
than the deeper networks in general. The most surprising result is that the
shallow network with 500 hidden neurons performs worst of all the trained
shallow networks. Furthermore, the network with 750 hidden neurons per-
forms better than both the simpler and the more complex networks. The
data suggests a couple of things: First, it suggests that the 1,000 hidden
neuron network could benefit from additional training. Second, it suggests
that the network with 500 hidden neurons might have begun overfitting with
this number of training games since its performance relative to the other net-
works suddenly drops. It seems plausible that the shallow network with just
100 hidden neurons performs better now because its simpler architecture is
less prone to overfitting. We could keep running more tournaments with ad-
ditional training games, but we stop at this point and make our conclusions
based on these three tournaments due to time constraints.

We see that increasing the number of training games will allow the more
complex architectures to perform better as we would expect. However, it
seems that making the architecture too complex can also result in overfitting,
which suggests that a balance is needed between architecture complexity and
number of training games. If evaluation and training time did not play a role,
we would choose one of the more complex architectures for the rest of our
experiments. However, when we incorporate search methods in section 7.7,
the evaluation time of our neural network is going to be important. This is
due to the fact that the time spent evaluating the network cuts away time
that we could have spent on searching through possible moves. Furthermore,
it is significant whether training a network takes a couple of hours or several
days. Because of this, we chose to continue using the shallow network with

70

100 hidden neurons for further experiments as it struck a good balance
between performance and evaluation time. It also performed best after
100,000 training games, which is the amount of games we have been using
thus far.

7.4 Different Parameter Decay Factors

In section 7.1 and section 7.2, we found 0.1 to be a good value for the
learning rate and the exploration rate. These rates were kept static over
the 10 epochs that we trained the agents, but Sutton and Barto (1998)
note that these rates should decrease over time for the value function to
converge. In the beginning, we want to explore to get reasonable parameters
because the value function is initialized with random weights and biases.
However, the amount of exploration should decrease as the agent gets a
better understanding of the game. To decrease the rates over time, we
introduce new hyperparameters that decrease the value of the learning rate
and the exploration rate by multiplying the hyperparameter to the rates
after some time. We call these new hyperparameters decay factors. For
instance, when we apply a decay factor of 0.9 twice to the initial value of
0.1, we get 0.1 · 0.92 = 0.081.

We can apply the decay factors in two ways: We can apply the decay
factors after every epoch or we can integrate a metric for stagnation such
that we can apply the decay factors every time the performance declines.
We will apply the decay factor after every epoch since we need many epochs
for a metric for stagnation to work. Besides, stagnation requires a heuristic
for when it occurs and how often it should happen before applying the decay
factor. Finding such a heuristic is out of the scope of this thesis.

We start by testing both optimal rates with different decay factors such
that the settings are

• Initial exploration rates: 0.1

• Initial learning rates: 0.1

• Exploration-rate decay factors: 0.8, 0.85, 0.9, 0.95, and 1

• Learning-rate decay factors: 0.8, 0.85, 0.9, 0.95, and 1

We choose 0.8 as the smallest decay factor since this gives rates of 0.1·0.810 =
0.011 after 10 epochs, i.e., a lower decay factor will presumably drop the rates
too far below the values found in section 7.1 and section 7.2 to be any good.

71

Initial value Decay factor

Exploration rate Learning rate Exploration rate Learning rate Benchmark win rate

0.1 0.1 1.00 0.80 81.8%
0.1 0.1 0.90 0.85 81.7%
0.1 0.1 0.90 0.90 81.1%
0.1 0.1 0.95 0.90 80.8%
0.1 0.1 1.00 1.00 79.9%

Table 7.7: Results from the best static initial learning and exploration rates
combined with decay factors. The benchmark win rate shows the percentage
of games won against minimax in the 1,000 benchmark games after the final
epoch of training.

Table 7.7 shows the results of the five best performing settings. Introducing
decay factors gives an increased performance, but it is better to decrease the
learning rate than the exploration rate. Since the lowest decay factor was
better for the learning rate, we tried the lower factor 0.7 while increasing
the initial value to 0.2. Since some decay is good for the exploration rate,
we also tried to raise the initial exploration rate to 0.2. To keep the amount
of combinations that we have to test low, we only test

• Initial exploration rates: 0.1 and 0.2

• Initial learning rates: 0.1 and 0.2

• Exploration-rate decay factors: 0.8, 0.9, and 1

• Learning-rate decay factors: 0.7, 0.8, and 0.9

Table 7.8 shows the results of the follow-up experiment, again only show-
ing the top 5 best performing settings. A higher learning rate and lower de-
cay factor were consistently better. The exploration rate is hesitant about
the initial value and about its decay factor but with a preference towards
0.8. Because the learning rate prefers higher initial value and lower decay
factor, we try another experiment with the following settings.

• Initial exploration rates: 0.2 and 0.3

• Initial learning rates: 0.2 and 0.3

• Exploration-rate decay factors: 0.6, 0.7, and 0.8

• Learning-rate decay factors: 0.5, 0.6, and 0.7

72

Initial value Decay factor

Exploration rate Learning rate Exploration rate Learning rate Benchmark win rate

0.2 0.2 0.80 0.70 83.8%
0.1 0.2 0.80 0.70 83.6%
0.2 0.2 0.90 0.80 83.3%
0.2 0.2 0.80 0.80 82.4%
0.1 0.2 0.90 0.70 82.2%

Table 7.8: Results from changing the initial learning and exploration rates,
and the decay factors. The benchmark win rate shows the percentage of
games won against minimax in the 1,000 benchmark games after the final
epoch of training.

Initial value Decay factor

Exploration rate Learning rate Exploration rate Learning rate Benchmark win rate

0.3 0.3 0.80 0.60 84.7%
0.3 0.2 0.80 0.70 84.7%
0.2 0.2 0.60 0.50 84.1%
0.3 0.3 0.60 0.50 83.4%
0.3 0.3 0.80 0.70 83.4%

Table 7.9: Results from further changing the initial learning and explo-
ration rates, and the decay factors. The benchmark win rate shows the
percentage of games won against minimax in the 1,000 benchmark games
after the final epoch of training.

We remove some combinations to keep the amount of combinations that we
have to test low.

Table 7.9 shows the results of the second follow-up experiment, again
only showing the top 5 best performing settings. For both the learning and
exploration rate, an initial value of 0.3 and a higher decay factor, or an initial
value of 0.2 and a lower decay factor seem to be the best contenders. Since
neither of them are in the extremes of our test data, we will not continue
searching for better values.

We have two settings that perform equally well so we choose the first
settings from table 7.9. This gives us the hyperparameters seen in table 7.10.

Note that the decay factors have been found for 10 epochs so the learning
and exploration rates might become too small if the number of epochs is
increased or decreased.

73

Hyperparameter Value

Discount rate 1
Decay rate 0
Initial pieces 10
Hidden-layer architecture 100
Initial exploration rate 0.3
Initial learning rate 0.3
Exploration-rate decay factor 0.8
Learning-rate decay factor 0.6

Table 7.10: Final hyperparameters determined by our experiments.

7.5 Different Board Encodings

In this experiment, we want to compare the three board encodings described
in section 6.4. We will give some concrete examples of bad moves that were
made by the agent when it was trained with the naive or the extended board
encoding. Finally, we compare the three board encodings by training one
network with each encoding and playing a round-robin tournament between
the resulting agents.

The described examples use agents that play greedily with regard to
their value function. A network trained using the naive board encoding will
sometimes miss immediate threats made by its opponent. Take for example
the game state shown in figure 7.1. This example is taken from a game
played against an agent with the naive board encoding after 100,000 self-
play games. The agent is playing as o© and the move f1 has just been made
by x©. The only viable move for o© is g1 in order block the immediate threat
made by x©. Instead of blocking the threat, the move made by our agent
is c2. This results in our agent losing the game as x© makes the move g1
and completes a sequence. Situations such as the one described above were
encountered several times during play, resulting in early losses for the agent.
One could argue that maybe more training would allow the agent to not
make such mistakes, but the agent was able to avoid these simple mistakes
more reliably by switching to the extended board encoding.

Using the extended board encoding, our agent more reliably blocks im-
mediate threats, though they are still missed on occasion. However, another
problem encountered with both encodings is the inability to determine that
a move opens up a winning move for the opponent. As an example, con-
sider the situation depicted in figure 7.2. Here, the agent is playing x© and

74

a b c d e f g

1

2

3

4

5

6

Figure 7.1: The agent is playing o©. The agent’s next move is c2 instead
of blocking the threat at g1.

a b c d e f g

1

2

3

4

5

6

Figure 7.2: The agent is playing x©. The agent’s next move is e2, which
allows o© to win by playing e3.

is about to make a move. The agent plays e2, even though o© then wins
by playing e3. While more training improves the agent’s ability to block
threats, the agent still makes moves that lead to immediate losses.

The feature board encoding attempts to address both of these problems
by including threats as a handcrafted feature. In order to compare the
three encoding methods, networks were trained using each encoding and
subsequently played against each other in a round-robin tournament. Once
again, we train three networks for each setup and choose the one with the
highest benchmark as representative for the tournament. The results of
these matches can be seen in table 7.11.

Feature Extended Naive

Naive 24.9% 46.1% -
Extended 28.6% -
Feature -

Table 7.11: Results of the round-robin tournament between networks with
different board encodings.

75

Feature Extended Naive

Naive 25.5% 40.2% -
Extended 36.1% -
Feature -

Table 7.12: Results of the second round-robin tournament between net-
works with different board encodings.

The feature board encoding is a clear winner of the tournament, handily
beating both the naive and the extended encoding. The results also show
that the extended board encoding is not a huge improvement over the naive
board encoding. One thing to keep in mind for this experiment is that the
simpler board encodings have far fewer weights to tune. The naive board
encoding has 4,400 weights, the extended board encoding has 13,000, and the
feature board encoding has 21,400. Reducing the number of training games
should benefit the naive board encoding, while increasing the number of
training games should benefit the feature board encoding. To verify whether
this is the case, we run an additional tournament with 10,000 training games.

Table 7.12 shows the results of this follow-up tournament. The extended
board encoding performs better against both the feature board encoding
and the naive board encoding. In order for the naive board encoding to win
against the others, we had to decrease the number of training games all they
way down to 1,000 in total. With such a low number of training games,
the random initialization of each network plays a huge role because the
parameters are barely adjusted. This means that the results vary depending
on how each network is initialized, making the results unreliable. What we
have to conclude is that the feature board encoding simply outperforms both
alternatives even with a low number of training games. We continue to use
this board encoding for the remaining experiments.

7.6 Different Sides

In this experiment, we want to figure out how agents are affected by always
playing first or alternating between playing first and second. We train two
agents: player A always plays first and player B alternates between playing
first and second. We will compare these agents based on how well they play
when they (1) always play first, (2) always play second, and (3) alternate
between playing first and second.

76

Starting player Win rate of player A Benchmark win rate

Player A 58.5% 85.8%
Player B 38.7% 86.2%
Alternating 48.4% -

Table 7.13: Results of training the agents on different sides. Starting player
indicates the starting player for the tournament games between player A and
player B.

Table 7.13 shows the results from comparing player A and player B.
We see that playing first gives an advantage and that player B is better
at playing first with 2.8%. We see that player B plays 1.6% better than
player A when competing in an alternation tournament, and that player B
benchmarks marginally better with 0.4% more. A reason for this could be
that an agent trained on both sides is able to generalize better, as it has
explored a more diverse state space. The difference in benchmark win rates
is not significant, but the results of the tournament games indicate that it
is beneficial to train an agent on both sides.

7.7 Different Search Methods

We want to compare the two search methods minimax with alpha-beta prun-
ing and MCTS. Chapter 5 described both search methods. As noted in
section 6.7, we can integrate the search methods into our agent by using
the neural network as a heuristic while searching. For minimax, the neural
network is used to estimate the value of non-terminal states. For MCTS,
the neural network is used to initialize the estimated value of each node.
Two agents play against each other using the same network but with dif-
ferent search methods. Since the MCTS search method introduces non-
determinism, we can make both agents greedy with regard to the moves
found by their search.

In order to compare the two search methods, we need to give each agent
an equivalent search budget. In the minimax algorithm, the search bud-
get can be adjusted by changing the search depth. In the MCTS algo-
rithm, the search budget can be adjusted by terminating the search after
any amount of time. Thus, we can adjust the search time of MCTS such
that it approximately matches the time spent in the minimax algorithm.
For a specific search depth of minimax, we measure the average time spent
making a move and set the search time of MCTS to this value.

77

Search budget Wins

Minimax MCTS Minimax MCTS Draws

3 4 ms 6718 2511 771
5 30 ms 5703 3345 952
7 230 ms 3845 5324 831

Table 7.14: Results of comparing an agent using minimax search with
an agent using MCTS. Search budget is the search depth for minimax and
search time for MCTS.

We try minimax with search depths of 3, 5, and 7. These searches take on
average 4 ms, 30 ms, and 230 ms to find a move, respectively. The results of
this comparison can be seen in table 7.14. Since these agents now use search
methods, it is more common for the games to last until the board is full or
almost full. As a result, these games result in draws more frequently than
any of the other experiments. Because of this, we list the number of games
won instead of a win percentage. These results indicate that with a low
search budget, minimax performs better than MCTS. However, as the search
budget is increased, MCTS performs better. This is likely due to the low
accuracy of the random simulations in MCTS. An increased search budget
leads to more simulations, which improve the accuracy of the estimations.
This increased accuracy is more beneficial than the increase in search depth
that a higher search budget gives to minimax.

7.8 Different Board Sizes

We observe that MCTS with a search budget of 10 ms outperforms the
agent on the standard 6 × 7 board. Therefore, we want to see whether
MCTS keeps outperforming the agent when we change the board size. We
increase only the width since this directly increases the branching factor.
Table 7.15 shows that the agent only wins 10.2% of the matches against
MCTS on a standard board. But they are equal on a board of size 6 × 25,
and the agent wins 97.5% of the matches when the board size is changed
to 6× 50. However, the increased board size increases the size of the input
layer of the agent’s neural network. This increases the number of weights,
which makes backpropagation and evaluation of the network slower.

Changing the size of the board means that the state space will be bigger
so the hyperparameters of the agent should be reconfigured. In particular,
the learning rate and exploration rate should be reconfigured because the

78

Board size Win rate

6× 7 10.2%
6× 25 47.8%
6× 50 97.5%

Table 7.15: Results of benchmarking an agent against MCTS with a search
budget of 10 ms on boards with different sizes.

agent has to explore more of the state space to have an understanding of it.
Furthermore, we should expect the agent to require more training games in
order to reach peak performance. This is because of the increased number
of inputs and the larger state space.

7.9 Using What We Learned

In the previous sections, we have optimized the reinforcement-learning agent’s
hyperparameters, policy, and board encoding. In this section, we are going
to test the effects of training an agent for 100 epochs, i.e., for 1,000,000
training games. The biggest concern with increasing the number of epochs
is that the decay factors that we found in section 7.4 are optimized for 10
epochs. This means that the learning rate and exploration rate will be-
come smaller than anything we tested in that experiment. However, we are
still training with 10 initial pieces, which should help prevent stagnation or
overfitting even with a low exploration rate as we saw in section 7.2.

After training, we benchmark the agent against minimax with a search
depth of five and MCTS with 10 ms search time. Against minimax, the
agent achieves a 86.5% win rate, which is only a 0.3% increase compared to
the highest benchmark seen with 100,000 training games. This increase is
not significant, so we conclude that the additional training has not helped
the agent against minimax. Against MCTS, the benchmark is increased
from 10.2% to 21.0%, which is a significant increase in performance. One
explanation for the increased performance is that the agent is able to more
consistently block threats and not make moves that open up winning moves
for the opponent through more training. Since the minimax opponent only
attempts to win by making moves that are guaranteed to work, it does not
set up threats that could be easily blocked. MCTS sets up threats more
frequently, as it makes any move that looks promising after its simulations.

79

Finally, we examine the effect of further increasing the number of epochs
to 200. The increased number of training games does not improve the agent’s
benchmark against minimax as it now scores 85.4%, which is a 1.1% decrease
compared to last time. The agent’s benchmark against MCTS is now 17.1%,
which is a 3.9% decrease compared to last time. This suggests that the
agent is overfitting during training because the exploration rate and learning
rate have decayed too much. Overfitting seems plausible because the low
learning rate allows the agent to fine-tune its value function. Even though
exploratory starts help to reduce overfitting, they evidently do not prevent
it. Also, exploratory starts only randomize the opening of the game, but the
low exploration rate means that the remainder of the game is played out by
the agent with little noise injection.

80

Chapter 8

Conclusion

In this thesis, we combined a reinforcement-learning agent with a neural
network and a search method to determine the agent’s ability to play Con-
nect Four. Allis (1988) weakly solved the game with a knowledge-based
approached that required getting insight into the game and strategies, and
Tromp (2015) strongly solved the game by brute force. We have presented
a reinforcement-learning approach that requires an implementation of the
game but no strategic knowledge.

We looked at agents trained by self-play with the reinforcement-learning
algorithm TD(λ) using neural networks as value functions. We determined
hyperparameters for TD(λ), the agent’s policy, and the neural network. It
is worth noting that hyperparameter optimization is dominated by guide-
lines and rules of thumb. This means that finding good hyperparameters
becomes a time-consuming process of trial and error. Table 8.1 shows the
best hyperparameters that we found through our experiments.

Hyperparameter Value

Discount rate 1
Decay rate 0
Initial pieces 10
Hidden-layer architecture 100
Initial exploration rate 0.3
Initial learning rate 0.3
Exploration-rate decay factor 0.8
Learning-rate decay factor 0.6

Table 8.1: Final hyperparameters determined by our experiments.

81

We compared different encoding methods for transforming board posi-
tions into neural network vector inputs. The feature board encoder per-
formed far better than the simpler alternatives. The feature board encoder
used five bits per square on the board and two additional bits: three bits
per square to indicate if a player has a piece on that square, two bits per
square to indicate if a player has a threat on that square, and two bits to
indicate whose turn it is to make a move. This result was significant because
it told us that incorporating knowledge about the game into the agent can
help tremendously. Our motivation for using reinforcement learning was
primarily that we wanted to play Connect Four without having insight in
the game. But our experience with the feature board encoder suggests that
knowledge about the game still plays an important role.

Even though TD(λ) can use eligibility traces to update previously visited
states, it was found better to disable these traces and only make one-step
updates. As noted by Sutton and Barto (1998), this is often the case for
applications where episodes can be generated cheaply, e.g., through simula-
tions. However, it is not always the case that disabling eligibility traces is
superior for reinforcement-learning approaches to game playing. Schaeffer
et al. (2001) showed an example where they used λ = 0.95, i.e., previous
states were highly affected by updates made to future states.

We looked at using the search methods minimax and Monte-Carlo Tree
Search (MCTS) with a reinforcement-learning agent. With a low search
budget, minimax performed better than MCTS, but MCTS performed bet-
ter when the agent was allowed to use about 200 ms or more per move.
In general, we found that while Connect Four has a large state space, it
is not large enough for reinforcement learning to be necessary compared to
MCTS. A likely explanation is that Connect Four has a low branching factor
with at most seven possible moves each turn. However, when we increase
the number of columns in the Connect Four board, reinforcement learning
performs better than MCTS. The search time of MCTS can be increased
to make it stronger, but we believe that combining reinforcement learning
with MCTS becomes superior when the task is sufficiently complex. This
was also the approach by Silver et al. (2016) when building AlphaGo, which
was introduced in chapter 2.

We experimented with different neural-network architectures by vary-
ing the number of hidden layers and the number of neurons in each hidden
layer. In general, we found that shallow networks, i.e., networks with one
hidden layer, performed better than deeper networks with the same amount
of training. For the shallow networks, increasing the number of hidden neu-
rons also increased the number of training games required to reach peak

82

performance. With sufficient training, we found that the shallow networks
with more neurons also performed better. However, the increase in eval-
uation time for the more complex networks was not worth their improved
accuracy when we incorporated search methods. This is due to the fact that
the time spent evaluating the network cuts away time that we could have
spent on searching through possible moves.

We tested the effect of training an agent when it only plays first or when
it alternates between playing first and second. We observed that playing
both sides during training had a positive impact on the agent’s performance.
This increased performance was seen both when the agent played only on
one side and when the agent alternated between playing both sides. We
hypothesized that this is due to the increased diversity of the state space
explored by an agent alternating between both sides.

An observation made by several authors is that self-play has a tendency
to stagnate in deterministic games (Sutton and Barto, 1998; Schraudolph
et al., 1994; Tesauro, 1995). To avoid stagnation, noise injection is required
to keep learners from getting stuck in a small part of the state space. We
experimented with noise injection in two ways: through the policy of the
agent and through exploratory starts. We found that policies with a high
exploration rate were sufficient to keep the learning process from stagnat-
ing. However, as one wants the exploration rate to decrease over time,
exploratory starts are beneficial to keep learning from stagnating when the
exploration rate becomes low. We also found that combining a low explo-
ration rate with exploratory starts generally performed better than using a
high exploration rate.

83

84

Chapter 9

Future Work

In the introduction, we mentioned the three machine-learning paradigms:
supervised learning, unsupervised learning, and reinforcement learning. We
exclusively used reinforcement learning and self-play training in this thesis.
An alternative approach is to use supervised learning to learn from sample
games. A combination of the two methods allows the agent to learn from
sample games and then train against itself. This avoids that the agent has
to “bootstrap itself out of ignorance” (Schraudolph et al., 1994).

Our current approach uses a neural network as a value function that out-
puts the estimated chance of winning from a board position. An alternative
approach could be to have seven outputs from the neural network, one for
each possible move. The network would then be trained to output a score
for each move, where the output corresponds to the expected win rate for
that move. In this alternative approach, we evaluate the network only once
when selecting moves, possibly making it a viable substitute for the random
simulations in MCTS. The concern is that making the network approximate
seven values makes it less precise.

As mentioned in chapter 4, there are several types of neural networks.
We only experimented with feed-forward networks that are fully connected.
Alternatively, we could train recurrent networks or convolutional networks to
be value functions. In particular, deep convolutional networks have recently
been used to great success by Silver et al. (2016) in AlphaGo.

One of the motivations for using reinforcement learning was that we
could avoid having to learn the strategies of Connect Four. However, the
experiments showed the benefits of the feature board encoding. Therefore,
it would be natural to encode some of the strategic rules from Allis (1988)’s
knowledge-based approach into the network’s input.

85

In section 7.8, we experimented with a variation of Connect Four with a
larger board. The methods that we have used in this thesis can be applied
to any game as long as the game can be formalized as a finite MDP and
simulated efficiently. Therefore, we could train an agent to play an entirely
different game.

86

Bibliography

Yaser S. Abu-Mostafa, Malik Magdon-Ismail, and Hsuan-Tien Lin. Learning
from Data. AMLBook, 2nd edition, 2012.

Victor Allis. A Knowledge-Based Approach to Connect-Four. The Game is
Solved: White Wins. Master’s thesis, Vrije Universiteit, 1988.

Yoshua Bengio. Practical Recommendations for Gradient-based Training
of Deep Architectures. Computing Research Repository, abs/1206.5533:
1–33, 2012.

James Bergstra and Yoshua Bengio. Random Search for Hyper-Parameter
Optimization. Journal of Machine Learning Research, 13:281–305, 2012.

Cameron Browne, Edward Powley, Daniel Whitehouse, Simon Lucas, Pe-
ter I. Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyri-
don Samothrakis, and Simon Colton. A Survey of Monte Carlo Tree
Search Methods. IEEE Transactions on Computational Intelligence and
AI in Games, 4(1):1–43, 2012.

Cyningstan. Captain’s mistress.
http://www.cyningstan.com/game/271/captains-mistress, 2016.

Peter Drake and Steve Uurtamo. Move Ordering vs Heavy Playouts: Where
Should Heuristics be Applied in Monte Carlo Go. Proceedings of the 3rd
North American Game-On Conference, pages 35–42, 2007.

Stefan Edelkamp and Peter Kissmann. Symbolic Classification of General
Two-Player Games. In KI 2008: Advances in Artificial Intelligence, pages
185–192, 2008.

Sylvain Gelly and David Silver. Monte-Carlo Tree Search and Rapid Action
Value Estimation in Computer Go. Artificial Intelligence, 175(11):1856–
1875, 2011.

87

Alex Graves, Marcus Liwicki, Santiago Fernández, Roman Bertolami, Horst
Bunke, and Jürgen Schmidhuber. A Novel Connectionist System for Un-
constrained Handwriting Recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence, pages 855–868, 2009.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer Feedfor-
ward Networks are Universal Approximators. Neural Networks, 2:359–366,
1989.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-
Based Learning Applied to Document Recognition. Proceedings of the
IEEE, 86(11):2278–2324, 1998.

Michael A. Nielsen. Neural Networks and Deep Learning. Determination
Press, draft edition, 2015.

Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Ap-
proach. Pearson Education, 2nd edition, 2003.

Jonathan Schaeffer, Markian Hlynka, and Vili Jussila. Temporal Differ-
ence Learning Applied to a High-Performance Game-Playing Program.
In Proceedings of the 17th International Joint Conference on Artificial
Intelligence - Volume 1, pages 529–534, 2001.

Nicol N. Schraudolph, Peter Dayan, and Terrence J. Sejnowski. Temporal
Difference Learning of Position Evaluation in the Game of Go. In Advances
in Neural Information Processing Systems 6, pages 817–824, 1994.

K. G. Sheela and Subramaniam N. Deepa. Review on Methods to Fix Num-
ber of Hidden Neurons in Neural Networks. Mathematical Problems in
Engineering, 2013:1–11, 2013.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre,
George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda
Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John
Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine
Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Master-
ing the Game of Go with Deep Neural Networks and Tree Search. Nature,
529(7587):484–489, 2016.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction. MIT Press, 1st edition, 1998.

88

Gerald Tesauro. Temporal Difference Learning and TD-Gammon. Commu-
nications of the ACM, 38(3):58–68, 1995.

John Tromp. John’s Connect Four Playground.
http://tromp.github.io/c4/c4.html, 2015.

89

90

Appendix

Backpropagation uses the four equations

δL = ∇aC � σ′(zL) (9.1)

δl = ((wl+1)T δl+1)� σ′(zl) (9.2)

∂C

∂blj
= δlj (9.3)

∂C

∂wljk
= al−1

k δlj (9.4)

We proved equation (9.2) in section 4.4.3. We prove the other three equa-
tions here.

Remember that the definition of the error δlj is

δlj =
∂C

∂zlj
, (9.5)

the definition of the activation alj is

alj = σ(zlj), (9.6)

the definition of the weighted input zlj is

zlj =
∑
k

wljka
l−1
k + blj , (9.7)

and the definition of the chain rule for higher dimensions is

∂y

∂x
=
∑
i

∂y

∂zi

∂zi
∂x

. (9.8)

91

Equation (9.1) To prove equation (9.1), we look at its component form.

δLj
equation (9.5)

=
∂C

∂zLj

equation (9.8)
=

∑
k

∂C

∂aLk

∂aLk
∂zLj

equation (9.6)
=

∑
k

∂C

∂aLk

∂σ(zLk)

∂zLj

unfolding sum
=

∂C

∂aL0

∂σ(zL0)

∂zLj
+ · · ·+ ∂C

∂aLj

∂σ(zLj)

∂zLj
+ · · ·+ ∂C

∂aLn

∂σ(zLn)

∂zLj

differentiation
=

∂C

∂aLj

∂σ(zLj)

∂zLj

differentiation
=

∂C

∂aLj
σ′(zLj)

Equation (9.3)

∂C

∂blj

equation (9.8)
=

∑
k

∂C

∂zlk

∂zlk
∂blj

unfolding sum
=

∂C

∂zl0

∂zl0
∂blj

+ · · ·+ ∂C

∂zlj

∂zlj

∂blj
+ · · ·+ ∂C

∂zln

∂zln
∂blj

differentiation
=

∂C

∂zlj

∂zlj

∂blj

equation (9.7)
=

∂C

∂zlj

∂
(∑

k w
l
jka

l−1
k + blj

)
∂blj

differentiation
=

∂C

∂zlj
equation (9.5)

= δlj

92

Equation (9.4)

∂C

∂wljk

equation (9.8)
=

∑
i

∂C

∂zli

∂zli
∂wljk

unfolding sum
=

(
∂C

∂zl0

∂zl0
∂wljk

+ · · ·+ ∂C

∂zlj

∂zlj

∂wljk
+ · · ·+ ∂C

∂zln

∂zln
∂wljk

)
differentiation

=
∂C

∂zlj

∂zlj

∂wljk

equation (9.5)
= δlj

∂zlj

∂wljk

equation (9.7)
= δlj

∂
(∑

iw
l
jia

l−1
i + blj

)
∂wljk

unfolding sum
= δlj

∂
(
wlj0a

l−1
0 + · · ·+ wljka

l−1
k + · · ·+ wljma

l−1
m + blj

)
∂wljk

differentiation
= δlja

l−1
k

93

	Introduction
	Connect Four
	Motivation for Reinforcement Learning
	Machine Learning
	Reinforcement Learning

	Structure

	Related Work
	Reinforcement Learning
	Agent and Environment
	Markov Property
	Policies and Value Functions
	Prediction and Control Problems
	Exploration versus Exploitation
	Eligibility Traces
	TD()
	Model
	Self-Play in Games

	Neural Networks
	Perceptrons
	Sigmoid Neurons
	Networks of Neurons
	Training a Neural Network
	Gradient Descent
	Stochastic Gradient Descent
	Backpropagation

	Search Methods
	Minimax
	Monte-Carlo Tree Search

	Putting It All Together
	Connect Four as a Reinforcement-Learning Problem
	Reducing the State Space through Afterstates
	Combining Reinforcement Learning and Neural Networks
	Board Encoding
	Benchmarking
	Addressing the Problems of Self-Play
	Incorporating Search Methods
	Minimax search
	Monte-Carlo Tree Search

	Experiments
	Different Hyperparameters
	Different Noise-Injection Methods
	Different Architectures
	Different Parameter Decay Factors
	Different Board Encodings
	Different Sides
	Different Search Methods
	Different Board Sizes
	Using What We Learned

	Conclusion
	Future Work
	Bibliography
	Appendix

