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Chapter 1

Introduction

Most newspapers have one or several sections with classified ads. These
provide a means for the readers of the paper to communicate and advertise
items for sale, personal services, or job openings. The text of a classified ad
and possibly some graphics is formatted into a rectangle of a certain width
given in numbers of columns and a corresponding height given in millimeters
or some other unit. Depending on the amount of content, this rectangle can
be anything between a one-column ad with a few lines of text and a full
page ad. Before the paper can be printed, each of these rectangles must be
assigned a position on a page, such that they do not overlap, and possibly,
the placement should also satisfy aesthetic or costumer directed criteria. We
can not expect to be able to fill the pages completely, but ideally, the amount
of space that must be left blank should be minimal.

The tools, that is, computer programs, currently available for newspaper
typesetting offer only minimal support for layouting classified ad sections.
It is still the duty of the operator to solve the combinatorial problem of
minimizing the amount of wasted space.

To some extent, though, the process of layouting the small ads can be
automated; for example, car ads usually state little more than the make,
model, price and color of the car along with a phone number, and this infor-
mation can be typeset on a couple of lines in a one column ad. A section with
thousands of these ads can be generated automatically by simple heuristics,
and even if the problem is not solved to optimality, the amount of wasted
space per page roughly corresponds to the average size of an ad per column.
Furthermore the small ads often have to appear in some predetermined or-
der, for example, sorted alphabetically by car make, and in this case the
combinatorial problem is greatly reduced.

However, when we deal with ads with great variation in sizes, there is
no simple solution. Greedy algorithms and other simple heuristics certainly
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produce solutions, but these are typically too far from the optimal. As for
the small ads in the example above, the intuition is that the amount of
wasted space per page depends on the sizes of the ads. For example, a
simple algorithm could consider placing an ad on a page, and if that was not
possible, it would finish that page and open a new one. When the ads are
big, as compared to the page size, this is very wasteful.

1.1 Thesis Structure

In this thesis we examine the computational problems that must be dealt
with in the process of automating the layout of classified ads and introduce
the skyline algorithm as a reasonable approximation algorithm.

In Chapter 2, we state the ad packing problem and the constrained ad
packing problem formally and prove that these are indeed NP-complete. We
also take a look at similar problems and see how they relate to ad packing
and give a survey of some of the relevant literature.

Chapter 3 describes the proposed skyline algorithm in detail and discusses
various extensions of it, such as how to incorporate extra constraints.

To evaluate the performance of the skyline algorithm, we compare it with
a recent approximation algorithm proposed by Lodi et al. in [10]. The al-
gorithm uses a general purpose optimization technique called tabu search.
Chapter 4 gives a brief introduction to this technique and presents the ap-
proximation algorithm.

Finally, in Chapter 5 we present results of two sets of experiments. One
set seek to document the performance of the skyline algorithm as compared
to the tabu search approach. The other set examines how the running time
of the skyline algorithm relates to the size of the problem instance and the
skip factor, a parameter of the algorithm.

Appendix A summarizes the notation used. Appendix B is a brief self-
contained introduction to the relevant topics from computational complexity.
The source code for the experimental software is included in Appendix C.

1.2 Acknowledgments

This thesis describes some of the results of a working group consisting of
Anders Yeo, Riko Jacob, Gerth Stølting Brodal and the author. We have
worked with the software company CCI, which produces solutions for the
newspaper industry, to identify and formulate the computational problems.
CCI also provided test data from one of their clients, the danish newspaper
Jyllands-Posten, for the experiments described in Chapter 5.



Chapter 2

Ad Packing

As described in the introduction, the problem of layouting classified ads
changes, as the sizes of the ads changes. For small ad sizes, an optimal
solution, in terms of number of pages, is typically easy to produce. Sections
with a mixture of small and big ads do appear, such as the car section
example from the introduction, where readers put their car for sale. Auto
dealers advertise in this section too, by placing big ads listing their inventory.
However, in this situation we can place the big ads first using one algorithm
and then fill the holes between the big ads with the small ads using another
algorithm and still achieve good results. In the end, it is more a problem of
generating good looking pages. To do this, we need some way of judging the
aesthetic quality of the pages, or maybe the operator should manually place
the big ads, and only the flowing in of the small ads should be automated.
In any way, this problem is somewhat different from that which we study for
the rest of this thesis, and can be solved reasonably effectively.

So, with this assertion we turn our attention to the problem, where the
ads have a certain minimum size. Another way to state this is that we require
that there be some upper limit on the number of ads that can be placed on
a page. This restriction allows us to look to other methods, that would be
otherwise infeasible.

Aesthetics are still important, but the prospect of saving a page may
put aside these considerations. Thus, the problem to be solved is simple:
given a set of ads, determine an arrangement of these ads on a minimal
number of pages. The placement of the ads within each page is still subject
to aesthetic constraints, but these are probably best left to the operator.
It is not the intention to create a fully automated layout process anyway,
so when reviewing the pages, that operator can make the necessary local
rearrangements.

Even so, there may be other constraints that can not be ignored. For
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4 CHAPTER 2. AD PACKING

example, two ads from two competing companies may have to be placed on
different pages, or maybe a customer requests a specific placement for an ad.

In Section 2.1 we first introduce the notation we will use, when reasoning
about ads and pages. Then we introduce and discuss the ad packing problem
in Section 2.2 and in Section 2.3 we describe the constrained ad packing
problem, which incorporates a number of extra constraints. We examine
lower bounds for the problems in Section 2.4 and finally in Section 2.5 we
survey some related work from the literature.

2.1 Notation

Before stating the problem formally, we introduce some notation. We will
usually operate with a set of ads to be layouted, and we denote this set A,
and take n = |A|. For each ad, a ∈ A, we have functions w : A → N
and h : A → N, giving the width and the height of the ad, respectively.
Also, later on we associate a weight or a cost to each ad, which we write c(a),
where c : A → R.

A page, P , is a set of placements, each of which is an element of A×N×N.
For a page, P , a placement p = (a, x, y) ∈ P states that the lower left corner
of a is positioned in column x at height y on P . For a placement p = (a, x, y)
we define functions

Ix(p) = { j ∈ N | x ≤ j < x + w(p) } and

Iy(p) = { j ∈ N | y ≤ j < y + h(p) },

giving the intervals that the placement covers on the x- and the y-axis re-
spectively. Also, we introduce

α(p) = Ix(p)× Iy(p),

that is, the points covered by the placement p. For a given page, P , we
sometimes want to disregard the placements and only argue about the ads,
and for this purpose we introduce A:

A(P ) = { a | (a, x, y) ∈ P for some x, y ∈ N }.

Finally, to describe the page geometry, we give the page width in num-
ber of columns, W ∈ N, and the page height, H ∈ N. For page dimen-
sions (W, H), we define the page region:

P = { (x, y) | 0 ≤ x < W ∧ 0 ≤ y < H }.
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With these functions, we can talk about ads and their properties in a concise
way. For example, for an ad to be placed within the page boundaries, it must
be the case that α(p) ⊆ P; as another example, two ad placements, p and q,
overlap if and only if α(p) ∩ α(q) 6= ∅.

2.2 Formal Description

First, we consider the the simple problem, where a number of ads must be
placed on as few pages as possible:

Definition 2.1 (Ad Packing Problem) Given a set of ads A and page
dimensions (W, H), the ad packing problem is the problem of finding a min-
imal set of pages, S, such that

(1) ∀a ∈ A : ∃!P ∈ S, x, y ∈ N : (a, x, y) ∈ P,

(2) ∀p, q ∈ P ∈ S : p 6= q ⇒ α(p) ∩ α(q) = ∅, and

(3) ∀p ∈ P ∈ S : α(p) ⊆ P.

The first condition ensures that all ads are actually placed on some page, but
only once. The second condition says that any two ads should not overlap,
and the last condition states that ads must be placed inside the page bound-
ary. The ad packing decision problem furthermore accepts a target value, m,
and asks if the ads can be packed on at most m pages, satisfying the above
criteria.

As stated in Definition 2.1, the ad packing problem is actually identical
to the two-dimensional bin packing problem, except that here we implicitly
assume that the width of the page, that is, the number of columns, is some
small integer, typically less than 10.

Also, note that for W = 1, ad packing is just the classical (one-dimensional)
bin packing problem:

Definition 2.2 (Bin Packing Problem) Given items a1, a2, . . . , an, a bin
capacity C, and a cost function, c, mapping items to an integer cost, the bin
packing problem asks for a minimal set of bins, B, forming a partition on
the set of items and satisfying

∀b ∈ B :
∑
a∈b

c(a) ≤ C
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The decision version of the bin packing problem furthermore takes a number
of bins, m, as the target value, and asks if the items can be packed into at
most this number of bins.

The bin packing problem is NP-complete, see for example Theorem 9.11
in [14], where this is proved by reduction from tripartite matching. Since ad
packing can be viewed as a generalization of bin packing, ad packing is itself
NP-complete:

Theorem 2.3 Ad packing is NP-complete.

Given an instance of the bin packing decision problem, we construct an in-
stance of the ad packing decision problem, by taking as the set of ads A =
{a1, a2, . . . , an}, the width function w(a) = 1, the height function h(a) =
c(a), and page dimensions (W, H) = (1, C). Immediately we get that the bin
packing decision problem can be solved, if and only if the ad packing decision
problem can.

2.3 Additional Constraints

Client requirements or restrictions arising from the printing machinery or
other steps in the production process may further restrict the set of feasible
solutions. We define the constrained ad packing problem, where a selection
of such constraints have been added to the ad packing problem from above.
The chosen constraints on one hand represent a realistic and usable set of
features, but they also exemplify how to extend the skyline algorithm on
various levels, which is discussed in Section 3.8.

For a number of reasons, it may be the case that two or more ads should
never appear on the same page. As mentioned in the introduction to this
chapter, it could be that two competing companies would not want their
ads to be placed next to each other, but it could also be the case that one
customer buys a number of ads and wants them to show up on different
pages.

Opposite to the above constraint, we have the case where a number of ads
must be placed on the same page. Some newspapers have printing equipment
that can use one specific color on a page, a so called spot color. Ads on that
page can use this color only, for example a blue line or a green logo, but it is
cheaper than a full color page. To minimize production costs, ads that use
the same spot color should be placed on the same page, and in this situation
it is useful to require that some ads stay together.

Previously, we suggested that to satisfy aesthetic criteria the operator
could rearrange the individual pages manually. This may not always be pos-
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sible without disturbing the rest of the generated solution, though. Instead,
the operator could restrict the allowed placements for one or several ads, so
as to avoid the unpleasing layout, and have the tool generate another solu-
tion. We consider two types of placement restrictions: either an ad can be
tied to one or several page borders, or it can be assigned a fixed position on
the page. Tying an ad to the left page border, means that the left edge of the
ad must touch the left edge of the page, and similarly for the other edges. If
this still does not give satisfactory results, assigning a fixed position to one
or several ads allows for layouting some of the ads by hand, and then have
the tool place the rest of the ads automatically.

Before defining the constrained ad packing problem, we formalize the idea
of border constraints and what it means for a set of pages to satisfy such
constraints. A set of border constraints, B, is a subset of A × {B, T, L, R}.
If (a, T) ∈ B, then for a set of pages, S, to satisfy B, a must be placed on
the top of a page. More formally, we require

∀(a, B) ∈ B : ∀(a, x, y) ∈ P ∈ S : y = 0

∀(a, T) ∈ B : ∀(a, x, y) ∈ P ∈ S : y + h(a) = H

∀(a, L) ∈ B : ∀(a, x, y) ∈ P ∈ S : x = 0

∀(a, R) ∈ B : ∀(a, x, y) ∈ P ∈ S : x + w(a) = W

Notice that an ad may be tied to several borders, for example top and left,
which effectively ties the ad to a fixed position in the top left corner of the
page. It is also possible to tie an ad to the left and right borders, but that
constraint can only be satisfied if the ad has width W .

We can now assemble the constraints discussed above in the following
definition:

Definition 2.4 (Constrained Ad Packing) Given a set of ads, A, page
dimensions (W, H), a set of pairs of ads, D ⊆ A2, that should be placed on
distinct pages, a set of pairs of ads, F ⊆ A2, that should be placed on the
same pages, a set of border constraints, B, and a set of pre-layouted pages L,
the constrained ad packing problem is the problem of finding a minimal set
of pages, S, such that conditions (1)–(3) from Definition 2.1 are satisfied and
furthermore

(4) ∀(a, b) ∈ D, P ∈ S : a ∈ A(P )⇒ b 6∈ A(P ),

(5) ∀(a, b) ∈ F, P ∈ S : a ∈ A(P )⇔ b ∈ A(P ),

(6) S must satisfy B, and

(7) ∀PL ∈ L : ∃PS ∈ S : PL ⊆ PS.
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Condition (4) formalizes the constraint that certain ads should not appear on
the same page. Notice that if (a, b) ∈ D, this implies b ∈ A(P )⇒ a 6∈ A(P )
for all P , corresponding to (b, a) ∈ D, also. For simplicity, we will just
assume that D is indeed a symmetric relation on A.

Likewise, condition (5) formalizes the condition that certain ads must
appear on the same page. In this case, we will assume that F is an equivalence
relation, for the same reasons as above.

Condition (6) ensures that the border constraints are satisfied, as defined
above, and the last condition states that the positions of the preplaced ads
should be respected, that is, for each preplaced page there must be a page in
the solution, that contains it as a subset.

The specified constraints can be unsatisfiable in many ways. For example
if an ad, a, is tied to the left and right page border, but w(a) < W , both
border constraints can not be satisfied. Also, interactions between different
types of constraints can result in an inconsistent problem instance. It may
be the case that ads a and b are required to appear on the same page, but at
the same time a and b are both tied to the top and left borders, effectively
the upper left corner. If (5) and (6) are respected, (2) is violated, since the
ads overlap. An ad could have a fixed position in the middle of a page, but
also be tied to one of the page borders, in which case only one of (6) and (7)
can be satisfied. However, the consistency of the constraints can be checked
easily, and we will assume we only deal with consistent instances.

2.4 Lower Bounds

In the context of approximation algorithms, lower bounds provide for a way
to judge the results of the algorithm. If a produced solution to a minimization
problem coincides with a lower bound, we know that the solution is optimal.
If the solution is greater than the lower bound, the difference between the two
gives an indication about the quality of the solution. Also, lower bounds can
be used as a stopping condition for a local search algorithm that iteratively
improves a current solution until some criteria is met. Finally, lower bounds
play an important role in branch and bound frameworks, where they are used
to restrict the search.

A lower bound is a measure, L, on any instance of a problem I ∈ A, such
that

L(I) ≤ c(S∗),

where S∗ denotes an optimal solution to I. To evaluate the performance of
a lower bound, we introduce the notion of worst case performance:
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Definition 2.5 (Worst Case Performance) Given a lower bound L, for
a problem A, we define the worst case performance, r(L), as

r(L) = inf{L(I)/c(S∗) | I ∈ A},

where S∗ is an optimal solution to I.

The simplest lower bound for the ad packing problem is the continuous
lower bound. Obviously, to layout the ads without overlap between ads,
at least the total area that the ads occupy is needed, and thus, for an in-
stance I = (A, W, H), we get the bound

LC(I) =

⌈∑
a∈A w(a)h(a)

WH

⌉
.

Martello and Vigo show in [11] that LC has a worst case performance of 1/4.
They also show how to tighten the bound by transforming instances, such
that any lower bound for a transformed instance is also a lower bound for
the original instance. Fekete and Schepers present a unified approach to this
technique in [4], where they introduce a number of dual feasible functions :

Definition 2.6 (Dual Feasible Function) A function, u : [0, 1] → [0, 1],
is a dual feasible function, if for any finite set S of nonnegative real numbers,
we have ∑

x∈S

x ≤ 1⇒
∑
x∈S

u(x) ≤ 1.

Consider pages normalized to 1 by 1 and ads with real-valued widths
and heights in the interval [0; 1]. Given a set of ads that fit on a page, we
transform this instance by changing the widths of the ads, such that

w′(a) = u(w(a))

for some dual feasible function u. This new instance will also fit on a page,
which is shown by Fekete and Schepers, see Corollary 8 in [6].

For an instance of ad packing, I = (A, W, H), we can obtain a transformed
instance, U(I), by taking w′(a) = uw(w(a)/W ) and h′(a) = uh(h(a)/H), for
dual feasible functions uw and uh. Now, for any integer k, we have:

∃S ∈ F (I) : |S| < k ⇒ ∃S ′ ∈ F1(U(I)) : |S ′| < k,

where F1 is the set of feasible solutions for the normalized instance. Negating
this implication gives a useful result:

∀S ∈ F1(U(I)) : |S| ≥ k ⇒ ∀S ∈ F (I) : |S| ≥ k,
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that is, any lower bound for the transformed instance U(I), is in turn a lower
bound for the original instance. Combining this with the continuous lower
bound, we get a number of new lower bounds that in various ways account
for the bulkiness of the items.

Fekete and Schepers give 3 dual feasible functions in [4]: a staircase type
of function,

u(k)(x) =

{
x, for x(k + 1) ∈ Z
b(k + 1)xc/k, otherwise

,

where k ∈ Z; a threshold type of function, mapping everything under ε to 0
and everything over 1− ε to 1,

U (ε)(x) =


0, for x < ε
x, for ε ≤ x ≤ 1− ε
1, for 1− ε < x

,

where ε ∈ [0; 1
2
]; and finally, a combination of the two

ϕ(ε)(x) =


0, for x < ε

1
bε−1c , for ε ≤ x ≤ 1

2

1− b(1−x)ε−1c
bε−1c , for 1

2
< x

,

and again, ε ∈ [0; 1
2
].

By combining the dual feasible functions as described in Remark 20 in
[6], we get a lower bound, L2d, which dominates the L4 bound from [11] and
is simpler to compute. By also incorporating u(k) into the lower bound, as
suggested in the end of Section 5 of [6], we were able to further improve the
computed lower bound for a number of the data sets.

2.5 Related Work

To our knowledge, the ad packing problem, where the number of columns is
assumed to be some small integer, has not been dealt with previously in the
literature. However, a lot of attention has been given to the more general
two dimensional bin packing problem, which finds application in, for example
stock cutting, where sheets of glass, steel, textile or some other material is to
be cut into a number of smaller rectangles. The actual application dictates
various extra constraints on the feasible solutions. For cutting applications
it is often the case that the solutions must satisfy the guillotine constraint,
which requires that the items are placed, so that they can be cut from the
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stock sheet using only edge-to-edge cuts. Another parameter is whether or
not the items are allowed to be rotated. When cutting glass or steel this could
be allowed, but for wood or textile we may want to preserve the orientation of
the texture of the material. For the ad packing problem it is clear that we can
not allow rotations; the height of the ad may not correspond to an integral
number of columns, and of course, rotating an ad does not make sense in the
first place. On the other hand, the guillotine constraint is not necessary for
the ad packing problem, in fact it would only restrict the number of feasible
layouts.

A wide variety of techniques have been applied to solve the two dimen-
sional bin packing problem. One of the earliest treatments is [2] by Chung
et al., where the simple Hybrid First Fit (HFF) approximation algorithm is
described and analyzed. The HFF algorithm sorts the ads by non-increasing
heights and then, in the first phase of the algorithm, places the ads in an ver-
tical open ended strip, which is broken into pages during the second phase.
Chung et al. give fairly tight bounds on the asymptotic worst case perfor-
mance ratio, specifically they show that

2.022 ≤ R∞
HFF ≤ 2.125.

Berkey and Wang compare the HFF algorithm with five other simple heuris-
tics for the two dimensional bin packing problem in [1]: finite next fit, finite
first fit, finite best strip, finite bottom left, and next bottom left. The finite
best strip algorithm is described in greater detail in Section 4.3. These algo-
rithms all initially sort the items by some criteria, for example non-increasing
heights, and then place them using some heuristic, for example first fit. Ex-
periments on randomly generated problem instances indicated that finite best
strip was the better heuristic, especially for the larger instances from [1].

Another approximation approach is that of local search, where an initial
solution is generated by means of a simple polynomial time algorithm, and
then improved iteratively. The local search technique is described in greater
detail in Section 4.1. This type of algorithms typically produce better results
than the sort-and-place type of algorithms considered by Berkey and Wang,
but are difficult to analyze, with respect to both running time and worst case
performance ratio.

An example of a local search algorithm is the tabu search algorithm pre-
sented by Lodi et al. in [10]. The tabu search improves the current solution
by rearranging items between bins, using the finite best strip algorithm to
actually pack the bins. We describe the tabu search algorithm in greater
detail in Chapter 4. Another local search approach is [3] by Faroe et al.,
which uses a technique called guided local search, reminiscent of tabu search,
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for solving the three dimensional bin packing problem. An interesting aspect
of the algorithm is that the local search operates directly on the solution,
instead of applying a sort-and-place type of algorithm to construct the pack-
ing. Faroe et al. furthermore give a short review of previous local search
algorithms for the two and three dimensional bin packing problems.

Another line of work is exact algorithms, where the problem must be
solved to optimality. Martello and Vigo describe an exact algorithm in [11],
using a two level branching scheme. On the outer level, items are distributed
between bins, and while shifting ads around, the L4 lower bound is used to
restrict the search. This bound, which is also introduced in the article, is the
maximum of a number of lower bounds, hand tailored to the two dimensional
case. On the inner level of the search it is determined, whether the items
assigned to a given bin actually can be packed to fit in the bin.

In a series of three articles, [5], [6] and [7], Fekete and Schepers describe
an exact algorithm for solving the d-dimensional bin packing problem, and
related problems, d ≥ 2. The first article describes an enumeration technique,
which uses an abstract, graph-based representation of layout classes. The
second gives a number of lower bounds based on dual feasible functions, and
the third describes how these results are combined to form a branch-and-
bound framework.

Also related to the two dimensional bin packing problem is the two di-
mensional knapsack problem, where the optimal packing of a number of
rectangular items from a given a set must be determined. Hadjiconstantinou
and Christofides present an exact algorithm for this problem in [9] that uses
an enumeration technique similar to that of the skyline algorithm, presented
in the next chapter. They allow for a minimum and maximum number of
occurrences of each item and use a linear programming formulation of the
problem for bounding the search.



Chapter 3

The Skyline Algorithm

The algorithm we propose, uses an enumeration scheme to generate one page
at the time, and by doing so repeatedly, it packs all the ads into a number of
pages. The enumeration scheme works by maintaining a skyline view of the
current contents of the page, that is, it builds up the page from the bottom to
the top and remembers the height of the columns as it goes along. However,
enumerating over all possible pages for the given set of ads is too slow, so we
speed up the process, by only considering a subset of all configurations.

The page selection algorithm takes a greedy approach; it simply selects
the page that maximizes the sum of the areas of the ads. This way, the
pages that are generated in the beginning of the process have little wasted
space, but later on it becomes increasingly difficult to pack the pages well.
Furthermore, experiments show that ads of a certain width are easy to pack
and are used up quickly, whereas ads of other widths tend to turn up on the
last pages where a lot of space is wasted.

To avoid this typical greedy behavior, we assign a weight to each ad.
Instead of maximizing the sum of the areas of the ads, we now maximize the
sum of the weights of the ads. Initially the weight of an ad is just the area
of the ad, but after running the algorithm we can adjust the weights based
on the outcome and run the algorithm again. Using an appropriate heuristic
for readjusting the weights, will force the troublesome ads to appear earlier
in the process, where they can be combined with other ads to fill the page
better.

Sections 3.1–3.6 present the enumeration algorithm in detail and discuss
various heuristics for trading quality for speed. In Section 3.7 we examine
some strategies for generating several pages using the enumeration algorithm,
and in Section 3.8 we see how the algorithm can be generalized to accommo-
date the additional constraints described in Section 2.3.

13
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3.1 Canonical Layouts

When an ad placement is given by column number and height of its lower
left corner, a great number of placements are possible. Consequently, for
a given set of ads there are many, essentially identical, possible layouts.
Obviously, when enumerating, we should only evaluate those layouts, we
consider significantly different. This raises the question of when to consider
two layouts equivalent and when to consider them distinct.

We restrict our attention to those layouts, where each ad touches some
other ad or the page edges to its left and below. An ad placed this way,
is placed in a canonical position, and layouts, where all ads are placed in
canonical positions, will be called canonical layouts. This restriction will
not discard any relevant layouts. Any layout that fits on the page can be
rearranged to be on this form: given a page, while there are ads that can be
pushed down or to the left, pick one and do so. Since there is a limit to how
much an ad can be pushed down and left, this process stops eventually, and
all ads on the resulting page will touch some other ad or the page edge to the
left and below. Hadjiconstantinou and Christofides also only consider this
type of layouts in their exact algorithm for the two dimensional knapsack
problem [9].

Even though this restriction does not discard any relevant layouts, as seen
from a enumeration point of view, a canonical layout may not be aesthetically
pleasing. In fact, it almost never is, since most of the unused space will be
at the top of the page, where it jumps into view. We will not deal with
this problem, however, just assert that it can be handled by some minor
rearrangements either automatically, using some heuristic that move some of
the ads upwards, or simply just manually. In any case, the pages will have
to be reviewed by a typographer before going to press, and thus, we are not
aiming to develop a fully automatic system.

3.2 Configurations and Moves

As mentioned above, the enumeration algorithm works by maintaining a
skyline or water-level view of the ads currently on the page. In fact it uses
two skylines: a real skyline, corresponding to the actual ads placed on the
page and a virtual skyline which is usually higher than the real skyline, and
never below it (see Figure 3.1). The invariant for the moves described below
is that canonical positions below the virtual skyline have been considered by
the algorithm.

A configuration is an actual set of ads placed on the page in a canonical
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(a) The real skyline. (b) A virtual skyline.

Figure 3.1: Skylines for a given set of ads.

layout, along with a virtual skyline. In a given configuration, there will be
a leftmost local minimum, which is an interval of columns. When walking
from left to right on a skyline, either virtual or real, this is the first span
of columns, where both neighbor columns have a higher skyline. Formally,
if s1, s2, . . . , sW represents the skyline, such that si gives the height of the
skyline in column i, and we set s0 = sW+1 = H, then the leftmost local
minimum is the interval of columns [i0, i1], where

i0 = min{ i | si−1 > si ∧ ∃k > i : (si < sk ∧ ∀i ≤ j < k : sj = si) }

and, given i0,
i1 = max{ i | ∀i0 ≤ j ≤ i : si0 = sj }.

In Figure 3.1 (a), this is the interval on top of the middle ad, and in Fig-
ure 3.1 (b) it is the interval to the right on the bottom edge of the page. The
left corner in a minimum is a candidate canonical position; this is where the
algorithm will try to place the ads. Also, we will say that a skyline is de-
creasing within an interval of columns, when the skyline level in the columns
within the interval decreases from left to right. Analogously, a skyline can
be increasing.

Two types of moves form the basic idea of the skyline algorithm: in a
given configuration, the algorithm locates the leftmost local minimum on
the virtual skyline and in turn, tries to place each of the remaining ads in
the lower left corner of the minimum. Whenever an ad is placed, a new
configuration arises, and the virtual skyline is updated.
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(a) A configuration. (b) Placing an ad. (c) Raising the sky-
line.

Figure 3.2: The two possible moves.

The second type of move raises the virtual skyline within the minimum
to be level with the lowest of the left and right neighbor columns. Thus, the
space below the raised skyline is covered, to indicate that we wish to ignore
it and consider a new position. This too leads to a new configuration, except
when there is no neighboring column. In this case, the skyline is a straight
line across the page, that is, s1 = s2 = · · · = sW , and we raise the skyline
to the top of the page. This closes the page, corresponding to a terminal
configuration, and at this point we check to see if the generated page is
better than any previous page. The two moves are illustrated in Figure 3.2.

In order to only generate pages on the form previously described, we must
consider some special cases. When placing an ad, we look to the real skyline
to ensure the ad actually touches some other ad to the left and some other ad
below. If the virtual skyline has been raised, so that the ad would be floating
as shown in Figure 3.3 (a) or if there is a gap to the left as in Figure 3.3 (b)
we disallow the move.

Another situation arises when the virtual skyline is above the real sky-
line in the rightmost column under a newly placed ad, as in Figure 3.4 (b)
and (c). In this case we will have to reconsider the ads below the virtual
skyline, since the right edge of the new ad together with the upper edges
of the ads below the skyline constitute new positions, that have not previ-
ously been considered. To allow the algorithm to try out these positions, we
lower the virtual skyline within the current minimum. The virtual skyline
is lowered to the level of the real skyline, though not where this results in a
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(a) No other ad below. (b) No other ad to the
left.

Figure 3.3: Illegal moves.

(a) Before placing the
ad.

(b) After placing the
ad.

(c) The exception.

Figure 3.4: Lowering the virtual skyline.
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decreasing virtual skyline, since this would cause the algorithm to visit the
same canonical position on the page several times. The move is illustrated in
Figure 3.4 (a)–(b). However, if the real skyline in the rightmost column be-
low the newly placed ad is at a higher level than the real skyline immediately
to the right of the ad, then the skyline is not lowered further than this level.
Again, this is to avoid visiting positions already considered, as illustrated in
Figure 3.4 (c).

3.3 Pseudo-code for the Algorithm

The moves described in the previous section, are incorporated into a recursive
algorithm, to implement an exhaustive depth-first search of the configuration
space, as outlined in Figure 3.5. The recursive function named iterate accepts
a set of ads, A, a skyline configuration, S, and the current layout, P , as
arguments. First it considers each of the ads in A in the current minimum on
the skyline S, and if the placement satisfies the criteria described above, it is
added to the current layout and the skyline is updated. Then, iterate is called
recursively to examine the solutions reachable from this new configuration.
Finally, the algorithm backtracks by taking the ad off the page and restoring
the skyline.

When all the ads have been considered, the algorithm tries to raise the
skyline. If this leads to a new configuration, iterate is called again to search
the solutions now reachable. Otherwise, a terminal configuration has been
reached, and if the sum of the weights of the ads on the page exceeds that of
all other previous layouts, cmax, the current layout is stored in Pmax and cmax

is assigned the new maximum.
Initially iterate is called with the set of all ads, an initial skyline, that is,

a skyline coinciding with the bottom edge of the page and an empty page.

3.4 Properties of the Algorithm

As a minimum requirement, an enumeration algorithm should consider all
canonical layouts. Furthermore it is desirable that the algorithm only con-
siders every layout once. The skyline algorithm has both these properties.
First we show the following lemma.

Lemma 3.1 In a given configuration, all candidate cannonical positions can
be visited by repeatedly raising the skyline.

When the algorithm raises the skyline, a candidate cannonical position is
folded away under the skyline, and the number of such positions in the new
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cmax ← 0
Pmax ← ∅

function iterate (A, S, P )
for a ∈ A do

locate leftmost local minimum [i0, i1], y
if a can be placed at (i0, y) then

update (S, a)
P ← P ∪ {(a, i0, y)}
A ← A \ {a}

iterate (A, S, P )

backtrack (S, a)
P ← P \ {(a, i0, y)}
A ← A ∪ {a}

end if
end for

raise skyline (S)
if S changed then

iterate (A, S, P )
else

if cmax <
∑

b∈A(P ) c(b) then

cmax ←
∑

b∈A(P ) c(b)

Pmax ← P
end if

end if
backtrack (S)

end function

iterate (A, initial S, ∅)

Figure 3.5: Pseudo code for the enumeration algorithm.
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configuration is one less. Having raised the skyline, the algorithm locates
the new leftmost local minimum, considers the position there and moves on,
eventually. Since a candidate cannonical position is defined by a pair of ads,
that is, the right edge of one ad and the upper edge of another, the number of
such positions is at most W , and so, in a finite number of steps, all positions
will be visited.

Theorem 3.2 The skyline algorithm examines each canonical layout exactly
once.

Given a canonical layout, we can simulate the actions of the skyline algo-
rithm, to see how it would build this actual page. First we locate the current
local minimum, which initially is the bottom edge of the page, and then we
look to the given layout, to see which ad we should place there. If no ad
is placed in that position in the given layout we instead choose to raise the
skyline. Next we locate the new local minimum in the new configuration and
repeat the process, until all ads have been placed.

Since the given layout is canonical, in every configuration at least one
of the remaining ads is placed so that it touches the virtual skyline to the
left and below. By Lemma 3.1 above, the skyline algorithm will eventually
consider this canonical position by raising the skyline repeatedly, and thus,
we will consider all ads in the given layout.

On the other hand, to prove that the algorithm examines a canonical
layout at most once, consider the sequence of moves made to reach a given
configuration. For example:

place a7, place a2, raise skyline, place a3, . . .

This sequence uniquely determines the layout that the algorithm will pro-
duce. But the converse is also true: given a canonical layout, there is exactly
one corresponding sequence of moves that will produce this layout. If not,
that would imply that two different sequences could result in the same lay-
out, but this is not possible: the two sequences may have a common initial
subsequence, but at some point they have to differ. Up until this point the
generated layouts will agree, but now the different sequences will dictate dif-
ferent moves. Either two different ads will be placed or one sequence will
raise the skyline, while the other places an ad. In both cases, the result
will be two different layouts, and the remaining moves will not change this,
since the position in question will not be reconsidered. The only move that
could violate this claim, is when the algorithm lowers the skyline. But as ex-
plained in the last paragraph of Section 3.2, we are careful not to reintroduce
previous candidate position.
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(a) One possible lay-
out.

(b) A different layout.

Figure 3.6: Example of local symmetries.

3.5 Eliminating Symmetries

As shown in the previous section, the skyline algorithm considers all canon-
ical layouts, but this, in some sense, is still too much work. If we could
incorporate symmetry considerations, many layouts could be viewed as iden-
tical, and thus ignored. We could then no longer claim to be considering all
canonical layouts, but as long as we examine at least one representative from
each class of symmetric layouts it will not affect the outcome. The obvious
example is when the algorithm considers a page as well as the vertical and
horizontal mirror images of that page. But also local symmetries could be
examined: if a sub-rectangle on a page can be mirrored, only one of these
combinations is worth considering. An example of local symmetries is illus-
trated in Figure 3.6, where the two layouts differ, only because the shaded
ads have been swapped.

A systematic approach to symmetry elimination is taken by Fekete and
Schepers in [5], for the n-dimensional bin packing problem. They represent a
packing as a set of graphs, one for each dimension. The vertices of the graphs
are the items to be packed into the bin, and there is an edge between two
vertices in graph Gi, if the two corresponding items overlap when projected
onto the xi-axis. This representation has just enough structure to reflect
whether the items fit in the bin, but on the other hand, it is sufficiently
abstract so as to group all symmetric packings into one packing class.

However, with the skyline algorithm we take a more ad hoc approach.
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We would like to detect as many symmetries as possible, but on the other
hand, the algorithm should be able to check the conditions quickly. Thus,
the symmetries we consider, are restricted to those that can be identified
easily.

One such symmetry occurs when we place an ad on top of another ad of
the same width, the situation from Figure 3.6. In general we could stack n
ads of the same width on top of each other in n! different ways, but only one is
worth considering. To enforce this, we assign an essentially arbitrary, unique
integer identifier to each ad. We then require that ads of the same widths
are stacked only such that the ads appear in order of ascending identifiers
from bottom to top.

The other symmetry accounted for by the algorithm, is that of mirroring
the entire page with respect to a vertical axis. Ads on the original page that
do not touch some other ad on their right edge end up not touching any ad
on their left edge on the mirror page. This is not a canonical layout and thus,
it is not generated by the algorithm. However, the algorithm will generate
an equivalent page, where all the ads are pushed as far to the left as possible,
and this is the page we try to exclude. So, when we talk of a vertical mirror
page, we think of the geometric mirror page with all ads pushed as far to the
left as possible. To avoid generating the mirror page we again consider the
integer identifier assigned to each ad and require that when placing an ad
in the lower right corner, its identifier is greater than that of the ad in the
lower left corner.

Figure 3.7 illustrates the symmetry rules.

3.6 Speeding up the Skyline Algorithm

Even when the skyline algorithm does not consider symmetric pages, it still
has to visit a number of configurations that is exponential in the number of
ads. This is still infeasible, and we now examine some ways to accelerate the
search at the cost of quality of the solution. If we abandon the restriction
that the algorithm should consider all pages, we can introduce optimizations
that narrow the search to only a subset of all possible pages.

One way to speed up the search is to require that the biggest available
ad, a, must be placed on the page. Of course, in the case that this is a
full-page ad, we immediately get an optimal page. On the other hand, if the
ad does not fill all of the page, the idea is that the remaining area is small,
which greatly limits the expected depth of the search tree. This does not
necessarily result in the optimal page for the given ads, but it does generate
the optimal page with a on it. To incorporate this optimization, we extend
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(a) Stacking ads of the
same width.

(b) Preventing verti-
cal symmetries.

Figure 3.7: Symmetry rules.

the algorithm, so that whenever an ad is placed on the skyline, the algorithm
checks to see if the biggest ad still fits on the page, unless it is already part
of the layout.

Another idea is to impose some form of granularity on the heights of
the ads. There are several ways to do this; one would be to round up the ad
heights to the nearest multiple of some integer, g, the granularity. If we took g
to be 5 percent of the page height, there would be only 20 possible heights.
By only trying one ad of each height in each configuration, we effectively
limit the branching level of the search and makes it independent of the given
input. The actual method that we use is sligthly different, though. Instead
of using a uniform granularity, we use a skip factor. In a given configuration,
if the algorithm manages to place an ad, a, then it regards the ads that are
less than a factor f lower than a as equal and does not try to place these.
This is easily realized in the algorithm by iterating through all ads of the
same width at a time in order of non-increasing heights. When an ad, a, was
succesfully placed on the skyline, we skip ahead until we find an ad of height
at most (1 − f)h(a), or if no such ad was found, we move on to a different
width. This way we place at most ads of m different heights for each possible
width in each recursive call, where

H(1− f)m−1 ≥ 1

implying
m ≤ 1 + log1/(1−f) H.
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It is worth noting that while these two techniques certainly accelerate the
search in most cases, they are by no means failsafe. The heuristic, where we
insist on placing the biggest ad on the page, can fail, when the biggest ad
is too small to significantly reduce the available space on the page. Even
if we have a very high skip factor, we always have two choices in every
recursive call: either we place an ad or we raise the skyline, and if the ads
are sufficiently small, the search tree becomes too deep, and limiting the
branching level does not help us. But, as discussed in the introduction, the
problem of layouting small one-column ads can be approximated effectively
using different approaches, and thus we allow ourselves certain assumptions
on the input.

3.7 Filling Several Pages

Up until now, we have discussed the skyline algorithm, which approximates
the optimal page for a given set of ads. To form a complete algorithm for
solving the ad packing problem, we embed this functionality in some page
selection framework.

The obvious choice is a greedy approach, that iteratively chooses the best
page and removes the used ads from the list of available ads, until all ads
have been placed. This first idea has some shortcomings, however. Consider
an instance of 4n ads, consisting of 2n three-column ads of full page height
and 2n five-column ads of height h, where H/2 < h < 3H/5. If we consider
pages with eight columns, there are only four ways to pack these on a page:
a three-column ad by itself, a five-column ad by itself, two three-column ads
on a page, or a three-column ad and a five-column ad on a page. The greedy
page selection scheme would choose the combination with two three-column
ads for the first n pages, since it leaves the smallest amount of space unused.
Then each of the five-column ads would be placed on a page by itself, leading
to a solution using 3n pages, shown in Figure 3.8 (a), whereas the optimal
solution, shown in Figure 3.8 (b), uses 2n pages.

But this is not only a theoretical result; the greedy behavior is apparent
in the results of the experiments as well. For example, in an eight column
page setting, experiments showed that the two column ads appear to be very
flexible, and due to the greedy nature of the selection scheme, these are used
up early in the process. On the other hand, the three column ads tend to be
difficult to pack, and thus, end up on the last pages, where they are the cause
of much unused space. As an illustration of this situation, consider Figure 3.9.
Here a set of ads have been layouted using just the greedy selection scheme,
and the problem discussed is evident from the last five pages.
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(a) The solution generated by the greedy approach
has n pages like the left page and 2n pages like the
right page.

(b) The optimal solu-
tion is 2n pages of this
type.

Figure 3.8: The solutions for the example in the text.

Figure 3.9: After the first run with no weight adjustments.



26 CHAPTER 3. THE SKYLINE ALGORITHM

Figure 3.10: Adjusting the weights based on the previous run.

In general, it seems to be the case that some ads are easily utilized by the
algorithm, while others are put off for later, causing trouble in the end of the
layout process. Furthermore, this degree of usefulness apparently depends
on the widths of the ads. This behavior must be contributed to the fact that
the number of columns, and thus the number of possible widths, is a small
integer. Under these conditions, ads with different widths have different
features, and in particular, we would not expect this behavior in general
two-dimensional bin packing.

A way to counter the greedy behavior would be to force the algorithm
to use the troublesome ads earlier in the process. This way, the troublesome
ads are used, when there is still a wide variety of ads available, and the page
can be packed tightly, if not optimally. Similarly, if the algorithm can be
made to save the flexible ads for later, these will ease the process of packing
the last pages.

This idea can be implemented, by assigning a weight to each ad, given by
c(a), and then have the skyline algorithm search for the page that maximizes
the sum of the weights of the ads on the page. By setting these weights to
be the area of the corresponding ad, that is,

c(a) = w(a)h(a),

we get the original algorithm. But if we adjust the weights of the ads slightly,
we can account for the preferences of the algorithm. If we adjust the weights,
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such that the troublesome ads get a higher weight and the flexible ads get a
lower weight, we get the behavior outlined above. For example, even though a
page is not the optimal page with respect to utilized area, it may be optimal
with respect to this new measure, because it uses one or several ads that
would otherwise cause problems later on, and thus maximizes the sum of the
weights of the ads. On the other hand, a page, which is optimal with respect
to utilized area, may be rejected, because it contains too many ads that have
had their weight lowered, and consequently, these ads are saved for later.

The question remains how to actually adjust the weights. One strategy
would be to increase the weight for the ads on the last, say, twenty percent of
the pages. We could multiply the weights of these ads by some small constant,
larger then one, and consequently the ads would have a higher weight and
appear earlier in new layout. This approach has some shortcomings, though.
The adjustment factor is fixed and does not account for the quality of the
page, which would seem like a good idea. Also, looking at a fixed percentage
of the pages may cause the readjustment process to consider too many or too
few pages.

Alternatively, we could judge the sparseness of a page as the total page
area compared to the amount of space occupied by ads,

Q(P ) =
WH∑

a∈A(P ) w(a)h(a)
.

To have the weight adjustments correspond to the quality of the page that
the ad appear on, we could instead adjust the weight of an ad by multiplying
it by Q(P ). In this way, ads appearing on near full pages receive almost no
adjustment, whereas ads placed on sparse pages have their weights signifi-
cantly increased. Furthermore, we can use this technique for all pages instead
of arbitrarily only considering the last twenty percent, since we expect the
first pages to be fairly compact, and thus, the adjustments to the weights of
the ads on those pages will be minimal.

But none of these adjustment schemes, make use of the observation that
the degree of usefulness of the ads seems to depend on the widths. Consider
again the pages in Figure 3.9. We could adjust the weights of the ads, so that
the three-column ads from the last five pages would be used earlier by the
algorithm. But then the three-column ads from the first pages would be put
off for later by the algorithm. Instead we average the adjustment factor over
all ads of the same width. This corresponds to interpreting an ad appearing
on a sparse page as an indication that ads of that particular width are hard
to make use of, not just the actual ad itself.

So, given a solution, S, we compute the weighted average over page sparse-
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m 1 2 3 4 5 6 7 8
Qm(S) - 1.017 1.275 1.032 1.029 1.008 - 1.004

Table 3.1: Adjustments for the example from Figure 3.9.

ness for pages containing m-column ads:

Qm(S) =

∑
P∈S

∑
a∈A(P ),w(a)=m Q(P )

|{ a ∈ A | w(a) = m }|
,

Given the weight function, c, used to produce the solution S, we get a new
weight function, c′ as

c′(a) = c(a)Qw(a)(S).

As an example, the adjustments for the pages in Figure 3.9 can be seen in
Table 3.1. Adjusting the weights and running the algorithm again gives the
pages in Figure 3.10. The adjustment scheme works quite well in practice,
though it does not necessarily converge. The typical behavior is that during
the first couple of runs of the algorithm, the generated number of pages
decreases steadily. After that the number of pages does not change for a
couple of runs, and then it increases erraticly (see Figure 5.5 in Section 5.4).

The skip factor can also be adjusted between the iterations, so that the
first iterations are done with a high skip factor. These first runs of the
algorithm will be fast and accomplish an initial rough adjustment of the
weights. Lowering the skip factor in the later iterations enables the algorithm
to generate tighter layouts when the weights have been adjusted.

3.8 Constrained Ad Packing

Finally we discuss how the enumeration algorithm and the rest of the frame-
work can be generalized to accommodate the extra constraints formulated
in the Constrained Ad Packing Problem, Definition 2.4. Conditions 4 and
5 from can be incorporated with only minimal changes to the algorithm,
whereas 6 and to a greater extent 7 require that the enumeration algorithm
be adjusted.

First we consider condition 4. We are given an symmetric relation D on
A, and it is required that no pair of ads a and b, with (a, b) ∈ D, is placed
on the same page.

One way to do this is to, as we place an ad a, remove those ads that can
not appear on a page with a from the set that the algorithm is currently
considering. For each ad, a, we define the set

Da = { b ∈ A | (a, b) ∈ D }.
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Furthermore, for every ad, a, we maintain a count, δa, of how many ads
from Da is currently part of the current configuration. Initially this count
is zero. Whenever the algorithm decides to place b on the skyline, Db is
subtracted from the set of remaining ads, and for each c ∈ Db, δc is increased
by one. Later, when the algorithm backtracks and removes b, δc is decreased
correspondingly for every c in Db. If δc reaches 0 for some c, c is put back
into the set of remaining ads. This way we will never place ads a and b on
the same page, if (a, b) ∈ D.

Alternatively we could mark an ad as placed, whenever it is part of the
current configuration. Then, before placing an ad, a, we could check every ad
in Da, and if one of these were marked as placed, we would reject a. However,
using the former technique we only consider the ads in Da when placing a,
whereas with the latter technique we would consider and reject them in each
subsequent recursive call.

Condition 5 requires that any pair of ads a and b should appear on the
same page, if (a, b) ∈ F , where F is assumed to be an equivalence relation.
Again, we consider the set of ads related to an ad, a, by F :

Fa = { b ∈ A | (a, b) ∈ F }.

Here, Fa is the equivalence class containing a, and all these ads should be
placed on the same page for the solution to be feasible. In any given con-
figuration, we may have placed a number of ads from a number of different
equivalence classes, and for this configuration to end in a feasible page it
should be possible to fit the remaining ads from all classes on the page.
Now, we can not decide this exactly, but we can get a quick negative answer.
If, in some later configuration, the total area of the remaining ads exceeds
the amount of free space, that is, the space above the virtual skyline, we just
abort the search.

Also, before placing an ad, a, as the first ad from Fa, we can check if the
total area of the ads in Fa exceeds the amount of free space in the current
configuration. If this is the case, we immediately reject a.

Both of these checks can be done in constant time, if we precompute the
total area of the ads in each equivalence class, and if we maintain the amount
of free space in the current configuration and, for each equivalence class, the
total area of the ads from that class that have been placed so far.

The constraints specified by condition 6, restrict the allowed placements of
an ad on a page. If an ad is tied to the left or the bottom edge, the algorithm
will naturally place the ad in a position that satisfies the constraint during
the enumeration. Whenever this is the case, the algorithm is allowed to place
the ad, otherwise the placement is rejected. However, when an ad is tied to
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(a) Top border. (b) Right border.

Figure 3.11: Placing ads tied to the top or right borders.

the top or right edge, the algorithm does not necessarily generate a page that
respects the constraint, since the algorithm only produces layouts where the
ads are pushed down and to the left. In particular, when an ad is tied to
the top edge, it is unlikely that there will be a set of ads, such that the sum
of their heights equals H. Instead, when an ad is tied to the top edge, we
pretend that its height of the ad is exactly such that it touches the upper
page edge, as illustrated in Figure 3.11 (a). The skyline is updated as usual,
and consequently the space below the ad is left unoccupied. This may seem
wasteful, but otherwise the algorithm would consider the same configuration
twice. Presumably, in the next iteration the algorithm will try another ad,
and then in a later configuration place the ad tied to the top, yielding a
better page than that of Figure 3.11 (a), which still satisfies condition 6.

We use the same technique when dealing with ads tied to the right page
edge, though, if the current local minimum does not extend all the way to
the right edge of the page we reject the placement altogether. Also, if the ad
is too narrow it may be rejected, much like the situation in Figure 3.3 (b).
The skyline is updated as if the ad actually was that wide. In particular the
real skyline is raised to the level of the upper edge of the ad for all columns
in the local minimum.

Preplaced ads, as specified by condition 7, are dealt with in much the
same way as ads tied to the borders, as we also in this case treat the relevant
ads as being bigger than they really are. When we consider a preplaced ad, a,
assigned the placement p, we first check wether the ad is placed above the



3.8. CONSTRAINED AD PACKING 31

(a) In this situation,
the ad is rejected.

(b) A preplaced ad
above the current lo-
cal minimum.

(c) Updating the sky-
line.

Figure 3.12: Handling preplaced ads.

current local minimum. That is, if the minimum is the interval [i0, i1], we
require that

α(p) ⊆ [i0, i1]× [si0 , H],

where, as before, si is the level of the virtual skyline in column i. If this is not
the case, as in Figure 3.12 (a), the ad is rejected, but it will be considered in
a later configuration. If the ad is placed above the current local minimum, as
in Figure 3.12 (b), the placement is allowed. When placing the ad, we update
the skyline, as if the ad had been expanded as much as possible downwards
and to the left, as suggested by Figure 3.12 (c).

We could incorporate this placement technique into the main loop, so that
in every recursive call, we try to place all preplaced ads from a given pre-
layouted page, P ∈ L, and in the end we reject those pages, where not all ads
from A(P ) have been placed. However, such a set of ads can only be placed
in a certain sequence. Consider Figure 3.13 (a), where a number of preplaced
ads are shown. If the shaded ad was placed first, as indicated, the extension
of the shaded ad would overlap with two of the other preplaced ads, and
these could not be placed in any subsequent configurations. Consequently,
no feasible page could be generated, if we chose to place the shaded ad first.
To avoid this situation, we define a partial ordering on the ads. We say
that an ad placement, p = (ap, xp, yp), is dominated horizontally by another
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(a) Placing preplaced
ads in the wrong or-
der.

(b) Domination rela-
tion.

Figure 3.13: Order of placement for preplaced ads.

placement, q = (aq, xq, yq), if

xp + w(ap) ≤ xq and yp < yq + h(aq),

or in other words, ap is placed left of aq and intersects the extension of aq

downward and to the left. Conversely, p is dominated vertically by q, when

yp + h(ap) ≤ yq and xp < xq + w(aq).

Finally, p is dominated by q, when it is either vertically or horizontally dom-
inated by q or both. Figure 3.13 (b) shows the domination graph for the ads
in Figure 3.13 (a). If we only place an ad, a, when all ads dominated by a
have been placed, a will never overlap with other preplaced ads.

However, with this extension the skyline algorithm no longer visits each
configuration exactly once. Consider the pages in Figure 3.14. From the
initial configuration, we can choose to place a and then b, which leads to the
configuration shown in Figure 3.14 (a). Placing the ads in the opposite order,
gives the configuration in Figure 3.14 (b), which is identical to the other.
But in fact both combinations are necessary: a tall, narrow ad could only be
placed to the right of a and to the left of b by placing a first. Correspondingly,
a low, wide ad could only be placed under a and over b by placing b first.
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(a) Placing a first,
then b.

(b) Placing b first,
then a.

Figure 3.14: Two ways to reach the same configuration.



34 CHAPTER 3. THE SKYLINE ALGORITHM



Chapter 4

Tabu Search Algorithm

We consider a recent approximation algorithm for the two dimensional bin
packing problem, proposed by Lodi et al. in [10]. As the algorithm solves the
two dimensional bin packing problem, it is immediately applicable to the ad
packing problem. The algorithm uses a generic optimization strategy called
tabu search.

In Section 4.1 we briefly review the area of tabu search. It is not the
intention to cover the topic in great detail, rather we seek to introduce the
basic idea and explain the concepts present in the algorithm.

In Sections 4.2–4.4 we describe the tabu search algorithm for two dimen-
sional bin packing problem: first, in Section 4.2, we explain the initialization
step, then, in Section 4.3, a simple algorithm used as a subroutine in the
search, and finally, in Section 4.4 the actual search.

4.1 Tabu Search Overview

As defined in Appendix B.4, an optimization problem asks for a solution, s∗,
that maximizes or minimizes c(s) over the set of feasible solutions, F (x), for a
given problem instance, x. One way to approximate the optimal solution is to
generate an initial feasible solution, and then iteratively improve this solution
until some stopping criteria is met. In each iteration, we consider solutions
in the neighborhood, N(s), of the current solution, s. The neighborhood is
the set of solutions reachable by one of a number of moves, each of which
modifies the current solution by making some local changes, yielding a new
solution. By some simple heuristic we choose a solution in N(s); either the
solution representing the biggest improvement, a random solution, or just
the first solution we consider.

This technique is called neighborhood search or local search. While con-
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ceptually simple and intuitive, this approach has a serious drawback. If the
search finds its way to a local optimum, that is, a solution, s, where all neigh-
bor solutions reduces c(s), it necessarily terminates. This local optimum can
be very far from the global optimum.

An algorithm guiding the local search so as to explore the neighborhood
in a more intelligent manner is a meta-heuristic. For example, genetic algo-
rithms are based on an abstract model of natural evolution and maintain a
number of simultaneous solutions. During the search, the best of these solu-
tions are combined pairwise to form new solutions, replacing older ones. As
another example, Simulated annealing has its origins in statistical mechanics
and models the cooling process of solids. The basic idea is to pick a random
neighbor, s′ to the current solution, s. The simulated annealing procedure
accepts s′ as the new current solution, if s′ constitute an improvement over s,
or else by random choice, depending on c(s′)− c(s) and the current tempera-
ture. The temperature is gradually lowered, and the probability of accepting
worse solutions declines.

Tabu search uses memory to guide the search. A tabu search algorithm
maintains a list of attributes of recently visited solutions. That is, only
part of a solution is remembered, for example, an edge that was recently
added to a subgraph, but enough to prevent the search from visiting solutions
that were considered just recently. This list is called a tabu list and the
attributes remembered in the list are tabu active. Moves involving a tabu
active attribute are prohibited, and thus, the tabu list restricts the search to
a subset N∗(s) ⊆ N(s) of the neighborhood of the current solution, s. An
attribute remains tabu active for a number of iterations; this period of time
is called the tabu tenure. This can be a fixed number of iterations, chosen
at random within an interval, or more advanced, possibly problem specific,
tenure policies can be employed. Tabu lists can be realized by bit vectors,
circular lists, or search trees, depending on the number of attributes and
the tenure policy. If the attributes correspond to edges in a graph, say, a
bit-vector could be used, but if the attributes in question were real valued
measures on the solution, a search tree would be better. A tabu search can
operate with several types of attributes, and for each type of attribute, a
number of tabu lists can be maintained.

Sometimes a tabu rule can be overridden, if certain aspiration criteria
are met. It could be that N∗(s) = ∅, that is, all moves contain tabu active
attributes, and for the search to be able to continue, the algorithm must
revoke the tabu status of some attributes. Another type of aspiration criteria
allows a move, when it results in a solution better than any other previous
solution.

More advanced tabu search algorithms also incorporate use of long term
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memory. The long term memory remembers elite solutions encountered dur-
ing the search. These can be used to restart the search elsewhere in the
solution space or as a means to revisit promising neighborhoods and study
them closer.

For a full treatment on tabu search we refer to the book [8] of Glover
and Laguna. Osman and Kelly give an overview of the most successful meta-
heuristics in [13].

4.2 Initial Feasible Solution

We now turn to the tabu search algorithm by Lodi et al. for the two dimen-
sional bin packing problem. To start the tabu search algorithm, an initial
feasible solution is generated by the following simple polynomial time approx-
imation algorithm, IH, described in the article. The IH algorithm is shown
to have a worst case performance ratio of 4, which is quite bad, considering
that the HFF algorithm, discussed in Section 2.5, has an upper bound of 21

8

on its asymptotic worst case performance ratio. However, Lodi et al. argue
that the solutions generated by the IH algorithm work better, in that they
are easier to modify by the tabu search, and thus, they result in an overall
better outcome.

The IH algorithm starts by grouping ads into classes according to their
heights. All ads that are higher than half the page height go into class 0, all
ads higher than a quarter of the page height, but lower than or equal to half
the page height, are put in class 1 and so forth. More formally we have

class(a) = blog2(H/h(a))c.

For a class of ads, r, we define the set of admissible vertical coordinates :

V (r) = { tbH/2rc | 0 ≤ t < 2r }.

When an ad, a, is placed at (x, y) it we say that it occupies the coordinates

{ (x′, y′) ∈ N2 | x ≤ x′ < x + w(a) ∧ y ≤ y′ < y + bH/2rc },

where r = class(a). In particular, any space above the ad up until the next
admissible y-coordinate is occupied.

Assume the ads, a1, a2, . . . , an have been ordered by non-decreasing class.
The algorithm now proceeds to place the ads in an open ended horizontal
strip, as outlined in Figure 4.1. This procedure iteratively places the ads in
the leftmost, lower, unoccupied admissible position. The variable x̄ is the
x-position the algorithm currently considers, and X is the set of possible
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x̄← 0
X ← ∅

for j ← 1 to n do
if (x̄, y) is occupied for all y ∈ V (class(aj)) then

x̄← min(X)
X ← X \ {x̄}

end if

ȳ ← min{ y is unoccupied | y ∈ V (class(aj)) }
place aj with its lower left corner at (x̄, ȳ)
X ← X ∪ {x̄ + w(aj)}

end for

Figure 4.1: Pseudo code for the IH algorithm.

future x-positions. When all the ads have been placed, the resulting strip
is subdivided along the x-axis into intervals of width W . For each interval,
the algorithm creates a page with the ads that are entirely contained within
that interval, and if any ads cross over the right boundary, these are placed
on a second page. Figure 4.2 shows the result of packing ten ads into a strip.
The numbers give the order that the ads were placed in. When the strip
is divided into intervals of length W , as indicated, ad 1 will be placed on a
page by itself. Ads 2 and 3 cross the boundary between the first and second
interval, so these are placed on a second page. Only ad 5 is entirely contained
in the second interval, and thus it goes on a page by itself. Finally, ads 4, 6
and 7 cross the interval boundary, and these are placed on a page together,
while ads 8 and 9 are contained within the third interval and are put on a
page together.

4.3 Finite Best Strip Algorithm

The basic idea of the tabu search algorithm is to move ads between pages to
produce a new solution. To determine whether an ad can be added to a page
the finite best strip algorithm (FBS) by Berkey and Wang from [1] is used.
The FBS algorithm is a simple polynomial time approximation algorithm,
similar to the HFF algorithm described in Section 2.5. Initially the ads are
sorted in order of non-increasing heights and packed into page-wide blocks
of a open ended vertical strip. In this context, a block is a rectangle as wide
as the page and as high as the highest ad in the block. As the ads are placed
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Figure 4.2: Before breaking up the strip.

in non-increasing order, the highest ad is always the first, which is placed at
the leftmost position in the block. Subsequent ads are placed from left to
right, always on the bottom edge of the block. If no existing block can hold
the ad, a new block is added to the stack.

The FBS algorithm uses a best fit heuristic for choosing the block for
a given ad a, more specifically, it chooses the block where a minimizes the
remaining horizontal space. This phase of the algorithm is illustrated in
Figure 4.3 (a). Again, the numbers indicate the order, in which the ads were
placed. The best fit approach is evident from the fact that ad 3 is placed in
the second block; a first fit approach, such as HFF, would place it in the first
block.

When all ads have been placed in the strip, the resulting blocks are packed
into pages in a similar best fit manner. For the strips in the example, we get
the pages in Figure 4.3 (b).

In both phases of the algorithm, the search for the best fit position can
be done in time O(log n), and thus, the overall running time of the algorithm
is O(n log n). In [1], Berkey and Wang experimentally compare FBS to five
other simple heuristics for two dimensional bin packing, and FBS is found to
be superior in both packing efficiency and time consumption for large data
sets.

4.4 Tabu Search Algorithm

Given an initial solution, the actual tabu search improves this by searching
two types of neighborhoods alternatingly. Both neighborhoods are defined
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(a) Strip packing. (b) The resulting pages.

Figure 4.3: Finite best strip illustrated.
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by moves that try to empty a specific page by moving ads from that page to
other pages. The page in question is the weakest page, which is defined as
the page that minimizes the measure

ϕ(P ) = α

∑
a∈A(P ) w(a)h(a)

WH
− |P |

n
,

which reflects how easily the page can be emptied. The intuition is that
pages, where a large fraction of the area is occupied by ads, are difficult to
empty. On the other hand, if the page contain many ads, these must be
relatively small, and thus for each of these, it should be easy to find another
page that can hold it. The factor α is a pre-fixed nonnegative parameter and
provides for a means to adjust the relative importance of these two elements.

The outer loop of the search alternates between searching the two different
neighborhoods, as shown in Figure 4.4. The first neighborhood is defined by
a move that tries to combine an ad from the weakest page with ads from
another page. Ads that were recently moved are marked as tabu active for
τ1 iterations, in which they can not participate in other moves. So, for each
non-tabu active ad, a, on the weakest page, PW , we consider

R = FBS({a} ∪ A(P )),

for each of the pages, P , in the rest of the current solution. When a page
is found, such that R = 1, a is moved to this page, marked as tabu active,
and the search continues for the next ad in PW . If the weakest page has only
one ad, an aspiration criteria allows the search to try to move this ad off
the page, even if it is tabu active. If the search manages to move all ads of
the weakest page, the new weakest page is located, and the search continues
in the first neighborhood. Otherwise, if no move is possible, the algorithm
turns to the second neighborhood. Pseudo-code for the exploration of the
first neighborhood is shown in Figure 4.5.

The second neighborhood consists of solutions reachable by recombining
an ad from the weakest page with ads from two other pages. Some moves
can be performed immediately, after which the algorithm returns to the first
neighborhood. But if no such move is available from the current solution, we
rate the possible moves with a score and in the end choose the best move,
if any. The second tabu list records scores for recent moves, and moves that
have a tabu active score are prohibited. For each ad, a, on the weakest page,
the algorithm considers each pair of pages, P1 and P2, from the rest of the
current solution. The ads are placed using the FBS algorithm,

R = FBS({a} ∪ A(P1) ∪ A(P2)),
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and depending on the outcome different actions are taken.
If R = 1, the FBS heuristic managed to pack the ads onto one page.

This type of move will save one or two pages, depending on whether a was
the only ad on PW . The move is performed at once, after which the search
returns to explore the first neighborhood.

In the case where R = 2, P1 and P2 could be rearranged to also hold a.
If a was the last ad in PW , this move will save a page, and in this situation
the search continues in the first neighborhood. Otherwise, PW may no longer
be the weakest page. If it is not, the search continues in the first neighbor-
hood, but if PW still is the weakest bin, the search continues in the second
neighborhood.

When R = 3, the FBS heuristic could not rearrange the ads so as to fit
on two pages. The ads from the weakest of the three new pages, P ′, are
combined with the remaining ads from PW , again using the FBS heuristic:

R′ = FBS(A(P ′) ∪ A(PW ) \ {a}).

If R′ > 1, the size of the solution would be increased, and thus, the move is
rejected. Otherwise, the solution stay the same size, and then we compute
ϕ(P̄ ), where P̄ is the page that holds the ads from P ′ and PW excluding a.
This is the score of the move, and if the computed score is not tabu, and
furthermore, smaller than all previous scores, the move is remembered as the
currently best move.

Finally, if R > 3, the move is immediately rejected as the size of the
solution would increase.

When all of the second neighborhood has been explored, the best move is
performed, and its score marked as tabu active for τ2 iterations. After this,
the search returns to the first neighborhood. Pseudo-code for the exploration
of the second neighborhood is shown in Figure 4.6.

If no move was found during the exploration of either neighborhoods, or
if the solution was not improved for µ iterations, a restart action is triggered.
For a solution, S, the |S|/2 weakest pages are discarded, and the ads from
those pages are placed again, using the IH algorithm.
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S ← IH(A)
PW ← ∅
while no stopping criteria is met do

Search first neighborhood
Search second neighborhood

end while

Figure 4.4: Pseudo code for the tabu search main loop.

while first neighborhood moves are possible do
PW ← P ∈ S minimizing ϕ(P )
for a ∈ A(PW ) \ TabuList1 do

if ∃P ∈ S \ {PW} : FBS({a} ∪ A(P )) = 1 then
move a from PW to P

end if
end for

Aspiration criteria
if A(PW ) = {a} ∧ ∃P ∈ S \ {PW} : FBS({a} ∪ A(P )) = 1 then

move a from PW to P
end if

end while

Figure 4.5: Pseudo code for searching the first neighborhood.
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for a ∈ A(PW ) do
for P1, P2 ∈ S \ {PW}, P1 6= P2 do

if FBS({a} ∪ A(P1) ∪ A(P2)) = 1 then
perform this move and return to first neighborhood

end if

if FBS({a} ∪ A(P1) ∪ A(P2)) = 2 then
perform this move
if PW = ∅ then

return to first neighborhood
else

P ′ ← P ∈ S minimizing ϕ(P )
if PW 6= P ′ then

return to first neighborhood
end if

end if
end if

if FBS({a} ∪ A(P1) ∪ A(P2)) = 3 then
P ′ ← weakest page of the new pages
if FBS(A(P ′) ∪ A(PW ) \ {a}) > 1 then

reject the move
else

remember the move and its score, which is ϕ(P̄ ),
where P̄ is the page that holds A(P ′) ∪ PW \ {a}

end if
end if

end for

perform the move with minimum non-tabu score if any,
mark this score as tabu active for τ2 iterations, and
return to the first neighborhood

Figure 4.6: Pseudo code for searching the second neighborhood.



Chapter 5

Experiments

The skyline algorithm and the tabu search have been implemented, and in
this chapter we summarize our experiences from implementing and testing the
algorithms. Section 5.1 give a brief overview of the experimental setup, and
in Section 5.2 we analyze the test instances from Jyllands-Posten. Section 5.3
presents the results of experiments comparing the skyline algorithm and the
tabu search algorithm. Finally, in Section 5.4 we examine the influence of
various parameters on the running time of the skyline algorithm.

5.1 Implementation Overview

The skyline algorithm and the tabu search have been implemented in C,
within a common framework. Data types, such as pages, layout descriptions
and page lists have been implemented, and the lower bound functions and
the HFF, FBS and IH heuristics are also part of the framework. The test
instances are stored as XML files, and code for reading and writing these files
are shared between the two implementations as well. A validate tool for en-
suring that the produced solutions are indeed feasible has been implemented,
also using the framework.

The data from Jyllands-Posten was converted into the XML format using
a small script, and another script was used to visualize the generated solu-
tions, stored in XML files, as PostScript. Figures 3.9 and 3.10 were generated
using this script.

All the tools maintain a change log in the XML file they operate on, as
can be seen in Figure 5.1, which gives an example of the data file format.
The change log makes it easy to keep track of the changes and reproduce
results. The change log in the data file in the example records that the file
was generated by the extract.pl script the 26th of July, and on the 26th of
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<?xml version="1.0"?>

<adlist>
<history>
<entry tool="extract.pl" version="1.7"

date="Wed Jul 26 22:12:10 CEST 2000">
extracting data from ToDaimi.000327.tar.gz

</entry>
<entry tool="skyline" version="0.1"

date="Sun Nov 26 17:30:26 2000">
Number of pages: 16
Lower bound: 16
Skip factor: 0.10
Skip factor step: 0.05

</entry>
</history>
<ad width="8" height="520" id="JP03">
<placement page="00" x="0" y="0" type="automatic"/>
<annotation id="adid">3IHALV</annotation>

</ad>
<ad width="6" height="75" id="JP14">
<placement page="11" x="0" y="257" type="automatic"/>
<annotation id="adid">VMH7SL</annotation>

</ad>

...

</adlist>

Figure 5.1: The XML file format.

November the skyline algorithm generated a solution consisting of 16 pages
using a skip factor of 0.10.

The implementation source code is listed in Appendix C for reference
and browsing, when technical details are not addressed in the text. Also, the
complete experimental setup can be downloaded from the internet at this
address:

http://www.daimi.au.dk/~hogsberg/thesis.html.

5.2 Test Instances

Typically, the performance of an approximation algorithm is evaluated by
running it on test instances from the literature and comparing with previous
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results. In the case of the two dimensional bin packing problem, quite a
few randomly generated sets of instances have been suggested. Berkey and
Wang proposes 6 classes of instances in [1], and these, among others, are
often used. However, we can not make use of these instances, since the ad
packing problem assumes a small number of columns.

For the purpose of benchmarking the skyline algorithm, Jyllands-Posten
and CCI kindly provided data sets corresponding to the vacant positions
section in the paper. The dimensions of these ads meet our assumptions
regarding minimum ad size, and are layouted in an eight column page setting.

A total of 24 instances have been considered, and the number of ads
in each instance varies greatly: from 9 ads in the smallest instance to 186
ads in the biggest instance. The average ad size is 18% of the page size,
but this also varies greatly from full page ads to one column ads at 20%
of the page height. Most randomly generated instances from the literature
are instances with item dimensions that are uniformly distributed over some
interval. The distribution of the dimensions of the ads from Jyllands-Posten
are far from uniform, though. The bars in the plot in Figure 5.2 (a) shows
the distribution on widths for the ads. To give an indication of the range
and distribution on heights for the eight different widths, each ad has been
plotted as a cross. In Figures 5.2 (b)–(d) the distribution on heights for the
three, six and eight column ads are shown in greater detail. As can be seen,
the height distribution varies greatly between the different widths; for the
three column ads appear to be normally distributed, but it is less obvious
what goes on for the six and eight column ads.

5.3 Benchmarks

The skyline algorithm and the tabu search algorithm have been benchmarked
by running each of the algorithms on the 24 data sets. The results are shown
in Table 5.3, which also give some further details on the data sets. The
first three columns give the name of the instance, the number of ads in the
instance, and the average ad area for the instance. The L2d column gives
the lower bound for the instance, computed using the technique described in
Section 2.4.

The results for the tabu search algorithm are shown in the column TS .
The tabu search was allowed to run for 200 seconds, after which it was
terminated. The column tTS gives the running time for the instances that
were solved to optimality within the time limit. The parameters for the tabu
search were taken from [10], that is, we used α = 5.0, tabu tenures of τ1 = 3
and τ2 = 5, and restart threshold of µ = 30.



48 CHAPTER 5. EXPERIMENTS

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9

Ad distribution

(a) Distribution of all ads from all
data sets.

0%

2%

4%

6%

8%

10%

12%

14%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Height distribution for three column ads

(b) Height distribution of three col-
umn ads.

0%

5%

10%

15%

20%

25%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Height distribution for six column ads

(c) Height distribution of six column
ads.

0%

5%

10%

15%

20%

25%

30%

35%

40%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Height distribution for eight column ads

(d) Height distribution of eight col-
umn ads.

Figure 5.2: Distribution of the ads.
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Instance n avg. L2d TS tTS SL tSL

1999-10-27.xml 140 0.186 27 28 199.66 27∗ 1.45
2000-03-27.xml 89 0.176 16 17 199.82 17 7.08
2000-04-05.xml 124 0.185 24 25 199.88 24∗ 9.31
2000-05-16.xml 120 0.187 23 24 199.69 24 11.66
2000-06-04.xml 101 0.205 21 22 199.71 22 4.10
2000-06-07.xml 55 0.212 12 13 199.88 13 3.34
2000-06-11.xml 74 0.214 17 17∗ 1.57 17∗ 3.12
2000-06-14.xml 67 0.214 16 16∗ 17.32 16∗ 1.09
2000-06-18.xml 116 0.181 22 23 199.98 22∗ 7.09
2000-06-21.xml 83 0.180 16 16∗ 0.52 16∗ 2.35
2000-06-25.xml 85 0.188 17 18 199.89 17∗ 0.26
2000-06-28.xml 74 0.195 15 16 199.82 15∗ 0.50
2000-07-02.xml 61 0.165 11 11∗ 3.20 11∗ 4.53
2000-07-05.xml 52 0.145 8 9 199.86 8∗ 2.20
2000-07-09.xml 40 0.170 7 8 199.97 7∗ 0.11
2000-07-12.xml 22 0.150 4 4∗ 0.01 4∗ 0.02
2000-07-19.xml 17 0.157 3 4 199.92 3∗ 0.04
2000-07-23.xml 13 0.228 4 4∗ 0.01 4∗ 0.02
2000-07-26.xml 9 0.153 2 2∗ 0.01 2∗ 0.01
2000-07-30.xml 48 0.162 8 9 199.88 8∗ 2.64
2000-08-02.xml 36 0.150 6 6∗ 0.03 6∗ 0.73
2000-08-06.xml 186 0.195 37 39 200.07 38 86.76
2000-08-09.xml 136 0.203 28 30 199.99 29 110.86
2000-08-13.xml 83 0.201 17 18 199.98 18 47.03
Provably optimal solutions 8 17

Table 5.1: Performance of the skyline algorithm and the tabu search. Solu-
tions marked with a ∗ are optimal.

Similarly, for the skyline algorithm, columns SL and tSL give the number
of pages produced and the running time in seconds. The weight adjustment
process was allowed to do at most five iterations, with an initial skip factor
of 0.38, which was decreased by 0.05 after each iteration. These parameters
were determined experimentally and give good results fairly quickly.

Of the 24 instances, the tabu search was able to determine a provably
optimal solution for 8 of the instances. The skyline algorithm, on the other
hand, determined a provably optimal solution for 17 of 24 instances, and in
all cases it is at least as good as the tabu search. Furthermore, the solutions
produced by the skyline algorithm were never more than one page above the
lower bound.
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n L2d SL tSL

20 5 5∗ 0.03
40 10 10∗ 0.17
60 13 13∗ 0.19
80 17 18 12.50

100 22 23 7.54
120 25 26 16.81
140 28 29 61.43
160 32 34 46.23
180 36 36∗ 551.71
200 40 41 112.27
220 40 41 87.67
240 42 42∗ 567.32
260 49 50 332.19
280 54 57 305.64
300 59 61 83.21
320 61 64 192.15
340 66 68 198.95
360 70 72 316.52
380 74 76 343.68
400 78 81 171.55

Table 5.2: Performance of the skyline algorithm on randomly sampled ads.

5.4 Skyline Behavior

In this section we examine the dynamic behavior of the skyline algorithm.
In particular, we look at how the running time is affected by the number
of ads and the skip factor, and how the number of pages evolve during the
iterations.

To test the dependency on number of ads, we have created test instances
with up to 400 ads. The instances have been created by uniformly sampling
n ads from the set of all ads from all instances. Table 5.4 shows the results
of running skyline on these instances; again L2d denote the lower bound, SL
the number of pages produced by the skyline algorithm, and tSL the running
time in seconds. The running time as a function of n has been plotted in
Figure 5.3.

To see how the skip factor affects the running time, we have chosen a
subset of the instances and run the skyline on these for increasing skip factors.
The results can be seen in Figure 5.4. As expected, the running time tends
to decrease, but otherwise, it is rather unpredictable.
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Figure 5.5: A typical behavior of the weight adjustment process.

Finally, in Figure 5.5, we can see how the number of pages change during
the iterations, for the problem instance 2000-04-05.xml. As mentioned in
Section 3.7, the number of pages initially decrease, but after that it increases
erratically.



Chapter 6

Conclusion

The layout of classified ads in newspapers is a time-consuming and tedious
task. Existing tools automate this only to some extent, and typically only
for listing-like sections of small ads. When the average ad size increase, the
problem of packing the pages becomes puzzle-like, and existing tools only
assist by allowing the operator to manually move the ads around.

6.1 Ad Packing

We have stated the simple ad packing problem, which asks for a minimal lay-
out, in terms of number of pages, of a set of ads. This problem is similar to the
two-dimensional bin packing problem, and both problems are NP-complete.
By also incorporating a number of constraints to control the structure of the
generated solution we get the constrained ad packing problem. The con-
straints considered include restrictions on ad positions and restrictions on
which ads can appear on a page together.

Finally, we have reviewed related work from the literature. A lot of atten-
tion has been given to the two- and three-dimensional bin packing problems,
but no articles directly address the ad packing problem. However, any al-
gorithm that solves the former two problems can also be used to solve the
ad packing problem. A variety of approaches has been used, ranging from
simple fast heuristics, over different local search algorithms, to exact branch-
and-bound frameworks.

6.2 The Skyline Algorithm

We proposed the skyline algorithm as a realistic algorithm for solving the
constrained ad packing problem. The algorithm uses a greedy approach for
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iteratively generating a near optimal page using the remaining ads. This
works well for the first pages, but later the quality of the pages decrease.
Certain types of ads appear to be difficult to place, and these are put off for
last by the algorithm, and consequently, the last pages generated have much
unused space. If we associate weights to the ads and optimize the sum of the
weights of the ads on a page, we can counter this typical greedy behavior, by
adjusting the weights based on results from previous runs.

The extra requirements considered in the constrained ad packing problem
can be incorporated into the algorithm by restricting the set of pages that
the search visits, to those that satisfy the requirements. This is accomplished
by checking a number of criteria before placing an ad or by placing the ad
slightly differently.

6.3 Experiments

The proposed algorithm has been implemented and compared experimentally
with a tabu search approach by Lodi et al., presented in [10]. For bench-
marking the algorithms we have used test instances corresponding to actual
classified ads sections from the newspaper Jyllands-Posten. Instances from
the literature have not been used, since these are designed for the general two-
dimensional bin packing problem, and also, the uniform distribution typically
used for generating these instances, does not reflect the actual distribution
of ad dimensions.

For the type of instances we consider, the skyline algorithm performs
very well, but the experiments also reveal a problem with the algorithm;
the skip factor allows for adjusting a time/quality tradeoff, and in general a
lower skip factor means longer running time, in return for better solutions.
But sometimes the skip factor interacts badly with the problem instance,
resulting in unreasonable long running times, as can be seen in Figure 5.4.
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Appendix A

Notation Overview

Symbol Meaning

A The set of ads
n The number of ads, n = |A|
w(a) Function w : A → N, giving the width of the ad a
h(a) Function h : A → N, giving the height of the ad a
c(a) Function c : A → R giving the weight of the ad a
Ix(p) Function giving the interval of columns spanned by the placement p
Iy(p) Function giving the interval on the y-axis spanned by the placement p
α(p) Function giving the set of points covered by the placement p
S A solution to the ad packing problem
P A page, that is, a subset of A× N× N
P The set of points in a page, that is, { (x, y) | 0 ≤ x < W ∧ 0 ≤ y < H }
W The width of a page in number of columns
H The height of a page
A(P ) The set of ads on a page, A(P ) = { a | (a, x, y) ∈ P for some x, y ∈ N }
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Appendix B

Basic Theory

In this appendix we offer a review of some essential topics from computa-
tional complexity. In Sections B.1 and B.2 we define the Turing machine and
the important generalization; the nondeterministic Turing machine. Further-
more, we consider time measurements and the concept of complexity classes.
In Section B.3 we introduce reductions and the notion of completeness. Fi-
nally, in Section B.4, we examine optimization problems and approximation
algorithms.

The treatment below is based on Chapters 16, 17 and 23 from [12] and
Chapters 2, 7, 8 and 13 from [14].

B.1 Turing Machines

The Turing machine is a simple construction, originally conceived by Alan
Turing in the late 1930’s. Though it may seem awkward and inexpressive,
it captures what we think of as computability. The Church-Turing thesis
states that any “algorithmic procedure” that a person can carry out, can be
performed on a Turing machine. This, of course, is not a formal theorem one
can prove, but it certainly is the intuition.

The Turing machine can be though of as a finite automaton with an asso-
ciated infinite sequential access read/write memory. The memory is modeled
as an infinite string of symbols (the tape) and a current position in the string
(the head). The Turing machine has a finite set of states, and transitions
between these are guided by the current state and the contents of the tape.
Formally the Turing machine is defined as follows:

Definition B.1 (Turing Machine) A Turing machine is a 4-tuple M =
(K, Σ, δ, s). K is the finite set of states, Σ is the finite alphabet, that is, the
symbols allowed on the tape, δ is a partial function from K×Σ to (K∪{h})×
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Σ×{←,→, ·} defining the valid transitions of the machine, and s ∈ K is the
initial state. It is assumed that h 6∈ K.

The tape is thought to have a left end (position 0) that the head can not
move past, but no right end: the tape extends infinitely to the right, with
uninitialized positions containing the symbol  (blank). To see how the
Turing machine works, we consider a configuration of a machine. For a given
Turing machine, M = (K, Σ, δ, s), a configuration is a triple (q, x, y) that
completely describes the machine at a given point in time: q ∈ K is the
current state, x ∈ Σ∗ is the contents of the tape up to the head, and y ∈ Σ∗

is the rest of the tape contents, with the tape head being positioned at the
first symbol in y. Even though we consider the tape to be infinite, x and y
are always finite strings.

Given a configuration (q, x, y), with x = wb and y = az for a, b ∈ Σ and
z, w ∈ Σ∗, suppose that δ is defined for (q, a) and that δ(q, a) = (r, c, d). The
interpretation is that M moves to state r, replaces a with c on the tape and
moves the head left or right one symbol or does not move it, depending on
whether d is ←, → or ·. Formally we write this as

(q, x, y) `M (r, w, bcz) when d is ←
(q, x, y) `M (r, xc, z) when d is →
(q, x, y) `M (r, x, cz) when d is ·

The geometry of the tape translates into certain restrictions on the transition
function. We require that `M be undefined for any configuration (q, ε, x),
when δ would require the head to move to the right. Also, when δ(q,  ) =
(r, c, d) the transition function should allow moves of the form

(q, x, ε) `M (r, w, bc) when d is ←
(q, x, ε) `M (r, xc, ε) when d is →
(q, x, ε) `M (r, x, c) when d is ·

in order to realize the infinite tape.
We denote by `∗M the transitive closure of `M , so that when M can go

from configuration (q, x, y) to (r, w, z) in zero or more steps we write

(q, x, y) `∗M (r, w, z)

The computation stops when there is no possible move, that is, when δ
is not defined in the current configuration, or when the head tries to move
left in a configuration of the form (q, ε, x). Whenever the machine moves to
state h it will stop, since δ is not defined for any (h, a), a ∈ Σ. When this
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is the case, we say that the machine has halted. If by contrast the machine
stops in any other state than h, we say that it crashed. In the event that the
computation does not stop we say that the machine loops.

The machine is initialized by means of an input string, x. Given M and x
the initial configuration is (s, ., x). The . is provided for convenience as a
beginning of string marker, and could be excluded.

With this setup we can now define the output of a machine, M , on a
given input string x. Provided that M halts, the output is the contents of
the tape. When M crashes or loops we say that the computation diverges
and do not consider the output. We write this as

M(x) = y when (s, ., x) `∗M (h, ., y)

M(x) = ↑ otherwise

and thus, M can be viewed as a partial function from Σ∗ to Σ∗.

As an example, think of a machine, M , that accepts an encoding of a
graph, and then decides if the graph has a certain property. The graph
could be encoded using adjacency list or an incidence matrix, and we could
have M compute 1 if the graph had the desired property or 0 otherwise.
Another way to think of this is as M recognizing a language, that is, the
subset of Σ∗ containing only strings that are valid representations of graphs
with the property.

Definition B.2 (Language Recognition) Given a Turing machine, M ,
we say that M recognizes the language L ⊆ Σ∗, if M(x) = 1 whenever
x ∈ L, and M(x) = 0 otherwise.

Notice that we require the machine to explicitly reject strings not in the
language by computing M(x) = 0. Another notion is that of acceptance:
M accepts L, provided that M(x) = y, for some y ∈ Σ∗ when x ∈ L, and
M(x) = ↑ otherwise. However, in the context of computational complexity,
language recognition is by far the most used criteria.

To measure the execution time of a machine M on input x we will use
the number of steps taken by the machine from the initial configuration
(s, ., x) to the final result (h, ., y). This notion can be extended to entire
languages; suppose that M recognizes a language L. If furthermore there
exists a function f : N → N, such that for all x ∈ Σ∗, M finishes the
computation in time f(|x|) or less, we say that M recognizes L in time f .
The set of languages for which f is a polynomial, is the complexity class P.
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B.2 Nondeterministic Machines

A very important generalization of the original Turing machine introduces
nondeterminism in the way the machine chooses its actions. In the determin-
istic machine the transition function δ uniquely determines the next move,
whereas in the nondeterministic machine, we want to allow several possible
moves from a single configuration.

Definition B.3 (Nondeterministic Turing Machine) We define a non-
deterministic Turing machine to be a 4-tuple, M = (K, Σ, δ, s), much like the
deterministic Turing machine. However, the transition function δ, now maps
K ×Σ to a subset of (K ∪{h})×Σ×{←,→, ·}. If, for some (q, a) ∈ K ×Σ
no move is possible δ(q, a) will be the empty set, otherwise δ(q, a) is a set of
triples representing the possible transitions.

Configurations for a nondeterministic Turing machine are defined just as for
the deterministic machine. The `M -relation between configurations is defined
slightly differently, though. In a given configuration (q, x, y), with x = wb
and y = az for a, b ∈ Σ and z, w ∈ Σ∗, the nondeterministic Turing machine
may take the following actions:

(q, x, y) `M (r, w, bcz) when (r, c,←) ∈ δ(q, a)

(q, x, y) `M (r, xc, z) when (r, c,→) ∈ δ(q, a)

(q, x, y) `M (r, x, cz) when (r, c, ·) ∈ δ(q, a)

and we see how there may be several possible moves. Again we denote by
`∗M the transitive closure of `M ; when there exist a sequence of zero or more
steps taking (q, x, y) to (r, w, z), we write (q, x, y) `∗M (r, w, z).

It does not make sense, however, to talk about the output of a nonde-
terministic computation, since the machine could halt in several different
configurations. Still, though, we can define what it means for a machine to
recognize a language:

Definition B.4 (Language Recognition) Given a nondeterministic Tur-
ing machine, M , we say that M recognizes the language L ∈ Σ∗, when
(s, ., x) `∗M (h, ., 1) if and only if x ∈ L. That is, if there from the start
configuration exists at least one sequence of steps that causes the machine to
halt with 1 on the tape.

As with deterministic machines, we consider the number of steps taken
by the machine as the time measure. However, we must be a bit more precise
here, since there may be several computation paths. So, we will say that a
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machine operate in time k, if all computation paths have length at most k,
that is

(s, ., x) ``
M (q, y, z) ⇒ ` ≤ k.

If a machine M recognizes a language L, and furthermore operate in time
f(|x|) for all x ∈ Σ∗, we say that M recognizes L in time f . The set of
languages for which f is a polynomial, is the complexity class NP.

Being a generalization of the deterministic Turing Machine, it is clear
that the nondeterministic machine can recognize any language recognized by
the deterministic machine, even within the same time bounds. It follows
that P ⊆ NP. On the other hand, by simulating all the possible compu-
tation traces of the nondetermistic machine in a breadth-first manner, the
deterministic machine can perform exactly the same computations as the
nondeterministic machine, and thus recognize the same languages. However,
the breadth-first search scheme must visit a number of configurations that
is exponential in the length of the computation path. Therefore, this con-
struction does not allow us to conclude anything, with regards to whether
NP ⊆ P , which turns out to be an open problem, if not the open problem in
computer science.

B.3 Reductions and Completeness

Consider a problem, A, known to be in NP and a problem, B, from P.
After several failed attemps to come up with a polynomial time algorithm
solving A, one might suspect that somehow A is more difficult than B, and
we would like to express this intuition formally. If we knew that A was in
NP, but not in P, this would be a strong statement on the relative difficulty
of A and B. Furthermore, this would prove that NP 6⊆ P, but so far, no
problems have been proved to lie solely in NP. Instead, to relate problems
we say that A is at least as difficult as B, if any instance of B can be solved
in terms of A, or more formally:

Definition B.5 (Reduction) Given languages L1 and L2, we say that L1

is polynomial time reducible to L2, if there exists a deterministic Turing
machine, computing R, a function from strings to strings, in time polynomial
in the length of the input, such that x ∈ L1 if and only if R(x) ∈ L2. We say
that R is a reduction from L1 to L2.

The restrictions on R are crucial for the definition to be reasonable: if R
could be any function, we could actually solve the problem we were reducing
from as part of the reduction, and output a simple instance of the problem
we were reducing to with the right properties.
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Also, notice that if we compose two reductions, R from L1 to L2 and R′

from L2 to L3, the resulting function, R ◦ R′, is again a reduction; clearly,
x ∈ L1 if and only if R′(R(x)) ∈ L3, and R◦R′ can be computed in polynomial
time by first computing R on x and then computing R′ on the output. It
follows that reductions are transitive, and thus induce an order on problems,
as desired.

To really justify the difficulty of a problem, say A from NP, we could
show that A is as hard as any problem in NP, that is, that any problem in
NP can be reduced to A. In this case we say that A is NP-complete:

Definition B.6 (Completeness) Given L, from the language class C, if all
L′ ∈ C are reducible to L, we say that L is complete for C, or just C-complete.

A problem can be proved to be NP-complete, essentially in two ways: either
by reducing some other problem already known to be NP-complete to it,
or by showing that any problem in NP can be reduced to it. The latter
can be achieved, for example, by showing that any nondeterministic Turing
machine, M , deciding some L ∈ NP, with a given input string, x, can be
expressed as an instance, T (M, x), of the problem in question, say L′, such
that (s, ., x) `∗M (h, ., 1) if and only if T (M, x) ∈ L′. Provided that T is
computable in time polynomial in x, this constitutes a reduction from L
to L′.

If it turns out that P ⊂ NP , then NP-complete languages can not be
decided by deterministic machines in polynomial time. Suppose by contra-
diction that P ⊂ NP and that M is a deterministic machine deciding the
NP-complete language L in polynomial time. It follows that L is also in P.
Any problem in NP can be reduced to L, so consider such L′ ∈ NP, reducible
to L by R, computed by M ′. The composition of M ′ and M forms a deter-
ministic machine deciding L′ in polynomial time, and thus L′ ∈ P. This is a
contradiction, since it was assumed that P ⊂ NP .

While the theory of completeness relates decision problems, we are usually
also interested in the structure of the solutions. For example, the ad packing
problem defined in Chapter 2 asks for a minimal set of pages, and thus,
apparently we can not argue about this problem. However, we can adjust
the problem formulation to get a decision problem: given a target value N ,
does the ads fit on N pages? As shown in Chapter 2 this is indeed an NP-
complete problem. If we were to find a polynomial algorithm, solving the ad
packing problem, we would trivially obtain an polynomial algorithm solving
the decision problem, and thus contradicting the NP-completeness of that
problem, or proving P = NP.
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B.4 Approximation Algorithms

Optimization problems ask for the maximum or minimum of some measure,
for example the weight of a certain subgraph, or the number of pages required
to place a set of ads. For an instance, x, of a given optimization problem, A,
we denote by F (x) the set of feasible solutions. A feasible solution is a
solution to the problem instance that has the required properties. For such a
solution, S ∈ F (x), we can evaluate the cost, c(S), a positive integer, which
is the measure we want to maximize or minimize. So, in other words, an
optimization problems asks for a solution, S∗, maximizing or minimizing
c(S) over F (x).

However, many interesting optimization problems have NP-complete cor-
responding decision problems. As discussed in the previous section, if a
problem has been proved to be NP-complete, there is little hope that we
can come up with a polynomial time algorithm. On the other hand, this
justifies alternative approaches, such as approximation algorithms, the topic
of this section, and exhaustive search, the process of considering all possible
solutions.

Instead of insisting on finding the optimal solution, an approximation
algorithm looks for a solution that is still feasible, but not necessary optimal.

Definition B.7 (Approximation Algorithm) If for any instance, x, of
a minimization problem, A, the algorithm f(x) computes a feasible solution
in polynomial time on a deterministic Turing machine, such that

c(f(x)) ≤ R · c(S∗),

for a fixed R ≥ 1, and S∗ is the optimal solution, we say that f is an R-
approximation algorithm. Correspondingly, if A is a maximization problem
we require that

c(f(x)) ≥ c(S∗)/R.

The factor R is the performance ratio of the algorithm.

While it certainly makes sense to approximate difficult problems from P with
faster polynomial algorithms, the above definition is really geared towards ar-
guing about approximating NP-complete problems using deterministic poly-
nomial time algorithms. After all, any problem in P is 1-approximable. A bit
surprising perhaps, not all NP-complete problems can be approximated, as-
suming P 6= NP. The traveling salesman problem, which asks for a minimum
weight tour of the nodes in a graph, is one such problem. Given that we had
an R-approximation algorithm for the traveling salesman problem, we could
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use it to solve the Hamilton cycle problem exactly in polynomial determin-
istic time. However, the Hamilton cycle problem is also NP-complete, which
contradicts the existence of such an algorithm, given that P 6= NP.



Appendix C

Implementation

This appendix contains source code for the implementation of the skyline
algorithm and the tabu search. The files basic-types.h, basic-types.c,
xml.h and xml.c establish a basic framework for loading and saving data
files and operating on ads, layouts and pages. The two algorithms have
been implemented within this framework, and so has a validate program,
which has been used to automate the test phase. Various scripts used to
transform between the original data file format, XML and PostScript have
been omitted, but is available with the rest of the implementation from
http://www.daimi.au.dk/~hogsberg/thesis.html.

A cross index of all functions defined in the source code can be found in
Section C.7 and should be useful when studying the implementation.
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C.1 Basic Data Structures

The basic-types.h and basic-types.c files implement basic types such
as ads, layout descriptions, pages and page lists, as well as a number of
convenience functions operating on these. Many of the datastructures are
based on the GList doubly chained list structure, which is part of the GLib
convenience library for C (see http://www.gtk.org).

basic-types.h

#ifndef BASIC_TYPES_H
#define BASIC_TYPES_H

#include <glib.h>
#include <gnome-xml/parser.h>

#define PAGE_HEIGHT 520
#define PAGE_WIDTH 8
#define PAGE_AREA (PAGE_HEIGHT * PAGE_WIDTH)

typedef struct Page Page;
typedef enum AdFlags AdFlags;
typedef struct Ad Ad;
typedef struct Layout Layout;
typedef struct AdGroup AdGroup;

struct Page {
char *id;
int number;
Layout *layout;
void (*destroy) (Page *p);
Page *(*copy) (Page *p);

};

enum AdFlags {
AD_ALIGN_LEFT = 1,
AD_ALIGN_RIGHT = 2,
AD_ALIGN_TOP = 4,
AD_ALIGN_BOTTOM = 8,
AD_PREPLACED = 16

};

struct Ad {
int width, height;
int weight, key, class;
char *id;
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AdGroup *group;
AdFlags flags;
int min_level[PAGE_WIDTH];
int preplaced_x, preplaced_y;

xmlNode *node;
};

struct AdGroup
{
GList *members;
int total_area;
int placed_area;

};

struct Layout {
Ad *ad;
int x, y;
Layout *next;

};

Layout *layout_new (Ad *ad, int x, int y, Layout *next);
void layout_free (Layout *layout);
void layout_free_all (Layout *layout);
GList *layout_validate (Layout *layout);
Layout *layout_copy (Layout *layout);
Layout *layout_remove_ad (Layout *layout, Ad *ad);
int layout_weight (Layout *layout);
int layout_area (Layout *layout);

Page *base_page_new (int number, const char *id, Layout *layout);
Page *base_page_copy (Page *page);

void page_destroy (Page *page);
void base_page_destroy (Page *page);
void page_remove_ad (Page *page, Ad *ad);
void page_merge (Page *page, Page *extra);
Page *page_copy (Page *page);
GList *page_get_ads (Page *page);
double page_compute_sparseness (Page *page);

void page_list_free (GList *list);
GList *page_list_remove (GList *list, Page *p);
GList *page_list_get_ads (GList *list);
void page_list_enumerate (GList *list);
GList *page_list_copy (GList *list);

Ad *ad_list_get_ad (GList *list, const char *id);
void ad_list_dump (GList *list);
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Ad *ad_list_get_biggest_ad (GList *list);
GList *ad_list_compact (GList *list, Layout *layout);
GList *ad_list_subtract (GList *list, GList *remove);

AdGroup *ad_group_new (GList *members);
void ad_group_join (AdGroup *g1, AdGroup *g2);

GList *g_list_split (GList *list, int index);

#endif

basic-types.c

#include <glib.h>
#include "basic-types.h"

static Layout *layout_free_list;

Layout *
layout_new (Ad *ad, int x, int y, Layout *next)
{
Layout *l;

if (layout_free_list != NULL) {
l = layout_free_list;
layout_free_list = layout_free_list->next;

}
else
l = g_new (Layout, 1);

l->ad = ad;
l->x = x;
l->y = y;
l->next = next;

return l;
}

void
layout_free (Layout *layout)
{
layout->next = layout_free_list;
layout_free_list = layout;

}

void
layout_free_all (Layout *layout)
{
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Layout *l;

if (layout == NULL)
return;

l = layout;
while (l->next != NULL)
l = l->next;

l->next = layout_free_list;
layout_free_list = layout;

}

Layout *
layout_copy (Layout *layout)
{
Layout *l, *copy;

copy = NULL;
for (l = layout; l != NULL; l = l->next)
copy = layout_new (l->ad, l->x, l->y, copy);

return copy;
}

int
layout_weight (Layout *layout)
{
Layout *l;
int weight;

for (l = layout, weight = 0; l != NULL; l = l->next)
weight += l->ad->weight;

return weight;
}

int
layout_area (Layout *layout)
{
Layout *l;
int area;

for (l = layout, area = 0; l != NULL; l = l->next)
area += l->ad->width * l->ad->height;

return area;
}
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GList *
layout_validate (Layout *layout)
{
GList *errors;
Layout *l1, *l2;

errors = NULL;
for (l1 = layout; l1 != NULL; l1 = l1->next)
{
/* Check for overlap between l1->ad and all the other ads. This
* is just a simple loop through the ads. Presumably this could
* be in time n log n using some clever scheme, but this is
* intentionally kept simple.
*/
for (l2 = layout; l2 != NULL; l2 = l2->next)
{
if (l1 != l2 &&

l1->x < l2->x + l2->ad->width &&
l2->x < l1->x + l1->ad->width &&
l1->y < l2->y + l2->ad->height &&
l2->y < l1->y + l1->ad->height)

{
errors = g_list_prepend (errors, l1->ad);
break;

}
}

/* If l1->ad didn’t overlap any other ads, check that it’s
* actually placed within the page
*/
if (l2 == NULL)
{

if (l1->x < 0 || l1->x + l1->ad->width > PAGE_WIDTH ||
l1->y < 0 || l1->y + l1->ad->height > PAGE_HEIGHT)

errors = g_list_prepend (errors, l1->ad);
}

}

return errors;
}

Layout *
layout_remove_ad (Layout *layout, Ad *ad)
{
Layout *l, *next;

if (layout->ad == ad)
{
l = layout->next;
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layout_free (layout);
return l;

}
else
for (l = layout; l != NULL; l = l->next)
{
if (l->next != NULL && l->next->ad == ad)

{
next = l->next;
l->next = next->next;
layout_free (next);
break;

}
}

return layout;
}

void
layout_dump (Layout *layout, FILE *fp)
{
Layout *l;

for (l = layout; l != NULL; l = l->next)
fprintf (fp, "Ad ‘%s’ at (%d,%d)\n", l->ad->id, l->x, l->y);

}

Page *base_page_new (int number, const char *id, Layout *layout)
{
Page *page;

page = g_new (Page, 1);
page->number = number;
if (id == NULL)

page->id = g_strdup_printf ("%d", number);
else

page->id = g_strdup (id);
page->layout = layout;
page->destroy = base_page_destroy;
page->copy = base_page_copy;

return page;
}

void
base_page_destroy (Page *page)
{
layout_free_all (page->layout);
g_free (page->id);
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g_free (page);
}

Page *
base_page_copy (Page *page)
{
Page *copy;

copy = g_new (Page, 1);
copy->number = page->number;
copy->id = g_strdup (page->id);
copy->layout = layout_copy (page->layout);
copy->copy = base_page_copy;
copy->destroy = base_page_destroy;

return copy;
}

void
page_destroy (Page *page)
{
page->destroy (page);

}

Page *
page_copy (Page *page)
{
return page->copy (page);

}

void
page_remove_ad (Page *page, Ad *ad)
{
page->layout = layout_remove_ad (page->layout, ad);

}

void
page_merge (Page *page, Page *extra)
{
Layout *l;

for (l = extra->layout; l != NULL; l = l->next)
page->layout = layout_new (l->ad, l->x, l->y, page->layout);

}

double
page_compute_sparseness (Page *page)
{
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Layout *l;
int area;

area = 0;
for (l = page->layout; l != NULL; l = l->next)
area += l->ad->width * l->ad->height;

return (double) PAGE_AREA / area;
}

GList *
page_get_ads (Page *page)
{
GList *ads;
Layout *l;

ads = NULL;
for (l = page->layout; l != NULL; l = l->next)
ads = g_list_prepend (ads, l->ad);

return ads;
}

void
page_list_free (GList *list)
{
GList *c;

for (c = list; c != NULL; c = c->next)
page_destroy (c->data);

g_list_free (list);
}

GList *
page_list_remove (GList *list, Page *p)
{
list = g_list_remove (list, p);
page_destroy (p);

return list;
}

void
page_list_enumerate (GList *list)
{
GList *c;
int i;
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for (c = list, i = 0; c != NULL; c = c->next, i++)
{
Page *p = c->data;

if (p->id != NULL)
g_free (p->id);

p->id = g_strdup_printf ("%02d", i);
p->number = i;

}
}

GList *
page_list_copy (GList *list)
{
GList *c, *copy;

copy = NULL;
for (c = list; c != NULL; c = c->next)
copy = g_list_prepend (copy, page_copy (c->data));

return g_list_reverse (copy);
}

GList *
page_list_get_ads (GList *list)
{
GList *c, *ads;

ads = NULL;
for (c = list; c != NULL; c = c->next)
ads = g_list_concat (ads, page_get_ads (c->data));

return ads;
}

Ad *
ad_list_get_ad (GList *list, const char *id)
{
GList *c;

for (c = list; c != NULL; c = c->next)
{
Ad *ad = (Ad *) c->data;

if (strcmp (ad->id, id) == 0)
return ad;

}

return NULL;
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}

Ad *
ad_list_get_biggest_ad (GList *list)
{
GList *c;
Ad *ad, *biggest_ad;

biggest_ad = NULL;

for (c = list; c != NULL; c = c->next)
{
ad = (Ad *) c->data;

if (ad == NULL)
continue;

if (biggest_ad == NULL ||
biggest_ad->width * biggest_ad->height < ad->width * ad->height)
biggest_ad = ad;

}

return biggest_ad;
}

static int compare_ad_id (Ad *ad1, Ad *ad2)
{
return ad1->id - ad2->id;

}

GList *
ad_list_subtract (GList *list, GList *remove)
{
GList *c;

for (c = remove; c != NULL; c = c->next)
list = g_list_remove (list, c->data);

return list;
}

AdGroup *
ad_group_new (GList *members)
{
AdGroup *group;
GList *c;
int area;

group = g_new (AdGroup, 1);
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group->members = g_list_copy (members);

for (c = members; c != NULL; c = c->next)
{
Ad *ad = c->data;

if (ad->group != NULL)
ad_group_join (group, ad->group);

else
{
group->members = g_list_prepend (group->members, ad);
ad->group = group;

}
}

area = 0;
for (c = group->members; c != NULL; c = c->next)
{
Ad *ad = c->data;

area += ad->width * ad->height;
}

group->total_area = area;
group->placed_area = 0;

return group;
}

void
ad_group_join (AdGroup *g1, AdGroup *g2)
{
GList *c;

if (g1 == g2)
return;

for (c = g2->members; c != NULL; c = c->next)
{
Ad *ad = c->data;

ad->group = g1;
g1->members = g_list_prepend (g1->members, ad);

}

g_free (g2);
}

GList *
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g_list_split (GList *list, int index)
{
GList *p;

p = g_list_nth (list, index);
p->prev->next = NULL;
p->prev = NULL;

return p;
}
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C.2 Data File Functions

The xml.h and xml.c files implement the input and output functions for
the data files. The actual parsing and writing of XML files is done by the
library libxml, available from www.xmlsoft.org. The functions in the files
below convert the data structures returned by libxml to the data structures
defined in basic-types.h and vice versa.

xml.h

#ifndef XML_H
#define XML_H

#include <glib.h>
#include <gnome-xml/parser.h>
#include "basic-types.h"

GList *xml_get_ads (xmlDoc *doc);
GList *xml_get_pages (xmlDoc *doc, GList *ads, const char *plc_type);

void xml_update_ads (GList *ads);
void xml_update_pages (GList *pages);
void xml_add_history_entry (xmlDoc *doc,

const char *tool,
const char *version,
const char *content);

#endif /* XML_H */

xml.c

#include <stdlib.h>
#include <tree.h>
#include <xmlmemory.h>
#include <time.h>
#include <unistd.h>
#include <glib.h>
#include "basic-types.h"

static int
xml_node_get_int_prop (xmlNode *node, const char *name, int default_val)
{
char *val = xmlGetProp (node, name);
int ret;

if (val != NULL)
{
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ret = atoi (val);
xmlFree (val);

}
else
ret = default_val;

return ret;
}

static char *
xml_node_get_str_prop (xmlNode *node, const char *name,

const char *default_val)
{
char *val = xmlGetProp (node, name);
char *ret;

if (val != NULL)
{
ret = g_strdup (val);
xmlFree (val);

}
else

ret = default_val ? g_strdup (default_val) : NULL;

return ret;
}

static void
xml_node_set_int_prop (xmlNode *node, const char *name, int val)
{
char buf[100];

g_snprintf (buf, 100, "%d", val);
xmlSetProp (node, name, buf);

}

/* Given an xmlNode, node, look for the child element with name name.
* If id is non-null, also check that the element has an attribute
* called id, whose value matches id.
*/

static xmlNode *
xml_node_get_child (xmlNode *node, const char *name, const char *id)
{
xmlNode *n;

for (n = node->childs; n != NULL; n = n->next)
if (strcmp (n->name, name) == 0)
{
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if (id != NULL)
{
char *actual_id = xml_node_get_str_prop (n, "id", NULL);

if (actual_id != NULL && strcmp (actual_id, id) == 0)
return n;

}
else
return n;

}

return NULL;
}

static xmlNode *
xml_node_set_child (xmlNode *node, const char *name, const char *id,

const char *content)
{
xmlNode *n;

n = xml_node_get_child (node, name, id);
if (n == NULL)
{
n = xmlNewChild (node, NULL, name, content);
xmlSetProp (n, "id", id);

}
else
xmlNodeSetContent (n, content);

return n;
}

static Page *
get_page (GList **pages, const char *id)
{
GList *c;
Page *p;

for (c = *pages; c != NULL; c = c->next)
{
Page *p = c->data;
if (strcmp (p->id, id) == 0)
return p;

}

p = base_page_new (0, id, NULL);
*pages = g_list_prepend (*pages, p);

return p;
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}

static Ad *
ad_new_from_xml_node (xmlNode *node)
{
Ad *ad;
static int id;
char buf[100], *p;

ad = g_new (Ad, 1);

ad->width = xml_node_get_int_prop (node, "width", 0);
ad->height = xml_node_get_int_prop (node, "height", 0);
ad->weight = xml_node_get_int_prop (node, "weight", ad->width * ad->height);
ad->key = id;
g_snprintf (buf, 100, "%d", id);
ad->id = xml_node_get_str_prop (node, "id", buf);
ad->node = node;
ad->group = NULL;
id++;

ad->flags = 0;
p = xml_node_get_str_prop (node, "valign", NULL);
if (p != NULL)

{
if (strcmp (p, "top") == 0)
ad->flags |= AD_ALIGN_TOP;

else if (strcmp (p, "bottom") == 0)
ad->flags |= AD_ALIGN_BOTTOM;

g_free (p);
}

p = xml_node_get_str_prop (node, "halign", NULL);
if (p != NULL)
{
if (strcmp (p, "left") == 0)
ad->flags |= AD_ALIGN_LEFT;

else if (strcmp (p, "right") == 0)
ad->flags |= AD_ALIGN_RIGHT;

g_free (p);
}

return ad;
}

GList *
xml_get_ads (xmlDoc *doc)
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{
GList *c;
xmlNode *node;
Ad *ad;

c = NULL;
for (node = doc->root->childs; node != NULL; node = node->next)
{
if (strcmp (node->name, "ad") != 0)
continue;

ad = ad_new_from_xml_node (node);
c = g_list_prepend (c, ad);

}

return g_list_reverse (c);
}

/* if plc_type is NULL we want all placements */

GList *
xml_get_pages (xmlDoc *doc, GList *ads, const char *plc_type)
{
GList *c;
xmlNode *node, *plc;
Page *p;
Ad *ad;
char *type, *id, *page_id;
int x, y;

c = NULL;
for (node = doc->root->childs; node != NULL; node = node->next)
{
if (strcmp (node->name, "ad") != 0)
continue;

plc = xml_node_get_child (node, "placement", NULL);
if (plc != NULL)
{
type = xml_node_get_str_prop (plc, "type", NULL);
if (plc_type == NULL ||

(type != NULL && strcmp (type, plc_type) == 0))
{
page_id = xml_node_get_str_prop (plc, "page", 0);
x = xml_node_get_int_prop (plc, "x", 0);
y = xml_node_get_int_prop (plc, "y", 0);
id = xml_node_get_str_prop (node, "id", NULL);
g_assert (id != NULL);

p = get_page (&c, page_id);
ad = ad_list_get_ad (ads, id);



C.2. DATA FILE FUNCTIONS 85

g_free (page_id);
p->layout = layout_new (ad, x, y, p->layout);

}
g_free (type);

}

}

return c;
}

void
xml_update_ads (GList *ads)
{
GList *c;

for (c = ads; c != NULL; c = c->next)
{
Ad *ad = c->data;

if (ad->weight != ad->width * ad->height)
xml_node_set_int_prop (ad->node, "weight", ad->weight);

}
}

static void
update_layout (Page *page, gpointer null)
{
Layout *l;
xmlNode *plc;

for (l = page->layout; l != NULL; l = l->next)
{
char buf[100];

if (xml_node_get_child (l->ad->node, "annotation", "adid") == NULL)
xml_node_set_child (l->ad->node, "annotation", "adid", l->ad->id);

plc = xml_node_set_child (l->ad->node, "placement", NULL, NULL);
g_snprintf (buf, 100, "%02d", page->number);
xmlSetProp (plc, "page", buf);
if (!(l->ad->flags & AD_PREPLACED))
xmlSetProp (plc, "type", "automatic");

xml_node_set_int_prop (plc, "x", l->x);
xml_node_set_int_prop (plc, "y", l->y);

}
}

void
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xml_update_pages (GList *pages)
{
g_list_foreach (pages, (GFunc) update_layout, NULL);

}

void
xml_add_history_entry (xmlDoc *doc,

const char *tool,
const char *version,
const char *content)

{
xmlNode *node, *entry;
char *time_string;
time_t t;

for (node = doc->root->childs; node != NULL; node = node->next)
{
if (strcmp (node->name, "history") == 0)
break;

}

if (node == NULL)
{
node = xmlNewChild (doc->root->childs, NULL, "history", NULL);
xmlAddNextSibling (doc->root->childs, node);

}

t = time (NULL);
time_string = ctime (&t);

entry = xmlNewChild (node, NULL, "entry", content);
xmlSetProp (entry, "tool", tool);
xmlSetProp (entry, "version", version);
xmlSetProp (entry, "date", g_strchomp (time_string));

}
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C.3 Skyline Algorithm Implementation

The skyline.h and skyline.c files implement the skyline algorithm. The
function skyline iterate corresponds roughly to the pseudo-code in Fig-
ure 3.5, skyline place ad implements the test for wether an ad can be
placed and also the updating of the skyline data structure. The function
skyline raise implements the process of raising the skyline and the func-
tion skyline update minimum locates the leftmost local minimum for a given
skyline.

The skyline-main.c file handle argument parsing and reading and writ-
ing datafiles. Also in this file is the function adjust weights, which is
responsible for adjusting the weights of the ads as described in Section 3.7.

skyline.h

#ifndef SKYLINE_H
#define SKYLINE_H

#include "basic-types.h"

typedef struct Skyline Skyline;
typedef struct SkylinePage SkylinePage;

struct Skyline {
/* Location of leftmost local minimum. min_start is first

colum inside the minimum, min_end is first column
outside. */

int min_start, min_end;

/* Length of non-real prefix of skyline at minimum. */
int virtual_length;

/* This is the height of the gap from the baseline of the
minimum to the lower edge of the top ad to the left. */

int gap;

/* The real and the virtual skyline. */
int real_skyline[PAGE_WIDTH], virtual_skyline[PAGE_WIDTH];

/* The actual layout corresponding to the current skyline. */
Layout *layout;

/* The current weight and occupied area. */
int weight, area, waste;

/* In columns where the real and the virtual skyline
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coincide, this array holds the address of the topmost
ad. Otherwise the corresponding entry is NULL. */

Ad *top_ads[PAGE_WIDTH];
};

struct SkylinePage {
Page page;
Layout *preplaced_ads;
int weight, waste;
int initial_skyline[PAGE_WIDTH], column_height[PAGE_WIDTH];

};

SkylinePage *skyline_page_new (int number);
void skyline_page_calculate_skyline (SkylinePage *p);
void skyline_page_print (SkylinePage *p, FILE *fp);
void skyline_page_free (SkylinePage *page);

void skyline_init (Skyline *skyline);
void skyline_update_minimum (Skyline *skyline);
int skyline_raise (Skyline *skyline, SkylinePage *page);
int skyline_ad_fits (Skyline *skyline, SkylinePage *page, Ad *ad);
void skyline_iterate (SkylinePage *page, GList *list,

Skyline *skyline);
GList *skyline_layout_pages (GList *ad_list, GList *preplaced,

int iteration, double skip_factor,
FILE *progress);

void skyline_backtrack (Skyline *skyline,
Skyline *original_skyline, Ad *ad);

#endif

skyline.c

#include <glib.h>
#include <stdlib.h>
#include <math.h>
#include <values.h>
#include <gnome-xml/parser.h>
#include <string.h>
#include "skyline.h"

static double skip_factor ;
static Ad *first_ad;
static Layout *preplaced_table[PAGE_WIDTH][PAGE_WIDTH];
static int preplaced_area, current_preplaced_area;

static void
preplaced_ads_tabulate (Layout *layout)
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{
Layout *l;
int i, w;

preplaced_area = 0;
for (l = layout; l != NULL; l = l->next)

{
for (i = 0; i < PAGE_WIDTH; i++)
{
for (w = 0; w < PAGE_WIDTH; w++)
if (i < l->x + l->ad->width &&

l->x < i + w + 1 &&
i + w + 1 <= PAGE_WIDTH)

{
preplaced_table[i][w] =
layout_new (l->ad, l->x, l->y, preplaced_table[i][w]);

}
}

preplaced_area += l->ad->width * l->ad->height;
}

}

void
preplaced_ads_free (void)
{
int i, w;

for (i = 0; i < PAGE_WIDTH; i++)
for (w = 0; w < PAGE_WIDTH + 0; w++)
{
layout_free_all (preplaced_table[i][w]);
preplaced_table[i][w] = NULL;

}
preplaced_area = 0;

}

static void skyline_page_destroy (SkylinePage *page);

SkylinePage *
skyline_page_new (int number)
{
SkylinePage *page;
int i;

page = g_new (SkylinePage, 1);

page->page.number = number;
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page->page.layout = NULL;
page->weight = 0;
page->preplaced_ads = NULL;
page->page.id = g_strdup_printf ("%d", number);

for (i = 0; i < PAGE_WIDTH; i++)
{
page->initial_skyline[i] = 0;
page->column_height[i] = PAGE_HEIGHT;

}

page->page.destroy = (void (*)(Page *)) skyline_page_destroy;

return page;
}

void
skyline_page_destroy (SkylinePage *page)
{
layout_free_all (page->preplaced_ads);
layout_free_all (page->page.layout);
g_free (page->page.id);
g_free (page);

}

void
skyline_init (Skyline *skyline)
{
int i;

skyline->min_start = 0;
skyline->min_end = PAGE_WIDTH;
skyline->virtual_length = 0;
skyline->gap = 0;
skyline->weight = 0;
skyline->area = 0;
skyline->layout = NULL;

for (i = 0; i < PAGE_WIDTH; i++)
{
skyline->top_ads[i] = NULL;
skyline->real_skyline[i] = 0;
skyline->virtual_skyline[i] = 0;

}

skyline_update_minimum (skyline);
}

/* Find the leftmost local minimum of the new skyline */



C.3. SKYLINE ALGORITHM IMPLEMENTATION 91

void
skyline_update_minimum (Skyline *skyline)
{
int level, i;

skyline->min_start = 0;
level = skyline->virtual_skyline[0];

for (i = 1; i < PAGE_WIDTH; i++)
if (skyline->virtual_skyline[i] < level) {
skyline->min_start = i;
level = skyline->virtual_skyline[i];

}
else if (skyline->virtual_skyline[i] > level)
break;

skyline->min_end = i;

/* Calculate the length of the initial not-real skyline of the new
* minimum. */

for (i = skyline->min_start; i < skyline->min_end; i++)
if (skyline->virtual_skyline[i] == skyline->real_skyline[i])
break;

skyline->virtual_length = i - skyline->min_start;
}

/* Lower the virtual skyline in the interval [start; end) so it forms
* an increasing staircase. lower_edge is the y-coordinate of the
* lower edge of the ad that make up the left border of the minimum,
* which is used to calculate the new gap.
*/

void
skyline_lower (Skyline *skyline, int start, int end, int lower_edge)
{
int level, i;

level = skyline->real_skyline[start - 1];
for (i = start; i < end; i++)

{
if (skyline->real_skyline[i] > level)
level = skyline->real_skyline[i];

skyline->virtual_skyline[i] = level;
}

skyline->gap = lower_edge - skyline->virtual_skyline[start];
}
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static int
skyline_place_ad (Skyline *skyline, SkylinePage *page, Ad *ad)
{
Layout *l;
int i, level, x0, x1, aw;
int lower_edge, left_edge;

x0 = skyline->min_start;
x1 = skyline->min_end;
aw = ad->width;
left_edge = x0;
level = skyline->virtual_skyline[x0];
lower_edge = level;

if (ad->flags != 0)
{
/* Check that AD_TIE_BOTTOM and AD_TIE_LEFT are satisfied */

if ((ad->flags & AD_ALIGN_BOTTOM) && level > 0)
return FALSE;

if ((ad->flags & AD_ALIGN_RIGHT) && x0 > 0)
return FALSE;

/* AD_TIE_RIGHT is implemented by pretending the ad extends to
* the right edge. */

if (ad->flags & AD_ALIGN_LEFT)
left_edge = PAGE_WIDTH - aw;

/* AD_TIE_TOP is implemented by placing the ad at the top. */

if (ad->flags & AD_ALIGN_TOP)
lower_edge = PAGE_HEIGHT - ad->height;

if (ad->flags & AD_PREPLACED)
{
if (level < ad->min_level[x0])
return FALSE;

left_edge = ad->preplaced_x;
lower_edge = ad->preplaced_y;

}
}

/* See if the ad fits in the minimum. The ad shouldn’t be wider
than the minimum, it should rest on part of the real skyline and
it should be taller than the gap. */

if (left_edge + aw > x1)
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return FALSE;

if (lower_edge + ad->height > PAGE_HEIGHT)
return FALSE;

if (left_edge + aw <= x0 + skyline->virtual_length)
return FALSE;

if (lower_edge + ad->height <= level + skyline->gap)
return FALSE;

/* Check for symmetry conditions only if the ad hasn’t got any
* border constraints, e.g. if the ad with the smallest key was tied
* to the top it would never be placed. Also, we dont want to
* reject preplaced ads for symmetry reasons. */

if (ad->flags == 0)
{
/* Stack ads in order of bottom up increasing ad->key only. */

if (skyline->top_ads[x0] != NULL &&
aw == skyline->top_ads[x0]->width &&
skyline->top_ads[x0]->key > ad->key)

return FALSE;

/* More symmetry considerations: did this pair occur earlier? */

if (level == 0 && first_ad != NULL &&
x0 + aw == PAGE_WIDTH &&
first_ad->key > ad->key)

return FALSE;
}

/* Does this ad overlap with some preplaced ad? */

if (!(ad->flags & AD_PREPLACED))
{
l = preplaced_table[x0][left_edge + aw - x0 - 1];
while (l != NULL)
{

if (level < l->y + l->ad->height &&
l->y < lower_edge + ad->height)

return FALSE;
l = l->next;

}
}

/* OK, we can place the ad. Update the skyline accordingly. If we
* cut the virtual skyline, then lower it and calculate new gap.
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* Otherwise just remove the gap. We should do this before updating
* the real skyline, since the lowering function needs to know
* real_skyline as it were before placing the ad. */

if (x0 + aw < PAGE_WIDTH && skyline->real_skyline[x0 + aw - 1] < level)
skyline_lower (skyline, x0 + aw, x1, lower_edge);

else
skyline->gap = lower_edge - level;

for (i = x0; i < left_edge; i++)
{
skyline->virtual_skyline[i] = lower_edge + ad->height;
skyline->top_ads[i] = NULL;

}
for (i = left_edge; i < left_edge + aw; i++)
{
skyline->area += lower_edge + ad->height - skyline->real_skyline[i];
skyline->virtual_skyline[i] = lower_edge + ad->height;
skyline->real_skyline[i] = lower_edge + ad->height;
skyline->top_ads[i] = NULL;

}
skyline->top_ads[left_edge] = ad;

if (level == 0 && x0 == 0)
first_ad = ad;

skyline->weight += ad->weight;
skyline->layout = layout_new (ad, left_edge, lower_edge, skyline->layout);

if (ad->flags & AD_PREPLACED)
current_preplaced_area += ad->width * ad->height;

skyline_update_minimum (skyline);

return TRUE;
}

/* Raise the skyline for current minimum, so it has the same height as
* its lowest neighbour column. If the skyline was raised TRUE is
* returned otherwise (if the minimum spans the whole page) FALSE is
* returned. */

int
skyline_raise (Skyline *skyline, SkylinePage *page)
{
int new_level, level, i, width;
int x0, x1;

x0 = skyline->min_start;
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x1 = skyline->min_end;

/* Determine level to raise to by looking at neighbour columns, if
* any. It doesn’t matter wether we look at the virtual or the real
* skyline, as they coincide in this case. */

new_level = MAXINT;
if (x0 > 0)
new_level = skyline->virtual_skyline[x0 - 1];

if (x1 < PAGE_WIDTH)
new_level = MIN (new_level, skyline->virtual_skyline[x1]);

level = skyline->virtual_skyline[x0];
width = x1 - x0;

if (new_level != MAXINT)
{
for (i = x0; i < x1; i++)
{
skyline->virtual_skyline[i] = new_level;
skyline->top_ads[i] = NULL;

}

skyline_update_minimum (skyline);

return TRUE;
}

else
{
/* This page is now closed. Update best page if necessary */

if (skyline->weight > page->weight)
{
layout_free_all (page->page.layout);
page->page.layout = layout_copy (skyline->layout);
page->weight = skyline->weight;

}
return FALSE;

}
}

/* Remove the ad from the page. The page is restored by copying the
* saved state back, after freeing the layout cell. */

void
skyline_backtrack (Skyline *skyline, Skyline *original_skyline, Ad *ad)
{
if (ad != NULL)
layout_free (skyline->layout);
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if (ad == first_ad)
first_ad = NULL;

if (ad->flags & AD_PREPLACED)
current_preplaced_area -= ad->width * ad->height;

*skyline = *original_skyline;
}

int
skyline_ad_fits (Skyline *skyline, SkylinePage *page, Ad *ad)
{
int i, j, *vs;
int area;

if (ad == NULL)
return TRUE;

area = ad->width * ad->height;
if (preplaced_area > 0)
return skyline->area +
(preplaced_area - current_preplaced_area) + area <= PAGE_AREA;

if (skyline->area + area > PAGE_AREA)
return FALSE;

vs = skyline->virtual_skyline;
for (i = 0; i < PAGE_WIDTH - ad->width; i++)
{
for (j = i; j < i + ad->width; j++)
if (vs[j] + ad->height > PAGE_HEIGHT)
break;

if (j == ad->width)
return TRUE;

}

return FALSE;
}

/* Before iterating through the ads we save the real and virtual
* skylines. Then we loop through all ads placing each one and
* calling recursively. Finally we try to raise the skyline, and if
* the configuration changed, we call recursively.
*/

static Ad *big_ad;
static int big_ad_placed;

void
skyline_iterate (SkylinePage *page, GList *ads, Skyline *skyline)
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{
GList *c;
Skyline new_skyline;
Ad *ad, *prev_ad;

new_skyline = *skyline;
prev_ad = NULL;

for (c = ads->next; c->data != NULL; c = c->next)
{
ad = (Ad *) c->data;

if (!(ad->flags & AD_PREPLACED) &&
prev_ad != NULL && prev_ad->width == ad->width &&
prev_ad->height - ad->height < skip_factor * prev_ad->height)

continue;

if (!skyline_place_ad (&new_skyline, page, ad))
continue;

c->prev->next = c->next;
c->next->prev = c->prev;

if (ad == big_ad)
big_ad_placed = TRUE;

if (big_ad_placed || skyline_ad_fits (&new_skyline, page, big_ad))
skyline_iterate (page, ads, &new_skyline);

skyline_backtrack (&new_skyline, skyline, ad);

c->prev->next = c;
c->next->prev = c;

if (ad == big_ad)
big_ad_placed = FALSE;

prev_ad = ad;
}

if (skyline_raise (&new_skyline, page))
skyline_iterate (page, ads, &new_skyline);

}

static int
compare_ads (const void *p1, const void *p2)
{
int res;
Ad *ad1, *ad2;
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ad1 = (Ad *) p1;
ad2 = (Ad *) p2;

res = ad1->width - ad2->width;

if (res == 0)
return ad2->height - ad1->height;

else
return res;

}

static void
skyline_print_progress (int iteration, int current, int total,

int length, FILE *progress)
{
int i, scaled, p;
char buffer[80];

scaled = current * length / total;
p = g_snprintf (buffer, 80, "\rIteration %3d: [", iteration);
for (i = 0; i < length && p < 80; i++, p++)
buffer[p] = i < scaled ? ’#’ : ’.’;

g_snprintf (buffer + p, 80 - i, "] %d/%d", current, total);
fprintf (progress, "%s", buffer);

}

static void
ad_ring_make (GList *list1, GList *list2)
{
GList *t;

list1 = g_list_concat (list1, list2);
t = g_list_prepend (list1, NULL);
t->prev = g_list_last (list1);
t->prev->next = t;

}

static void
ad_ring_break (GList *ring, GList *list)
{
GList *t;

t = ring->prev;
if (list == NULL)
list = t;

t->next->prev = NULL;
t->next = NULL;
list->prev->next = NULL;
list->prev = NULL;
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g_list_free (list);
}

GList *
skyline_layout_pages (GList *ad_list, GList *preplaced_list,

int iteration, double sf, FILE *progress)
{
int i, total;
GList *new_pages, *ads, *c, *tmp;
SkylinePage *page1, *page2;

new_pages = NULL;
ads = g_list_sort (g_list_copy (ad_list), compare_ads);

for (c = ads, i = 0; c != NULL; c = c->next, i++)
((Ad*)c->data)->key = i;

total = g_list_length (ads);
skip_factor = sf;

for (i = 0; ads != NULL; i++)
{

Skyline skyline;

big_ad = ad_list_get_biggest_ad (ads);

page1 = skyline_page_new (i);
ad_ring_make (ads, NULL);
skyline_init (&skyline);
skyline_iterate (page1, ads->prev, &skyline);
ad_ring_break (ads, NULL);

if (preplaced_list != NULL)
{
Page *preplaced_page = preplaced_list->data;
GList *preplaced_ads;

page2 = skyline_page_new (i);
skyline_init (&skyline);

preplaced_ads_tabulate (preplaced_page->layout);
preplaced_ads = page_get_ads (preplaced_page);
ad_ring_make (ads, preplaced_ads);
skyline_iterate (page2, ads->prev, &skyline);
preplaced_ads_free ();
ad_ring_break (ads, preplaced_ads);

}
else
page2 = NULL;
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if (page2 == NULL || page1->weight > page2->weight)
{
tmp = page_get_ads ((Page *) page1);
ads = ad_list_subtract (ads, tmp);
g_list_free (tmp);
new_pages = g_list_prepend (new_pages, page1);
if (page2 != NULL)
page_destroy ((Page *) page2);

}
else
{

tmp = page_get_ads ((Page *) page2);
ads = ad_list_subtract (ads, tmp);
g_list_free (tmp);
new_pages = g_list_prepend (new_pages, page2);
page_destroy ((Page *) page1);
preplaced_list = preplaced_list->next;

}

if (progress != NULL)
skyline_print_progress (iteration, total - (g_list_length (ads)),

total, 40, progress);
}

new_pages = g_list_concat (g_list_copy (preplaced_list), new_pages);

if (progress)
fprintf (progress, ", %d pages\n", g_list_length (new_pages));

return new_pages;
}

skyline-main.c

#include <glib.h>
#include <stdlib.h>
#include <math.h>
#include <values.h>
#include <gnome-xml/parser.h>
#include <string.h>

#include "skyline.h"
#include "lower-bound.h"
#include "xml.h"

void
adjust_weights (GList *pages)
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{
GList *c;
int count[8], i;
double badness[8], fraction;
Layout *l;

for (i = 0; i < 8; i++)
{
count[i] = 0;
badness[i] = 0;

}

/* We skip the last page, otherwise the ads there would be unfairly
* readjusted. */

for (c = pages->next; c != NULL; c = c->next)
{
Page *page = c->data;

fraction = page_compute_sparseness (page);

for (l = page->layout; l != NULL; l = l->next)
{
badness[l->ad->width - 1] += fraction;
count[l->ad->width - 1]++;

}
}

for (c = pages; c != NULL; c = c->next)
{
Page *page = c->data;

for (l = page->layout; l != NULL; l = l->next)
{
int width = l->ad->width - 1;

/* If there only was one ad of this width and it occurred on
* the last page, count[width] will be 0. If this happens,
* we just ignore the ad. */

if (count[width] == 0)
continue;

if (l->ad->flags & AD_PREPLACED)
l->ad->weight *= page_compute_sparseness (page);

else
l->ad->weight = l->ad->weight * badness[width] / count[width];

}
}
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}

void
calculate_preplace_constraints (GList *pages)
{
GList *c;
Layout *l, *m;
int i;

for (c = pages; c != NULL; c = c->next)
{
Page *p = c->data;

for (l = p->layout; l != NULL; l = l->next)
{
for (i = 0; i < PAGE_WIDTH; i++)
l->ad->min_level[i] = 0;

l->ad->preplaced_x = l->x;
l->ad->preplaced_y = l->y;
l->ad->flags |= AD_PREPLACED;

for (m = p->layout; m != NULL; m = m->next)
{
if (l == m)
continue;

if ((m->x + m->ad->width < l->x &&
m->y < l->y + l->ad->height) ||
(m->y + m->ad->height < l->y &&
m->x < l->x + l->ad->width))

for (i = 0; i < m->x + m->ad->width; i++)
l->ad->min_level[i] = MAX (l->ad->min_level[i],

m->y + m->ad->height);

}
}

}
}

int
main (int argc, char *argv[])
{
GList *ad_list, *page_list, *new_pages, *preplaced_ads;
GString *entry;
xmlDoc *doc;
int i, iterations;
int lb_dual_feasible, lb_continuous, lb;
double skip_factor, step;
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if (argc < 2) {
fprintf (stderr, "usage: %s [-quiet] <adfile> "

"[skip-factor [iterations]]\n", argv[0]);
return 1;

}

if (argc >= 3)
skip_factor = atof (argv[2]);

else
skip_factor = 0;

if (skip_factor < 0.0001)
skip_factor = 0.0001;

if (argc >= 4)
iterations = atoi (argv[3]);

else
iterations = 4;

if (argc >= 5)
step = atof (argv[4]);

else
step = 0;

doc = xmlParseFile (argv[1]);
if (doc == NULL)
{

fprintf (stderr, "no such file: ‘%s’\n", argv[1]);
return 1;

}

ad_list = xml_get_ads (doc);
page_list = xml_get_pages (doc, ad_list, "fixed");

lb_continuous = lower_bound_continuous (ad_list);
lb_dual_feasible = lower_bound_dual_feasible (ad_list);
lb = MAX (lb_continuous, lb_dual_feasible);

fprintf (stderr, "Skip factor: %.02f\n", skip_factor);
fprintf (stderr, "Dual feasible lower bound: %d pages\n", lb_dual_feasible);
fprintf (stderr, "Continuous lower bound: %d pages\n", lb_continuous);

preplaced_ads = page_list_get_ads (page_list);
calculate_preplace_constraints (page_list);
ad_list = ad_list_subtract (ad_list, preplaced_ads);
g_list_free (preplaced_ads);

new_pages = NULL;
for (i = 0; i < iterations; i++)
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{
double current_sf;

current_sf = skip_factor + (iterations - i - 1) * step;
if (step > 0)
fprintf (stderr, "Skip factor: %f\n", current_sf);

new_pages = skyline_layout_pages (ad_list, page_list,
i, current_sf, stderr);

adjust_weights (new_pages);
if (g_list_length (new_pages) == lb)
break;

}

new_pages = g_list_reverse (new_pages);
page_list_enumerate (new_pages);
xml_update_pages (new_pages);

entry = g_string_new (NULL);
g_string_sprintfa (entry, "\n Number of pages: %d\n",

g_list_length (new_pages));
g_string_sprintfa (entry, " Lower bound: %d\n", lb);
if (step == 0)
g_string_sprintfa (entry, " Skip factor: %.02f\n ",

skip_factor);
else
{
g_string_sprintfa (entry, " Skip factor: %.02f\n",

skip_factor);
g_string_sprintfa (entry, " Skip factor step: %.02f\n ",

step);
}

xml_add_history_entry (doc, "skyline", "0.1", entry->str);
g_string_free (entry, TRUE);

xmlDocDump (stdout, doc);

return 0;
}
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C.4 Tabu Search Implementation

The tabu-search.h and tabu-search.c files implement the tabu search al-
gorithm. The exploration of the first neighborhood is implemented by the
functions empty weakest page and tabu search neighborhood1, while the
function tabu search neighborhood2 implements the exploration of the sec-
ond neighborhood. The restart move is implemented by tabu search restart.

Argument parsing and other details are handled in tabu-search-main.c,
where we also handle the stopping criteria by setting up a timer.

tabu-search.h

#ifndef TABU_SEARCH_H
#define TABU_SEARCH_H

#include "basic-types.h"
#include "xml.h"

#define AD_TENURE 3
#define SCORE_TENURE 5
#define RESTART_PERIOD 30

typedef struct TabuList TabuList;
struct TabuList
{
Ad *ads[AD_TENURE];
int ad_head, ad_tail, ad_length;

double scores[SCORE_TENURE];
int score_head, score_tail, score_length;

};

GList *tabu_search_layout_pages (GList *ads, int goal, FILE *progess);
void tabu_search_stop (void);

#endif TABU_SEARCH_H

tabu-search.c

#include <stdlib.h>
#include <math.h>
#include <glib.h>
#include <values.h>

#include "tabu-search.h"
#include "strip.h"
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#include "ih.h"

static double alpha = 5.0;
static int number_of_ads = 0;
static int iteration;

static double
compute_phi (Page *page)
{
Layout *l;
int area, count;

area = 0;
count = 0;
for (l = page->layout; l != NULL; l = l->next)
{
area += l->ad->width * l->ad->height;
count++;

}

return alpha * (double) area / PAGE_AREA - (double) count / number_of_ads;
}

static Page *
find_weakest_page (GList *page_list)
{
GList *c;
double phi, min_phi;
Page *weakest_page;

weakest_page = NULL;
min_phi = 0;

for (c = page_list; c != NULL; c = c->next)
{
Page *page = c->data;

phi = compute_phi (page);
if (weakest_page == NULL || phi < min_phi)
{
weakest_page = page;
min_phi = phi;

}
}

return weakest_page;
}

/* Combine the ads from page1 and page2 together with the ad extra
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* into a GList. Any of page1 and page2 can be NULL, in which case
* they are just ignored.
*/

static GList *
combine_pages_with_ad (Page *page1, Page *page2, Ad *extra)
{
Layout *l;
GList *list;
GList *new_pages;

list = g_list_prepend (NULL, extra);

if (page1 != NULL)
for (l = page1->layout; l != NULL; l = l->next)
list = g_list_prepend (list, l->ad);

if (page2 != NULL)
for (l = page2->layout; l != NULL; l = l->next)
list = g_list_prepend (list, l->ad);

new_pages = fbs_layout_pages (list);
g_list_free (list);

return new_pages;
}

/* Combine the ads from page1 and page2 into a GList, but leave out
* the ad exclude, if it is contained in page2. Any of page1 and
* page2 can be NULL, in which case they are just ignored.
*/

static GList *
combine_pages_without_ad (Page *page1, Page *page2, Ad *exclude)
{
Layout *l;
GList *list;
GList *new_pages;

list = NULL;
if (page1 != NULL)

for (l = page1->layout; l != NULL; l = l->next)
list = g_list_prepend (list, l->ad);

if (page2 != NULL)
for (l = page2->layout; l != NULL; l = l->next)
{
if (l->ad != exclude)
list = g_list_prepend (list, l->ad);
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}

new_pages = fbs_layout_pages (list);
g_list_free (list);

return new_pages;
}

void
tabu_list_init (TabuList *tl)
{
tl->score_head = 0;
tl->score_tail = 0;
tl->score_length = 0;

tl->ad_head = 0;
tl->ad_tail = 0;
tl->ad_length = 0;

}

void
tabu_list_add_ad (TabuList *tl, Ad *ad)
{
tl->ads[tl->ad_tail] = ad;
tl->ad_tail = (tl->ad_tail + 1) % AD_TENURE;

if (tl->ad_length == AD_TENURE)
tl->ad_head = (tl->ad_head + 1) % AD_TENURE;

else
tl->ad_length++;

}

int
tabu_list_ad_is_tabu (TabuList *tl, Ad *ad)
{
int i, j;

for (i = tl->ad_head, j = 0; j < tl->ad_length; i++, j++)
{
if (tl->ads[i % SCORE_TENURE] == ad)
return TRUE;

}

return FALSE;
}

void
tabu_list_add_score (TabuList *tl, double score)
{
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tl->scores[tl->score_tail] = score;
tl->score_tail = (tl->score_tail + 1) % SCORE_TENURE;

if (tl->score_length == SCORE_TENURE)
tl->score_head = (tl->score_head + 1) % SCORE_TENURE;

else
tl->score_length++;

}

int
tabu_list_score_is_tabu (TabuList *tl, double score)
{
int i, j;

for (i = tl->score_head, j = 0; j < tl->score_length; i++, j++)
{

if (fabs (tl->scores[i % SCORE_TENURE] < 1e-6))
return TRUE;

}

return FALSE;
}

static void
empty_weakest_page (GList *pages, Page *wp, TabuList *tl)
{
GList *c, *new_pages;
Layout *l, *remaining;
int length, single_ad_on_page;

single_ad_on_page = (wp->layout != NULL && wp->layout->next == NULL);

remaining = NULL;
for (l = wp->layout; l != NULL; l = l->next)

{
if (tabu_list_ad_is_tabu (tl, l->ad) && !single_ad_on_page)
{
remaining = layout_new (l->ad, l->x, l->y, remaining);
continue;

}

for (c = pages; c != NULL; c = c->next)
{
Page *p = c->data;

if (p == wp)
continue;

new_pages = combine_pages_with_ad (p, NULL, l->ad);
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length = g_list_length (new_pages);

if (length == 1)
{
page_destroy (p);
c->data = new_pages->data;
g_list_free (new_pages);
tabu_list_add_ad (tl, l->ad);
iteration++;
break;

}
else
page_list_free (new_pages);

}

if (c == NULL)
remaining = layout_new (l->ad, l->x, l->y, remaining);

}

layout_free_all (wp->layout);
wp->layout = remaining;

}

GList *
tabu_search_neighborhood1 (GList *pages, TabuList *tl)
{
Page *wp;

while (1)
{
wp = find_weakest_page (pages);
empty_weakest_page (pages, wp, tl);
if (wp->layout == NULL)
pages = page_list_remove (pages, wp);

else
break;

}

return pages;
}

typedef struct Move Move;
struct Move
{
double score;
Page *h;
Page *k;
GList *pages;
Ad *ad;
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};

GList *
tabu_search_neighborhood2 (GList *pages, TabuList *tl)
{
Page *wp, *new_wp;
GList *new_pages, *c, *d;
int length;
Move best_move;
Layout *l, *next;

wp = find_weakest_page (pages);
best_move.pages = NULL;

for (l = wp->layout; l != NULL; l = next)
{
next = l->next;

for (c = pages; c != NULL; c = c->next)
{
Page *h = (Page *) c->data;

if (h == wp)
continue;

for (d = pages; d != NULL; d = d->next)
{
Page *k = (Page *) d->data;

if (k == wp || k == h)
continue;

new_pages = combine_pages_with_ad (h, k, l->ad);
new_wp = find_weakest_page (new_pages);
length = g_list_length (new_pages);

if (length == 1)
{
pages = page_list_remove (pages, h);
pages = page_list_remove (pages, k);
pages = g_list_concat (new_pages, pages);
page_remove_ad (wp, l->ad);

if (wp->layout == NULL)
pages = page_list_remove (pages, wp);

iteration++;

return pages;
}
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else if (length == 2)
{
pages = page_list_remove (pages, h);
pages = page_list_remove (pages, k);
pages = g_list_concat (new_pages, pages);
page_remove_ad (wp, l->ad);
iteration++;

if (wp->layout == NULL)
return page_list_remove (pages, wp);

else if (compute_phi (new_wp) < compute_phi (wp))
return pages;

else
{
/* The current weakest page wasn’t updated, so
* the search continues in this neighborhood.
* However, if we rearranged pages or ads that
* were part of the best move, we must
* invalidate it. */

if (best_move.pages != NULL)
if (best_move.ad == l->ad ||

best_move.h == h ||
best_move.h == k ||
best_move.k == h ||
best_move.k == k)

{
page_list_free (best_move.pages);
best_move.pages = NULL;

}
goto next_ad;

}
}

else if (length == 3)
{
GList *rest = combine_pages_without_ad (new_wp, wp, l->ad);

if (g_list_length (rest) > 1)
{
page_list_free (new_pages);
page_list_free (rest);

}
else
{
double score = compute_phi (rest->data);

if (!tabu_list_score_is_tabu (tl, score) &&
(best_move.pages == NULL || score < best_move.score))

{
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new_pages = page_list_remove (new_pages, new_wp);
new_pages = g_list_concat (new_pages, rest);

if (best_move.pages != NULL)
page_list_free (best_move.pages);

best_move.pages = new_pages;
best_move.h = h;
best_move.k = k;
best_move.score = score;
best_move.ad = l->ad;

}
else
{
page_list_free (new_pages);
page_list_free (rest);

}
}

}
else
page_list_free (new_pages);

}
}

next_ad:
}

if (best_move.pages != NULL)
{
pages = page_list_remove (pages, best_move.h);
pages = page_list_remove (pages, best_move.k);
pages = page_list_remove (pages, wp);
pages = g_list_concat (best_move.pages, pages);
tabu_list_add_score (tl, best_move.score);
iteration++;

}

return pages;
}

static int
compare_weakness (Page *p1, Page *p2)
{
double diff;

diff = compute_phi (p1) - compute_phi (p2);
if (diff < 0)
return -1;

else
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return 1;
}

GList *
tabu_search_restart (GList *pages)
{
GList *weak_pages, *ads, *new_pages;
int length;

pages = g_list_sort (pages, (GCompareFunc) compare_weakness);
length = g_list_length (pages);

weak_pages = pages;
pages = g_list_split (pages, length / 2);
ads = page_list_get_ads (weak_pages);
page_list_free (weak_pages);
new_pages = ih_layout_pages (ads);
g_list_free (ads);

return g_list_concat (new_pages, pages);
}

static int stop = FALSE;

void
tabu_search_stop (void)
{
stop = TRUE;

}

static void
tabu_search_print_progress (FILE *progess, int len)
{
static int radar_index;
char kit_radar[7] = "#.....";

strcpy (kit_radar, "......");
radar_index = (radar_index + 1) % 10;
if (radar_index < 6)
kit_radar[radar_index] = ’#’;

else
kit_radar[10 - radar_index] = ’#’;

fprintf (progess, "\r[%s] Incumbent solution: %d pages",
kit_radar, len);

}

GList *
tabu_search_layout_pages (GList *ads, int goal, FILE *progess)
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{
TabuList tl;
int len, prev_len, prev_change, prev_iter;
int current_minimum;
GList *best_solution, *pages;

tabu_list_init (&tl);
current_minimum = MAXINT;
len = MAXINT;
iteration = 0;

number_of_ads = g_list_length (ads);
prev_len = 0;
prev_change = 0;
stop = FALSE;
pages = ih_layout_pages (ads);
best_solution = NULL;

while (!stop && (goal > 0 && len > goal))
{
prev_iter = iteration;
pages = tabu_search_neighborhood1 (pages, &tl);
pages = tabu_search_neighborhood2 (pages, &tl);
len = g_list_length (pages);

if (len < current_minimum)
{
tabu_search_print_progress (stderr, len);
current_minimum = len;
if (best_solution != NULL)
page_list_free (best_solution);

best_solution = page_list_copy (pages);
}

if (prev_iter == iteration ||
(prev_len == len && prev_change + RESTART_PERIOD <= iteration))

pages = tabu_search_restart (pages);

if (prev_len != len)
{
prev_len = len;
prev_change = iteration;

}

if ((iteration & 63) == 0)
tabu_search_print_progress (stderr, current_minimum);

}

fprintf (stderr, "\n");
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page_list_free (pages);

return best_solution;
}

tabu-search-main.c

#include <glib.h>
#include <stdlib.h>
#include <math.h>
#include <values.h>
#include <gnome-xml/parser.h>
#include <string.h>
#include <signal.h>
#include <sys/time.h>

#include "ih.h"
#include "lower-bound.h"
#include "tabu-search.h"

void
sigint_handler (int signum)
{
fprintf (stderr, "\nSIGINT caught, finishing current iteration.\n");
signal (SIGINT, SIG_DFL);
tabu_search_stop ();

}

void
sigprof_handler (int signum)
{
fprintf (stderr, "\nSIGPROF caught, finishing current iteration.\n");
signal (SIGPROF, SIG_DFL);
tabu_search_stop ();

}

static void
initialize_signals (int timeout)
{
struct itimerval new;

if (timeout > 0)
{
new.it_interval.tv_usec = 0;
new.it_interval.tv_sec = 0;
new.it_value.tv_usec = 0;
new.it_value.tv_sec = timeout;
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setitimer (ITIMER_PROF, &new, NULL);
signal (SIGPROF, sigprof_handler);

}
signal (SIGINT, sigint_handler);

}

static void
reset_signals (void)
{
signal (SIGPROF, SIG_DFL);
signal (SIGINT, SIG_DFL);

}

int
main (int argc, char *argv[])
{
GList *ads, *pages;
xmlDoc *doc;
char *filename;
GString *entry;
int goal, timeout, lb_continuous, lb_dual_feasible;

if (argc < 2)
{
fprintf (stderr, "usage: %s AD-FILE [TIME-BOUND [GOAL]]\n", argv[0]);
return -1;

}

filename = argv[1];

if (argc > 2)
timeout = atoi (argv[2]);

else
timeout = 0;

if (argc > 3)
goal = atoi (argv[3]);

else
goal = 0;

doc = xmlParseFile (filename);
ads = xml_get_ads (doc);

lb_continuous = lower_bound_continuous (ads);
lb_dual_feasible = lower_bound_dual_feasible (ads);

if (goal == 0)
goal = MAX (lb_continuous, lb_dual_feasible);

fprintf (stderr, "Dual feasible lower bound: %d pages\n", lb_dual_feasible);
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fprintf (stderr, "Continuous lower bound: %d pages\n", lb_continuous);
fprintf (stderr, "Goal: %d\n\n", goal);
if (timeout > 0)
fprintf (stderr, "Time bound: %d seconds\n", timeout);

initialize_signals (timeout);
pages = tabu_search_layout_pages (ads, goal, stderr);
reset_signals ();

page_list_enumerate (pages);
xml_update_pages (pages);

entry = g_string_new (NULL);
g_string_sprintfa (entry, "\n Number of pages: %d\n ",

g_list_length (pages));
xml_add_history_entry (doc, "tabu-search", "0.1", entry->str);
g_string_free (entry, TRUE);

xmlDocDump (stdout, doc);

return 0;
}
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C.5 HFF, FBS and IH implementations

The HFF and FBS heuristics are implemented in the strip.h and strip.c

files. A lot of code is shared between the two algorithms; only the search for
a vacant position differs between the two implementations.

The IH algorithm described in Section 4.2 is implemented in the files ih.h
and ih.c.

strip.h

#ifndef STRIP_H
#define STRIP_H

#include "basic-types.h"

GList *hff_layout_pages (GList *ads);
GList *fbs_layout_pages (GList *ads);

#endif /* HFF_F */

strip.c

#include <stdlib.h>
#include <stdio.h>
#include "basic-types.h"

typedef struct Strip Strip;
struct Strip {
int height, width;
GList *ads;

};

typedef struct StripPage StripPage;
struct StripPage {
Page page;
int size;
GList *strips;

};

Strip *
strip_new (Ad *ad)
{
Strip *strip;

strip = g_new (Strip, 1);
strip->height = ad->height;
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strip->width = ad->width;
strip->ads = g_list_prepend (NULL, ad);

return strip;
}

void
strip_free (Strip *strip)
{
g_list_free (strip->ads);
g_free (strip);

}

void
strip_layout (Strip *strip, int level, StripPage *page)
{
GList *c;
int x;

x = 0;

for (c = strip->ads; c != NULL; c = c->next)
{
Ad *ad = c->data;

page->page.layout = layout_new (ad, x, level, page->page.layout);
x += ad->width;

}
}

GList *
strip_list_add_first_fit (GList *list, Ad *ad)
{
GList *c;
Strip *strip;

for (c = list; c != NULL; c = c->next)
{
strip = (Strip *) c->data;
if (strip->width + ad->width <= PAGE_WIDTH)
{
strip->ads = g_list_prepend (strip->ads, ad);
strip->width += ad->width;
return list;

}
}

return g_list_append (list, strip_new (ad));
}
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GList *
strip_list_add_best_fit (GList *list, Ad *ad)
{
GList *c;
Strip *strip, *best;

best = NULL;
for (c = list; c != NULL; c = c->next)

{
strip = (Strip *) c->data;
if (strip->width + ad->width <= PAGE_WIDTH &&

(best == NULL || strip->width > best->width))
best = strip;

}

if (best == NULL)
return g_list_append (list, strip_new (ad));

else
{
best->ads = g_list_prepend (best->ads, ad);
best->width += ad->width;
return list;

}
}

static void strip_page_destroy (StripPage *page);

StripPage *
strip_page_new (Strip *strip)
{
StripPage *page;
static int number = 1;

page = g_new (StripPage, 1);
page->page.number = number++;
page->page.layout = NULL;
page->page.id = NULL;
page->size = strip->height;
page->strips = g_list_prepend (NULL, strip);

page->page.destroy = (void (*) (Page*)) strip_page_destroy;
page->page.copy = (Page *(*) (Page*)) base_page_copy;

return page;
}

static void
strip_page_destroy (StripPage *page)
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{
layout_free_all (page->page.layout);
g_free (page->page.id);
g_list_foreach (page->strips, (GFunc) strip_free, NULL);
g_list_free (page->strips);
g_free (page);

}

static GList *
strip_page_list_add_first_fit (GList *list, Strip *strip)
{
StripPage *page;
GList *c;

for (c = list; c != NULL; c = c->next)
{
page = (StripPage *) c->data;
if (page->size + strip->height <= PAGE_HEIGHT)
{
page->size += strip->height;
page->strips = g_list_prepend (page->strips, strip);
return list;

}
}

return g_list_append (list, strip_page_new (strip));
}

static GList *
strip_page_list_add_best_fit (GList *list, Strip *strip)
{
StripPage *page, *best;
GList *c;

best = NULL;
for (c = list; c != NULL; c = c->next)
{
page = (StripPage *) c->data;
if (page->size + strip->height <= PAGE_HEIGHT &&

(best == NULL || page->size > best->size))
best = page;

}

if (best == NULL)
return g_list_append (list, strip_page_new (strip));

else {
best->size += strip->height;
best->strips = g_list_prepend (best->strips, strip);
return list;
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}
}

static int
compare_ads (Ad *ad1, Ad *ad2)
{
if (ad2->height == ad1->height)
return ad2->width - ad1->width;

else
return ad2->height - ad1->height;

}

static GList *
hff_generate_pages (GList *ads)
{
GList *c, *pages, *strips;

ads = g_list_sort (g_list_copy (ads), (GCompareFunc) compare_ads);

strips = NULL;
for (c = ads; c != NULL; c = c->next)
strips = strip_list_add_first_fit (strips, c->data);

pages = NULL;
for (c = strips; c != NULL; c = c->next)
pages = strip_page_list_add_first_fit (pages, c->data);

g_list_free (strips);
g_list_free (ads);

return pages;
}

GList *
hff_layout_pages (GList *ads)
{
GList *pages, *c, *d;
Strip *strip;
int level;

pages = hff_generate_pages (ads);
for (c = pages; c != NULL; c = c->next)
{

StripPage *page = c->data;

level = 0;
for (d = page->strips; d != NULL; d = d->next)
{
strip = d->data;
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strip_layout (strip, level, page);
level += strip->height;
strip_free (strip);

}
g_list_free (page->strips);
page->strips = NULL;

}

return pages;
}

static GList *
fbs_generate_pages (GList *ads)
{
GList *c, *pages, *strips;

ads = g_list_sort (g_list_copy (ads), (GCompareFunc) compare_ads);

strips = NULL;
for (c = ads; c != NULL; c = c->next)
strips = strip_list_add_best_fit (strips, c->data);

pages = NULL;
for (c = strips; c != NULL; c = c->next)
pages = strip_page_list_add_best_fit (pages, c->data);

g_list_free (strips);
g_list_free (ads);

return pages;
}

GList *
fbs_layout_pages (GList *ads)
{
GList *pages, *c, *d;
Strip *strip;
int level;

pages = fbs_generate_pages (ads);
for (c = pages; c != NULL; c = c->next)
{
StripPage *page = c->data;

level = 0;
for (d = page->strips; d != NULL; d = d->next)
{
strip = d->data;
strip_layout (strip, level, page);
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level += strip->height;
strip_free (strip);

}
g_list_free (page->strips);
page->strips = NULL;

}

return pages;
}

ih.h

#ifndef IH_H
#define IH_H

#include "basic-types.h"

GList *ih_layout_pages (GList *ads);

#endif /* IH_F */

ih.c

#include <stdlib.h>
#include <math.h>
#include <glib.h>
#include <values.h>

#include "basic-types.h"

/* OK, this thing got a bit more complicated than it could have been.
* The y coordinates are relative to the class the slot or ad belongs
* to. That is, to get the actual y coordinate on the page you do:
*
* real_y = y * PAGE_HEIGHT / (1 << class)
*
* Thus, if you just want to compare two y coordinates from two
* different classes you can do:
*
* y1 << class2 < y2 << class1 */

#define SLOT_VPOS(s) ((s)->y * PAGE_HEIGHT / (1 << (s)->class))

typedef struct Slot Slot;
struct Slot {
int x, y;
int class;
Ad *ad;
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};

Slot *
slot_new (int x, int y, int class)
{
Slot *slot;

slot = g_new (Slot, 1);
slot->x = x;
slot->y = y;
slot->class = class;
slot->ad = NULL;

return slot;
}

void
slot_list_insert (GList *list, Slot *slot)
{
GList *c;

for (c = list; c != NULL; c = c->next)
{
Slot *s = c->data;

if (slot->x < s->x ||
(slot->x == s->x &&
slot->y << s->class < s->y << slot->class))

{
g_list_prepend (c, slot);
break;

}
}

if (c == NULL)
g_list_append (list, slot);

}

/* The algorithm is implemented by maintaining a list of vacant slots
* in the strip, sorted by x and then y coordinate of the lower left
* corner. The ads are sorted non-decreasingly by class, so its just
* a matter of fitting the first ad in the first slot. Now the list
* of slots must be updated: first a new slot with the same class as
* the ad is allocated to the right of the ad. Second, if the ad
* belonged to a greater class than the slot (ie. it’s less than half
* the height of the slot) the slot is split into n - 1 new slots,
* where n is 1 << (ad-class - slot-class).
*/
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static GList *
fill_strip (GList *ads)
{
GList *slots, *c, *si;
Slot *s, *new_slot;
int diff, i;

slots = g_list_prepend (NULL, slot_new (0, 0, 0));

for (c = ads, si = slots; c != NULL; c = c->next)
{
Ad *ad = c->data;

s = si->data;
diff = ad->class - s->class;
s->ad = ad;
s->class = ad->class;
s->y = s->y << diff;

new_slot = slot_new (s->x + ad->width, s->y, ad->class);
slot_list_insert (si, new_slot);

for (i = (1 << diff) - 1; i > 0; i--)
{
/* We could use slot_list_insert () here, but since the new
* slots preceede all other slots we just use
* g_list_prepend ().
*/

new_slot = slot_new (s->x, s->y + i, s->class);
si->next = g_list_prepend (si->next, new_slot);

}
si = si->next;

}

/* Free the remaining unused slots. */

si->prev->next = NULL;
g_list_foreach (si, (GFunc) g_free, NULL);
g_list_free (si);

return slots;
}

static GList *
get_pages_from_slots (GList *slots)
{
GList *si, *pages;
Slot *s;
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Page *p0, *p1;
int x, n;

x = 0;
n = 1;
p0 = base_page_new (n++, NULL, NULL);
p1 = base_page_new (n++, NULL, NULL);
pages = NULL;

for (si = slots; si != NULL; si = si->next)
{
s = (Slot *) si->data;

if (x + PAGE_WIDTH <= s->x)
{
x += PAGE_WIDTH;
if (p0->layout != NULL)
{
pages = g_list_prepend (pages, p0);
p0 = base_page_new (n++, NULL, NULL);

}
if (p1->layout != NULL)
{
pages = g_list_prepend (pages, p1);
p1 = base_page_new (n++, NULL, NULL);

}
}

if (s->x + s->ad->width <= x + PAGE_WIDTH)
p0->layout = layout_new (s->ad, s->x - x, SLOT_VPOS (s), p0->layout);

else
p1->layout = layout_new (s->ad, 0, SLOT_VPOS (s), p1->layout);

}

if (p0->layout == NULL)
page_destroy (p0);

else
pages = g_list_prepend (pages, p0);

if (p1->layout == NULL)
page_destroy (p1);

else
pages = g_list_prepend (pages, p1);

return g_list_reverse (pages);
}

static int
compare_classes (Ad *ad1, Ad *ad2)
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{
return ad1->class - ad2->class;

}

GList *
ih_layout_pages (GList *ads)
{
GList *c, *slots, *pages, *list;

for (c = ads; c != NULL; c = c->next)
{
Ad *ad = c->data;
double frac;

frac = (double) PAGE_HEIGHT / ad->height;
ad->class = floor (log (frac) / M_LN2);
g_assert (ad->node != NULL);

}

list = g_list_copy (ads);
list = g_list_sort (list, (GCompareFunc) compare_classes);

slots = fill_strip (list);
pages = get_pages_from_slots (slots);

g_list_free (list);
g_list_foreach (slots, (GFunc) g_free, NULL);
g_list_free (slots);

return pages;
}
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C.6 Miscellaneous

The validate.c file implements the validate tool. Most of the work is done
by the function layout validate from basic-types.c.

The lower-bounds.h and lower-bounds.c implement the dual feasible
functions, the continuous lower bound and the L2d lower bound described in
Section 2.4.

validate.c

#include <stdio.h>
#include "basic-types.h"
#include "xml.h"

int
compare_pages (Page *p1, Page *p2)
{
return p1->number - p2->number;

}

int
compage_ads (Ad *ad1, Ad *ad2)
{
return strcmp (ad1->id, ad2->id);

}

int
validate_geometry (GList *pages)
{
GList *c, *d;
int return_code;

return_code = TRUE;
fprintf (stderr, "** validating geometry\n");
for (c = pages; c != NULL; c = c->next)
{
Page *p = (Page *) c->data;
GList *errors;

errors = layout_validate (p->layout);
if (errors != NULL)
{
fprintf (stderr, "page %s: ", p->id);
for (d = errors; d != NULL; d = d->next)
{
Ad *a = (Ad *) d->data;



C.6. MISCELLANEOUS 131

fprintf (stderr, "%s%s",
a->id, d->next != NULL ? ", " : "\n");

}
g_list_free (errors);
return_code = FALSE;

}
}

return return_code;
}

int
validate_against_original (GList *ads, char *filename)
{
GList *missing, *extra, *c, *d, *orig_ads;
xmlDoc *orig;
int return_code;

fprintf (stderr, "** validating against ‘%s’\n", filename);

orig = xmlParseFile (filename);
orig_ads = xml_get_ads (orig);
orig_ads = g_list_sort (orig_ads, (GCompareFunc) compage_ads);

missing = NULL;
extra = NULL;
c = orig_ads;
d = ads;

while (c != NULL && d != NULL)
{
int res;

res = strcmp (((Ad *)c->data)->id, ((Ad *)d->data)->id);
if (res < 0)
{
missing = g_list_prepend (missing, c->data);
c = c->next;

}
else if (res > 0)
{
extra = g_list_prepend (extra, d->data);
d = d->next;

}
else
{
c = c->next;
d = d->next;

}
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}

missing = g_list_concat (c, missing);
extra = g_list_concat (d, extra);

if (missing != NULL)
{
int len;

len = g_list_length (missing);
fprintf (stderr, "new layout miss %d ad%s: ",

len, len > 1 ? "s" : "");
for (c = missing; c != NULL; c = c->next)
{
Ad *a = (Ad *) c->data;

fprintf (stderr, "%s%s", a->id, c->next != NULL ? ", " : "\n");
}

}

if (extra != NULL)
{

int len;

len = g_list_length (extra);
fprintf (stderr, "new layout has %d extra ad%s: ",

len, len > 1 ? "s" : "");
for (c = extra; c != NULL; c = c->next)
{
Ad *a = (Ad *) c->data;

fprintf (stderr, "%s%s", a->id, c->next != NULL ? ", " : "\n");
}

}

if (missing != NULL || extra != NULL)
return_code = 1;

else
return_code = 0;

g_list_free (missing);
g_list_free (extra);

return return_code;
}

int
main (int argc, char *argv[])
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{
GList *ads, *pages;
xmlDoc *doc;
char *filename;
int return_code;

if (argv[1] == NULL)
{
fprintf (stderr, "usage: %s AD-FILE [ORIGINAL]\n", argv[0]);
return -1;

}
else

filename = argv[1];

return_code = 0;

doc = xmlParseFile (filename);
if (doc == NULL)

{
fprintf (stderr, "file ‘%s’ not found\n", filename);
exit (-1);

}

ads = xml_get_ads (doc);
ads = g_list_sort (ads, (GCompareFunc) compage_ads);

pages = xml_get_pages (doc, ads, NULL);
pages = g_list_sort (pages, (GCompareFunc) compare_pages);

if (!validate_geometry (pages))
return_code = 1;

if (argv[2] != NULL &&
validate_against_original (ads, argv[2]) == 1)

return_code = 1;

return return_code;
}

lower-bound.h

#ifndef LOWER_BOUND_H
#define LOWER_BOUND_H

int lower_bound_continuous (GList *ads);
int lower_bound_dual_feasible (GList *ads);

#endif /* LOWER_BOUND_H */
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lower-bound.c

#include <math.h>
#include "basic-types.h"

/* Dual feasible functions. */

/* The granularity of x is 1/520 ~ 2e-3, so we can use 1e-6 as a fudge
* factor to eliminate numerical instability, without disturbing the
* result of the comparison.
* It doesn’t make sense to use ’=’ or ’<=’, but we can say
*
* ’x < y - FUDGE’ when we mean ’x < y’ and
* ’x < y + FUDGE’ when we mean ’x <= y’
*/

#define FUDGE 1e-6

#define AD(p) ((Ad *) ((p)->data))
#define AD_WIDTH(p) (AD (p)->width)
#define AD_HEIGHT(p) (AD (p)->height)
#define AD_WIDTH_TO_UNIT(w) ((double) w / 8)
#define AD_HEIGHT_TO_UNIT(h) ((double) h / PAGE_HEIGHT)
#define AD_UNIT_WIDTH(a) (AD_WIDTH_TO_UNIT (AD_WIDTH (a)))
#define AD_UNIT_HEIGHT(a) (AD_HEIGHT_TO_UNIT (AD_HEIGHT (a)))

static double
dual_feasible_id (double x, double dummy)
{
return x;

}

static double
dual_feasible_u (double x, int k)
{
if (fabs (floor (x * (k + 1)) - x * (k + 1)) < FUDGE)
return x;

else
return floor ((k + 1) * x) / k;

}

static double
dual_feasible_u1 (double x, double dummy)
{
if (x < 0.5 - FUDGE)
return 0;

else if (x < 0.5 + FUDGE)
return x;

else
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return 1;
}

static double
dual_feasible_U (double x, double epsilon)
{
if (x < epsilon - FUDGE)
return 0;

else if (x < 1 - epsilon + FUDGE)
return x;

else
return 1;

}

static double
dual_feasible_phi (double x, double epsilon)
{
if (epsilon == 0)
{
if (x < 0.5 + FUDGE)
return 0;

else
return x;

}
else
{
if (x < epsilon - FUDGE)
return 0;

else if (x < 0.5 + FUDGE)
return 1 / floor (1 / epsilon);

else
return 1 - floor ((1 - x) / epsilon) / floor (1 / epsilon);

}
}

int
lower_bound_continuous (GList *ads)
{
GList *c;
int area;

area = 0;
for (c = ads; c != NULL; c = c->next)
{

Ad *ad = c->data;

area += ad->width * ad->height;
}
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return (area + PAGE_AREA - 1) / PAGE_AREA;
}

static int
compare_width_dist_from_middle (Ad *ad1, Ad *ad2)
{
int d1, d2;

if (ad1->width < 4)
d1 = ad1->width;

else
d1 = 8 - ad1->width;

if (ad2->width < 4)
d2 = ad2->width;

else
d2 = 8 - ad2->width;

return d1 - d2;
}

static int
compare_height_dist_from_middle (Ad *ad1, Ad *ad2)
{
int d1, d2;

if (ad1->height < (PAGE_HEIGHT / 2))
d1 = ad1->height;

else
d1 = PAGE_HEIGHT - ad1->height;

if (ad2->height < (PAGE_HEIGHT / 2))
d2 = ad2->height;

else
d2 = PAGE_HEIGHT - ad2->height;

return d1 - d2;
}

static int
dual_feasible_map_widths (GList *ads,

double (*w1) (double, double),
double (*w2) (double, double), double e2)

{
GList *l, *c;
double lb, lb_max;
double old_contrib, new_contrib;
int ie, new_ie;
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l = g_list_sort (g_list_copy (ads),
(GCompareFunc) compare_width_dist_from_middle);

lb = 0;
ie = 0;
for (c = l; c != NULL; c = c->next)
lb = lb + w1 (AD_UNIT_WIDTH (c), 0) * w2 (AD_UNIT_HEIGHT (c), e2);

lb_max = lb;
c = l;
while (c != NULL)
{
new_ie = MIN (AD_WIDTH (c), 8 - AD_WIDTH (c)) + 1;

while (c != NULL && MIN (AD_WIDTH (c), 8 - AD_WIDTH (c)) < new_ie)
{
old_contrib = w1 (AD_UNIT_WIDTH (c), AD_WIDTH_TO_UNIT (ie)) *
w2 (AD_UNIT_HEIGHT (c), e2);

new_contrib = w1 (AD_UNIT_WIDTH (c), AD_WIDTH_TO_UNIT (new_ie)) *
w2 (AD_UNIT_HEIGHT (c), e2);

lb = lb - old_contrib + new_contrib;
c = c->next;

}

lb_max = MAX (lb_max, lb);
ie = new_ie;

}

g_list_free (l);

return ceil (lb_max);
}

static int
dual_feasible_map_heights (GList *ads,

double (*w1) (double, double), double e1,
double (*w2) (double, double))

{
GList *l, *c;
double lb, lb_max;
int new_ie, ie;
double old_contrib, new_contrib;

l = g_list_sort (g_list_copy (ads),
(GCompareFunc) compare_height_dist_from_middle);

lb = 0;
ie = 0;
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for (c = l; c != NULL; c = c->next)
lb = lb + w1 (AD_UNIT_WIDTH (c), e1) * w2 (AD_UNIT_HEIGHT (c), 0);

lb_max = lb;
c = l;
while (c != NULL)
{
new_ie = MIN (AD_HEIGHT (c), PAGE_HEIGHT - AD_HEIGHT (c)) + 1;

while (c != NULL &&
MIN (AD_HEIGHT (c), PAGE_HEIGHT - AD_HEIGHT (c)) < new_ie)

{
old_contrib = w1 (AD_UNIT_WIDTH (c), e1) *
w2 (AD_UNIT_HEIGHT (c), AD_HEIGHT_TO_UNIT (ie));

new_contrib = w1 (AD_UNIT_WIDTH (c), e1) *
w2 (AD_UNIT_HEIGHT (c), AD_HEIGHT_TO_UNIT (new_ie));

lb = lb - old_contrib + new_contrib;
c = c->next;

}

lb_max = MAX (lb_max, lb);
ie = new_ie;

}

g_list_free (l);

return ceil (lb_max);
}

static int
dual_feasible_map_both (GList *ads,

double (*w1) (double, double),
double (*w2) (double, double))

{
GList *l, *c;
int lb, lb_max;
int ie;

l = g_list_sort (g_list_copy (ads),
(GCompareFunc) compare_height_dist_from_middle);

ie = 0;
lb_max = 0;
c = l;

while (c != NULL && ie < PAGE_HEIGHT / 2)
{
lb = dual_feasible_map_widths (ads, w1, w2, AD_HEIGHT_TO_UNIT (ie));
lb_max = MAX (lb_max, lb);
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ie = MIN (AD_HEIGHT (c), PAGE_HEIGHT - AD_HEIGHT (c)) + 1;
while (c != NULL &&

MIN (AD_HEIGHT (c), PAGE_HEIGHT - AD_HEIGHT (c)) < ie)
c = c->next;

}

g_list_free (l);

return lb_max;
}

int
map_u (GList *ads)
{
GList *c;
double lb, lb_max;
int k;

lb_max = 0;
for (k = 0; k < PAGE_WIDTH + 1; k++)
{

lb = 0;
for (c = ads; c != NULL; c = c->next)
lb = lb + dual_feasible_u (AD_UNIT_WIDTH (c), k) * AD_UNIT_HEIGHT (c);

lb_max = MAX (lb, lb_max);

lb = 0;
for (c = ads; c != NULL; c = c->next)
lb = lb + AD_UNIT_WIDTH (c) * dual_feasible_u (AD_UNIT_HEIGHT (c), k);

lb_max = MAX (lb, lb_max);
}

return ceil (lb_max);
}

int
lower_bound_dual_feasible (GList *ads)
{
int lb, b;

lb = dual_feasible_map_heights (ads, dual_feasible_id, 0, dual_feasible_id);

b = dual_feasible_map_heights (ads, dual_feasible_u1, 0, dual_feasible_U);
lb = MAX (lb, b);
b = dual_feasible_map_widths (ads, dual_feasible_U, dual_feasible_u1, 0);
lb = MAX (lb, b);
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b = dual_feasible_map_heights (ads, dual_feasible_u1, 0, dual_feasible_phi);
lb = MAX (lb, b);
b = dual_feasible_map_widths (ads, dual_feasible_phi, dual_feasible_u1, 0);
lb = MAX (lb, b);

b = dual_feasible_map_heights (ads, dual_feasible_id, 0, dual_feasible_U);
lb = MAX (lb, b);
b = dual_feasible_map_widths (ads, dual_feasible_U, dual_feasible_id, 0);
lb = MAX (lb, b);

b = dual_feasible_map_both (ads, dual_feasible_phi, dual_feasible_phi);
lb = MAX (lb, b);

b = map_u (ads);
lb = MAX (lb, b);

return lb;
}
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C.7 List of Functions

ad group join, 78
ad group new, 77
ad list get ad, 76
ad list get biggest ad, 77
ad list subtract, 77
ad new from xml node, 83
ad ring break, 98
ad ring make, 98
adjust weights, 100
base page copy, 74
base page destroy, 73
calculate preplace constraints, 102
combine pages with ad, 107
combine pages without ad, 107
compage ads, 130
compare ads, 123
compare ads, 97
compare classes, 128
compare height dist from middle, 136
compare pages, 130
compare weakness, 113
compare width dist from middle, 136
compute phi, 106
dual feasible U, 135
dual feasible id, 134
dual feasible map both, 138
dual feasible map heights, 137
dual feasible map widths, 136
dual feasible phi, 135
dual feasible u1, 134
dual feasible u, 134
empty weakest page, 109
fbs generate pages, 124
fbs layout pages, 124
fill strip, 127
find weakest page, 106
g list split, 79
get pages from slots, 127
get page, 82
hff generate pages, 123
hff layout pages, 123
ih layout pages, 129
initialize signals, 116
layout area, 71
layout copy, 71
layout dump, 73
layout free all, 70

layout free, 70
layout new, 70
layout remove ad, 72
layout validate, 72
layout weight, 71
lower bound continuous, 135
lower bound dual feasible, 139
main, 102
main, 117
main, 132
map u, 139
page compute sparseness, 74
page copy, 74
page destroy, 74
page get ads, 75
page list copy, 76
page list enumerate, 75
page list free, 75
page list get ads, 76
page list remove, 75
page merge, 74
page remove ad, 74
preplaced ads free, 89
preplaced ads tabulate, 88
reset signals, 117
sigint handler, 116
sigprof handler, 116
skyline ad fits, 96
skyline backtrack, 95
skyline init, 90
skyline iterate, 96
skyline layout pages, 99
skyline lower, 91
skyline page destroy, 90
skyline page new, 89
skyline place ad, 92
skyline print progress, 98
skyline raise, 94
skyline update minimum, 91
slot list insert, 126
slot new, 126
strip free, 120
strip layout, 120
strip list add best fit, 121
strip list add first fit, 120
strip new, 119
strip page destroy, 121
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strip page list add best fit, 122
strip page list add first fit, 122
strip page new, 121
tabu list ad is tabu, 108
tabu list add ad, 108
tabu list add score, 108
tabu list init, 108
tabu list score is tabu, 109
tabu search layout pages, 114
tabu search neighborhood1, 110
tabu search neighborhood2, 111
tabu search print progress, 114
tabu search restart, 114
tabu search stop, 114

update layout, 85
validate against original, 131
validate geometry, 130
xml add history entry, 86
xml get ads, 83
xml get pages, 84
xml node get child, 81
xml node get int prop, 80
xml node get str prop, 81
xml node set child, 82
xml node set int prop, 81
xml update ads, 85
xml update pages, 86


