
Engineering Rank and Select Queries on
Wavelet Trees

Jan H. Knudsen, 20092926
Roland L. Pedersen, 20092817

Master’s Thesis, Computer Science
Advisor: Gerth Stølting Brodal
June, 2015

abracadrabra
001000110010

abacaaba
00010000

rdr
101

abaaaba
0100010

c

aaaaa bb

d rr

Contents

I The Wavelet Tree 6

1 Introduction 6

2 Related Work 7

3 The Wavelet Tree 8
3.1 Constructing the Wavelet Tree . 8
3.2 Access Query . 9
3.3 Rank Query . 11
3.4 Select query . 12

4 Applications 13
4.1 What The Wavelet Tree Can Represent 13
4.2 Compression . 16

4.2.1 Entropy . 16
4.2.2 Run-Length encoding . 18
4.2.3 Burrows-Wheeler transformation 19
4.2.4 Huffman-shaped Wavelet Trees . 21

4.3 Information Retrieval . 22
4.3.1 Access, Rank, and Select Queries 22
4.3.2 Range Quantile Query . 23

II Hardware, Implementation & Test 25

5 Cache, Branch Prediction and Translation Lookaside Buffer 25
5.1 Cache design and cache misses . 25

5.1.1 Cache associativity . 26
5.2 Branch Prediction and Misprediction . 27

5.2.1 Branch Prediction techniques . 29
5.3 Virtual Memory and Translation Lookaside Buffer misses 30

5.3.1 Virtual memory: Pages . 30
5.3.2 Virtual memory: Segmentation . 31
5.3.3 Translation Lookaside Buffer . 31

6 Notes on Implementation 32
6.1 Using Integers as Characters . 32
6.2 Generating the Data . 33
6.3 Reading Input . 33
6.4 Verifying the Results . 33
6.5 Combating Over-Optimization . 33

2

6.6 Reducing Construction Time Memory Usage 33

6.7 Bitmap implementation choice . 34

6.8 Challenges in Implementation . 35

7 Notes on The Experiments 36

7.1 Testing Machine Specifications . 36

7.2 General Setup . 36

7.3 Choice of Input String . 36

7.3.1 Uniform vs. Non-Uniform data . 36

7.3.2 Non-uniform distribution choice . 37

7.4 Choice of Query Parameters . 38

7.5 Tools Used . 39

7.5.1 Tools . 39

III Algorithms & Experiments 42

8 Simple, Näıve Wavelet Tree: Rank and Select 42

8.1 Optimizations . 42

8.1.1 Binary Rank using Popcount . 42

8.1.2 Binary Select using Popcount . 43

8.2 Experiments . 44

8.2.1 Uniform vs. Non-Uniform data . 44

8.2.2 Running time of Tree Construction vs Alphabet Size 44

8.2.3 Rank and Select using Popcount 48

9 Precomputing Binary Rank in Blocks 49

9.1 Concatenating the Bitmaps . 51

9.1.1 Edge Cases . 52

9.1.2 Page-aligning the Blocks . 52

9.2 Select Queries with Precomputed Ranks 53

9.2.1 Edge Cases . 54

9.3 Extra Space Used by Precomputed Values 55

9.4 Dependence of Optimal Block Size on Input Size 56

9.5 Experiments . 56

9.5.1 Query Running Time for Bitmap with Precomputed Blocks for
different Block Sizes . 57

9.5.2 Memory Usage of Precomputed Rank Values 65

9.5.3 Improvement of using precomputed values 66

9.5.4 The Dependence of Optimal Block Size on Input Size 66

3

10 Precomputed Cumulative Sum of Binary Ranks 68
10.1 Advantages of Cumulative Sum . 68
10.2 Disadvantages of Cumulative Sum . 69
10.3 Optimal Block Size . 69
10.4 Select Queries with less branching code 70
10.5 Experiments . 71

10.5.1 Build Time And Memory Usage For Various Block Sizes 71
10.5.2 Optimal Block Size For Rank And Select 71
10.5.3 Rank Queries . 74
10.5.4 Select Queries . 74

11 Cumulative Sum with Controlled Memory Layout and Skew 78
11.1 Prefetching . 79
11.2 Skewing The Tree . 79
11.3 Controlled Memory Layout . 79
11.4 Experiments . 81

11.4.1 Queries when skewing the Wavelet Tree using uncontrolled and
controlled memory layout . 81

IV Conclusion 86

12 Conclusion 86

13 Future Work 87
13.1 Interleaving Bitmap and Precomputed Cumulative Sum Values 87
13.2 vEB Memory Layout . 87
13.3 d-ary . 88

13.3.1 SIMD . 88
13.4 Parallelization . 88

13.4.1 On GPU . 88
13.5 RRR structure . 88

Appendices 89

A Precomputed rank block sizes: larger range 89

Primary Bibliography 90

Secondary Bibliography (not curriculum) 91

4

Abstract

In this thesis we perform a survey on the applications of wavelet trees. We
describe how and why modern cpu architectures give rise to certain hardware-based
performance penalties. We implement a wavelet tree and measure and analyse the
performance and encountered hardware-based performance penalties of building and
querying the tree. Inspired by this analysis, we iteratively implement, measure,
and analyse variations of the wavelet tree and its queries attempting to reduce the
encountered penalties, running time and memory footprint, sometimes comparing
with a theoretical analysis.

5

Part I

The Wavelet Tree

1 Introduction

The Wavelet Tree is a relatively new, but versatile data structure, offering solutions for
many problem domains such as string processing, computational geometry, and data
compression. Storing, in its basic form, a sequence of characters from an alphabet it
enables higher-order entropy compression and supports various fast queries.

In this thesis we have made a short survey of some of the various applications of
a wavelet tree including uses in compression and in information retrieval. We include
descriptions of how the construction of a wavelet tree and its supported queries work in
practice.

The practical implementation of a wavelet tree is susceptible, like all other algo-
rithms, to the characteristics and imperfections of modern computer architectures that
can degrade the performance by various penalties. We describe and analyse why these
characteristics give rise to these penalties and how they impact performance.

Our focus has been to implement various variations of the wavelet tree and its queries,
measuring the running times and the hardware-based penalties, and implement new
variations of the wavelet tree in attempts to reduce these penalties. We also use these
measurements to try and analyse and explain why the different algorithms and wavelet
trees perform differently. We aim at making it something that could be useful in real
world scenarios and we have tried to use inputs in our experiment that correspond to
realistic use cases. We have therefore avoided impractical optimizations such as ones
that require recompilation to handle different sizes of alphabets.

We have implemented and tested the construction of a wavelet tree, comparing it
to the theoretical running time. We also implemented and tested the rank and select
queries and performed a number of modifications, attempting to reduce the amount of
hardware penalties they encounter by changing how they are calculated, changing the
shape of the tree, changing what is stored and how it is stored. We test and compare
these optimizations including analysing how they perform with regards to the various
penalties found in modern CPUs.

We first implemented the basic construction algorithm based on the description by
Navarro [1, Section 2], then expanded the implementation in various ways to attempt to
improve the query algorithms.

The Wavelet Tree is a tree structure of bitmaps. It was invented by Grossi, Grupta
and Vitter [2] in 2003. In its basic form, it is a balanced binary tree of bitmaps, encoding
a sequence or string S[1, n] = c1c2c3 . . . cn of symbols or characters ci ∈ Σ, where Σ =
[1 . . . σ] is the alphabet of S, in such a way that it supports a number of fast queries on
S. A balanced wavelet tree over a string S with alphabet Σ will have height h = dlog σe,
and 2σ − 1 nodes, with σ of those as leaf nodes and σ − 1 as internal nodes. In this
thesis, when we write log we actually mean log2 unless otherwise noted.

6

The wavelet tree supports access, rank and select queries. An access(p) query on a
wavelet tree construced on string S is the query for what character c is at position p
in the string S. The rank of a character c in a string S up to position p is written as
rankp(c) and is defined as the number of occurrences o of c in the substring S[0, . . . , p].
The position of the oth occurrence of a character c can be found with a selectc(o) query.

With extensions, a wavelet tree can be used for efficient compression of S while
still supporting the same queries, although not as fast. It has applications in many
areas, from string processing to geometry, and can be used to represent, among others,
a sequence of elements, a reordering of elements or a grid of points [1, Section 4]. When
Grossi et al. [2] invented the Wavelet Tree, it was a milestone in compressed full-text
indexing even though it is mentioned little in the paper. The wavelet tree has even been
shown to be able to get close to a lower bound of compression called kth-order entropy
encoding, and we discuss this in Section 4.2.1.

2 Related Work

The wavelet tree was first introduced in 2003 by Grossi, Gupta, and Vitter [2, Section
4.2] as a way to obtain faster rank and select query times on compressed suffix arrays
while maintaining empirical entropy compression.

Gonzalo Navarro [1] explains how the wavelet tree has many and wide ranging useful
applications, from string processing including compression, full-text indexes and inverted
indexes to geometry processing including various queries and computations on point grids
and rectangle sets as well as graphs. Gonzalo Navarro [1, Section 9] also mentions that
there are other data structures that achieves better time complexity than the wavelet
tree, but the wavelet tree is more practical and easy to understand and implement.

Cristos Makris [3] also describes several effective uses of a wavelet tree, including
viewing it as a range searching data structure for e.g. minimum bounding volumes and
effective storage compression. Using the wavelet tree as a compressing data structure
is mainly about using various ways of encoding the bitmaps, such as using run-length
encoding (RLE) on the bitmaps and storing the Burrows-Wheeler transformation (BWT)
of the input string, or using Huffman Coding to shape the tree. The Burrows-Wheeler
transformation was introduced by Burrows and Wheeler [4, Abstract] in 1994. Ferragina
et al. [5, Section 2] describes in more detail how BWT can be used to reduce the problem
of compressing higher-order entropy to a problem of compressing 0-order entropy, which
the wavelet tree then can do using RLE. Mäkinen and Navarro [6, Section 4] invented the
Huffman-shaped wavelet tree and describes in short the general principle of it without
going into much detail. We describe in more detail how these methods of compression
work on wavelet trees in Section 4.2.

Claude and Navarro [7, Section 2.2] give a good description of how rank and select
queries is performed on the wavelet tree in practice. See Section 3.3 and Section 3.4 for
our description of them, as well as Section 4.3.1 for more description of the uses of them.

Another use of a wavelet tree is answering Range Quantile queries and is described
by Gagie et al. [8, Section 3]. See Section 4.3.2 for a description of this.

7

Julian Shun [9] describes various parallelized algorithms for constructing the wavelet
tree by utilizing the GPU, achieving up to a 27x speedup over the sequential construction
algorithm.

Alex Bowe [10] describes how a multiary wavelet tree can be combined with an RRR
structure to support faster queries than a binary wavelet tree can accomplish using an
RRR structure invented by Raman et al. [15]. An RRR structure allows computation of
binary rank in O(1) time and provides zero-order entropy compression for binary strings.
We found this result late, otherwise we would have implemented and tested it. By using
a multiary wavelet tree with the RRR structure it is possible to achieve higher order
entropy compression.

3 The Wavelet Tree

3.1 Constructing the Wavelet Tree

An example of a Wavelet Tree can be seen in Figure 1.

The wavelet tree is constructed recursively, starting at the root node and moving
down the tree, with each node in the tree receiving a string constructed by its parent,
except the root node that receives the full input string. Let Sparent of length nparent be
the string passed to the node from the parent node or, in the case of the root node,
the input string to the wavelet tree itself. Σparent is the alphabet over which Sparent is
defined where each entry in the alphabet, a character or symbol, has a position in the
alphabet. The size of Σparent is σparent . Each node stores a bitmap of size nparent as well
as pointers to its left and right child nodes.

Each node calculates the middle character of Σparent and uses it to set the bits in the
bitmap and split Sparent in two substrings Sleft and Sright , passing those on to the left
and right child nodes.

Let i =
⌊
σ
2

⌋
be the index of the middle of the alphabet Σparent . Sleft is then the

subsequence of Sparent formed by the characters c ∈ Sparent where c ∈ Σparent [1 . . . i] =
Σleft . Sright is the subsequence of Sparent formed by the characters c ∈ Sparent where
c ∈ Σparent [i + 1 . . . σparent] = Σright . Alternatively, Sleft can be considered to be the
subsequence of Sparent where all characters c ∈ Σright have been stripped out. Similarly
Sright can be considered the subsequence of Sparent where all characters c ∈ Σleft have
been stripped out. This also means that the alphabets for the substrings Sleft and Sright
do not overlap, that is ∀c ∈ Σleft : c /∈ Σright and vice versa. The characters in the
subsequences Sleft and Sright occur in the same order they do in Sparent . All these strings
are not stored anywhere in the wavelet tree. They are only used for the construction of
the tree, but can later be reconstructed from the information stored in the bitmaps if
need be.

Each bit in the bitmap corresponds to a character in the string Sparent . If a character
c at position p in Sparent is in the left side of the alphabet Σparent , that is c ∈ Σleft , the
bit in the bitmap at position p will be set to 0. If instead c ∈ Σright , the bit at position
p will be set to 1. Assuming the alphabet is in sorted order with regards to the greater

8

adsfadaadsfaads
001100000110001

adadaadaad
0101001001

aaaaaa dddd

sfsfs
10101

ff sss

Figure 1: Wavelet Tree on string adsfadaadsfaads with alphabet Σ = [adfs]. Note that only the
bitmaps are actually stored in the tree. The characters are annotations for ease of understanding.

than (>) comparison operator, this can be computed as c ∈ Σright = c > Σ[bσ2 c]. If the
alphabet is not in sorted order, either lookups into the alphabet list or a mapping to and
from an alphabet in sorted order will be needed to calculate whether a given character
is on the left or right side of the alphabet. The leaf nodes of a wavelet tree will appear
in the same order as the characters they represent appear in the alphabet used.

This process continues recursively in each child node except where only one character
is left in the alphabet of the input string of a node, σparent = 1. That node is then
considered a leaf node and needs not store a bitmap. Each node in a wavelet tree can be
considered a full wavelet tree for the string Sparent it was passed from its parent node.

At each level in the tree at most n bits are stored in the bitmaps in total, making
n · h = n · log σ an upper bound to the total number of bits that a wavelet tree stores
in its bitmaps. In addition to this, each node takes some constant amount of machine
words of space, and there are 2σ − 1 nodes in the tree. ws is the size of our machine
words. This makes the total memory consumption O(n log σ + σ · ws) bits.

The Wavelet Tree can theoretically be constructed in O(n · h) = O(n log σ) time as
the sum of the lengths of the strings being processed at any single layer of the tree is
the length of the input string to the tree.

The pseudo-code for the Wavelet Tree node construction algorithm is shown in Al-
gorithm 1. It is recursively defined, calling itself to construct the left and right sub-tree
from the root node and down. At each recursion the algorithm splits the given alphabet
in two halves and traverses the given string putting each character into a left or right
partition based on whether the character was in the left or right half of the alphabet.

3.2 Access Query

An access(p) query is the query for what character c is at position p in the string S
the wavelet tree is constructed for. The query can be answered by a single downward
traversal of the wavelet tree. Starting at the root node, an access query will look up the
bit b at position p in the bitmap of the root node. If b is 0, it knows that c ∈ Σleft and
must therefore traverse into the left child node. If b is 1, it means that c ∈ Σright and
the algorithm should traverse into the right child node instead. Before the algorithm

9

Algorithm 1 Construction of nodes in the Wavelet Tree

function ConstructNode(S, Σ)
if |Σ| = 1 or |S| = 0 then

return Self
end if
(Σleft , Σright) ← Σ
SplitChar ← Σleft [σleft]
for all c in S do

if c > SplitChar then
Sright .Append(c)
Self.Bitmap.Append(1)

else
Sleft .Append(c)
Self.Bitmap.Append(0)

end if
end for
RightNode ← ConstructNode(Sright , Σright)
LeftNode ← ConstructNode(Sleft , Σleft)
return Self

end function

can continue down into the child node, it must know what position in the left (or right)
substring Sleft (or Sright) the character c has been mapped to.

If b is 0, the position of c in Sleft is the number of occurrences of 0 in the bitmap
up to position p. If b is 1, the position of c in Sright is the number of occurrences of 1
in the bitmap up to position p. This is also called rank0(p) or rank1(p) or the binary
rank of 0 or 1 in the bitmap up to position p. In the most basic way binary rank can be
calculated using a linear scan of the bitmap in O(n) time, and since it is calculated one
per level of the tree, the access query time becomes O(n · h) = O(n log σ). The result
of the binary rank is used as the position p in the child node we traverse into. The
traversal continues until it reaches a leaf node which then corresponds to the character
at the original position p parameter of the query. The character is then returned. Later
in this thesis we will work on improving the running time of the binary rank query (see
Section 8.1.1).

We have chosen not to implement or test access queries on our implementations of a
wavelet tree. We have done this to reduce the amount of code and testing needed and
because the behaviour of rank (see Section 3.3) and access queries are so similar because
they both use binary rank. Our optimizations to binary rank can also be used for access
and because of this we implement and test only the more complicated rank query.

10

3.3 Rank Query

The rank of a character c in a string S up to position p is written as rankp(c) and is
defined as the number of occurrences o of c in the substring S[0, . . . , p].

The rank query on a wavelet tree starts from the root of the wavelet tree and moves
down through the tree until it hits the leaf node corresponding to the input character,
much like the access query. Also like the access query, each node calculates the binary
rank of a character in the bitmap of the node and it is used as the positional parameter
in the child node. Unlike the access query, the rank query is looking at a specified
character c up to a position p, and whether it is the left or the right child node that is
traversed into is decided by what c is represented as in the bitmap of the current node
and is calculated like it is when constructing the tree.

When the leaf node is reached, the binary rank calculated in the parent node is the
rank of the input symbol up to the original input position. Intuitively this makes sense
because leaf nodes correspond to only one character and the rank of a character up to a
position in a string containing only that character is the same as the position. Figure 2
shows an example of how this concept works. In the example, the rank query looks for
the number of occurrences o of the character c = ’a’ up to position p = 10. It begins
at the root and queries recursively towards the leaf node corresponding to ’a’. In each
recursive call p is set to oparent because only the 0s (or 1s) are mapped to the child node
and o indicates how many of these correspond to characters occurring before the original
position pparent. In all the bitmaps ’a’ is represented as 0 and in the root there are 6
occurrences of 0 up to position 10. In the left child node the algorithm then counts the
number of 0s (3, making o = 3) up to position 6 (p = 6), and in the leaf it counts the
number of 0s until position 3 of which there are 3 (o = 3, p = 3). This means that there
are 3 occurrences of ’a’ in S up to position 10.

We have written the rank query as pseudo-code in Algorithm 2 using an object-
oriented approach.

Algorithm 2 Rank of character c until position p

function Rank(c, p)
if Self.IsLeaf then

return p
end if
CharBit ← bit representing c in bitmap of current node
o ← BinaryRank(CharBit, p)
if CharBit = 1 then

Rank ← RightChildNode.Rank(c, o)
else

Rank ← LeftChildNode.Rank(c, o)
end if
return Rank

end function

11

0 0 0 0
S= c a c a b c b c a b a c b b

1root
'a' = 0

Left node
'a' = 0

Left leaf
node

p = 6, o = 3

p = 3, o = 3

p = 10, o = 6

Query: Rank(c='a', p=10), Result: o = 3

Right leaf
node

Right leaf
node

0

= p

0 = bit representing 'a'

1 0 0 1 0 1 0 1

0 0 01 1 1 1 10
a a b b a b a b b

111
c c c c c

111
b b b b b

1
a a a a
0 0 0 0

11

1

Figure 2: Rank: This figure shows how the rank query algorithm works. In this example the
algorithm looks for the number of occurrences o of c = ’a’ until position p = 10. It begins in
the root and queries recursively towards the leaf node corresponding to ’a’. The arrows indicate
a mapping between the bitmaps. In each recursion p = oparent. Each of the 0s before pparent in
the parent node maps to bits before p the child node. In the root there are 6 0s up to position
10. In the left node there are 3 0s up to position 6 and in the leaf there are 3 0s up to position
3. This means there are 3 as up to position 10 in S.

3.4 Select query

The position of the oth occurrence of a character c can be found with a selectc(o) query.
The ith occurrence can be found with a traversal up through the wavelet tree starting at
the leaf node corresponding to the character c and ending at the root node. This means
it is necessary to find the leaf node corresponding to c.

The leaf node corresponding to a character c can be found by a downward traversal of
the tree, from the root to the leaf node without accessing any of the bitmaps. Which child
node, left or right, should be traversed is determined by computing whether c ∈ Σleft

or c ∈ Σright . If c ∈ Σleft , the traversal continues in the left child node, otherwise it
continues in the right child node. The traversal continues until a leaf node is reached as
that will be the leaf node corresponding to c.

After having found the leaf node the algorithm turns to do the upward traversal to
find the position of the ith occurrence of c in the bitmap of the root node. This is done
by finding the oth occurrence of 1 or 0, the bit representing c, in the bitmaps from the
found leaf node to the root node, the oth occurrence of 1 or 0 being the bitmap entry
corresponding to the ith occurrence of c in S. For a node v, o is the position of the
bit representing c in the bitmap of the child node of v that contains c. Occurrence o is
calculated for each node during the upward traversal and o increases (or at least does
not decrease) as each bitmap higher up in the tree corresponds to more and more of the
original input string. To know which bit, 1 or 0, to look for the oth occurrence of, the

12

algorithm must know which bit c has been mapped to in those bitmaps. Starting at the
leaf node corresponding to c, which bit in the bitmap of the parent node that represents
all characters in this node, among them c, can be computed by comparing the left or
right child node pointer of the parent node with the address of this node. If the right
child pointer of the parent node points to the current node, then the current node is the
right child of its parent node and c and the rest of the characters in this node will be
represented by a 1 in the bitmap of the parent node, otherwise it will be represented by
a 0.

Having found the bit representing c in the parent node, the algorithm looks for the
position of the oth occurrence of that bit in the bitmap of the parent. This is also called
select1(o) or select0(o) or the binary select of 1 or 0 of the bitmap. It can be implemented
as a linear scan of the bitmap, but this is inefficient and later in this thesis we will look
at how to improve the running time of binary select. The position of this occurrence is
then the new o parameter for the next step up the tree.

In Algorithm 3, we display pseudocode for select queries. GetLeaf is the function
performing the initial downward traversal to find the leaf node corresponding to the
character c. SelectRec is the function performing the upward traversal, finding the
(varying) oth occurrences of 1 or 0 in the bitmaps up the tree, in a recursive manner.
Select is the function computing the selectc(o) query on the wavelet tree. It initiates
the downward traversal via GetLeaf and then the upward traversal via SelectRec.

An example of how the intuition behind why Select works is shown in Figure 3.
In the example the algorithm looks for the position of the 3rd occurrence of ’a’. It
looks for either 0 or 1 based on how ’a’ is represented in the bitmap of the current
node. In this example ’a’ is always represented as 0. Select starts in the leaf of ’a’
where p = 3 and o = 3 and moves recursively towards the root. In each recursive
call oparent = pchild, meaning that pchild becomes the occurrence Select looks for in the
parent. In this example Select therefore looks for the position of the 3rd occurrence of
0 in the parent of the leaf, which is 5. In the root it then looks for the position of the
5th occurrence of 0 which is 9 corresponding to the position of the 3rd a in S.

4 Applications

4.1 What The Wavelet Tree Can Represent

The Wavelet Tree has multiple applications that each utilize the wavelet tree differently
and use it for storage of, and queries on, different types of data. These applications use
the wavelet tree to achieve different representations which can be split into three main
types: A sequence of values, a reordering or permutation, and a grid of points.

Using the Wavelet Tree to store a sequence of values is perhaps the most basic way
to utilize the tree. The Wavelet Tree stores the sequence and supports access, rank, and
select queries on the sequence.

The Wavelet Tree can also be used to describe a stable reordering of the symbols in
a string S, stable meaning that the relative order of entries of the same symbol remain

13

Algorithm 3 Select

function Select(c, Occurrence)
Leaf ← GetLeaf(c)
if Leaf is a right child node then

CharBit ← 1
else

CharBit ← 0
end if
return Leaf.Parent.SelectRec(CharBit, Occurrence)

end function

function SelectRec(CharBit, Occurrence)
Position ← BinarySelect(CharBit, Occurrence)
if Self is the root node then

return Position
end if
if Self is a right child node then

CharBit ← 1
else

CharBit ← 0
end if
return Parent.SelectRec(CharBit, Position)

end function

function GetLeaf(c)
if Self.isLeaf then

return Self
end if
if c ∈ Σright then

return RightChild.GetLeaf(c)
else

return LeftChild.GetLeaf(c)
end if

end function

14

0 0 0
S= c a c a b c b c a b a c b b

1root
'a' = 0

Left node
'a' = 0

Left leaf
node

p = 5, o = 3

p = 3, o = 3

p = 9, o = 5

Query: Select(c='a', o=3), Result: p = 9

0

= p

0 = bit representing 'a'

1 0 0 1 0 1 0 1

0 0 01 1 1 1 10
a a b b a b a b b

a a a a
0 0 0 0

0

Right leaf
node

111
c c c c c

11

Right leaf
node 111

b b b b b
1 1

Figure 3: Select: This figure shows how the select algorithm works. In this example Select
looks for the position of the 3rd occurrence of a which is represented as 0 in the leaf. Select
starts in the leaf of a where p = 3 and o = 3 and moves recursively towards the root. Along the
way Select looks for the position of the 3rd occurrence of 0 in the parent of the leaf, which is 5,
(p = 5, o = 3) and in the root it then looks for the position of the 5th occurrence of 0 which is
9, (p = 9, o = 5) corresponding to the position of the 3rd a in S.

the same. This property can be relevant e.g. when using key-value pairs where the order
of values matters even when the keys are identical. This also means that if the leaves
are traversed, with all the occurrences of the smaller symbols found first, then all the
symbols within a leaf are ordered by their position in the original string. This means
that the leaves of the symbols appear in ascending sorted order from left to right in the
tree. If one then has a permutation of a string e.g a string sorted in descending order and
stores it in a wavelet tree, it is then possible to access the symbols in either ascending or
descending order based on whether the symbol is tracked downwards through the tree
until the corresponding leaf is found, or whether the symbol is tracked upwards from the
leaf. The downward tracking would then result in an ascending order and the upward
tracking would result in descending order. The wavelet tree is therefore able to represent
a reordering of a string and the order is based on how the alphabet is sorted.

A Wavelet Tree can also represent an n × n grid of n points where no two points
share the same row or column. One can map a general set of n points to such a discrete
grid and then store the real points somewhere else. If we have points sorted by the
x-coordinate and take only the y-coordinates Sy[1, n] = y1, y2, ..., yn and save Sy in a
Wavelet Tree we can the find the ith point in x-coordinate order by accessing the corre-
sponding y-coordinate in the wavelet tree. If we want the ith point in y-coordinate order
we can access the leaf of a given y-coordinate and find its corresponding x-coordinate
by querying up through the tree until we find the original position of y in S. The cor-
responding x-coordinate will be at the same position. Querying from a leaf gives the

15

Definition 1. : Entropy

Let S be a sequence of n symbols from an alphabet Σ = {c1, . . . , cσ} with
cardinality σ. Then entropy H is defined as

H =

σ∑
i=1

pi log
1

pi
,

where pi is the probability of the ith symbol in the alphabet appearing in S.

points in y-coordinate order because the leaves are sorted by y-coordinate. The pur-
pose of storing an n × n grid this way using a wavelet tree is to be able to find points
within a rectangle [xmin, xmax]× [ymin, ymax] in order to for instance be able to do two-
dimensional range search queries in O(log n) time. This running time can be improved
to O(logn

log logn) using O(n log n) bits and this running time cannot be improved within

space O(n logO(1) n) [1, Section 7.1]

4.2 Compression

The Wavelet Tree has many uses for compression of data [1]. Some of the main com-
pression techniques are different ways of encoding the bitmaps and changing the shape
of the wavelet tree [1, Section 3].

The main advantage of the wavelet tree with regards to compression is that it sup-
ports entropy bounds in the attained space complexity of the various wavelet tree com-
pression methods [3, Section 2.1].

4.2.1 Entropy

Cristos Makris [3, Introduction] gives a definition of entropy as found in Definition 1.

Entropy represents a lower bound to the average number of bits needed to represent
each symbol in S according to the coding theorem of Shannon [3, Introduction] and is
the bound that compression researchers compare their results to.

This theoretical definition of entropy is often replaced in scientific literature by a more
practical definition: empirical entropy. There are two versions: empirical zero-order
entropy H0 and empirical kth-order entropy Hk, and they are defined in Definition 2
and Definition 3. Hk takes into account a context of size k of the symbol appearances,
i.e. the suffixes of length k of each symbol appearance in the string, while H0 does not
and treats symbols independently instead.

The entropy Hk often defines a lower bound for bit space usage that is smaller than
the lower bound of H0 [5, Section 2].

There is a number of ways to achieve kth-order or zero-order entropy compression in
a wavelet tree, the details of which is described later. The techniques used include the

16

Definition 2. : Empirical zero-order entropy, H0

Let S be a sequence of n symbols from an alphabet Σ = {c1, . . . , cσ}. The entropy
H0 is defined as

H0 = H0(S) =
∑
ci∈Σ

ni
n log(nni)

where ni is the number of appearances of character ci in S.

Definition 3. : Empirical kth-order entropy, Hk

For a string w ∈ Σk let us define wS as the concatenation of characters that follow
w in S. Then the kth-order empirical entropy of S, is defined as follows

Hk = Hk(S) = 1
n

∑
w∈Σk

|wS |H0(wS)

Burrows-Wheeler Transformation (see Section 4.2.3), using Run-Length Encoding (see
Section 4.2.2), and Huffman-Shaping the wavelet tree (see Section 4.2.4)

Using the Burrows-Wheeler transformation on the input we can reduce the problem
of achieving Hk compression to achieving H0 compression. In other words, if we have
a good compression algorithm that achieves compression within the H0 lower bound,
then by using that algorithm on the Burrows-Wheeler transformation of the input we
can achieve compression within the Hk lower bound [5, Introduction]. The problem
for a long time was that there existed no good way to achieve compression within the
H0 lower bound or at least it was a problem before the wavelet tree was invented [5,
Introduction].

To achieve zero-order entropy a Huffman shaped wavelet tree can be used [6, Sec-
tion 4]. Claude and Navarro [7, Section 3] describes a way to also have zero-order entropy
space usage for large alphabets. It is therefore possible to get space usage within zero-
order entropy even for large alphabets using the wavelet tree. Huffman shaping does not
care about how symbols are grouped but only looks at their frequency of appearance.
Because of this building a Huffman shaped wavelet tree on the Burrows-Wheeler trans-
formation of a string is not different from building it using the original string. Zero-order
entropy can also be achieved by run-length encoding the bitmaps in the wavelet tree,
which is an approach that can be used when compressing the Burrows-Wheeler trans-
formation of the input string using the wavelet tree [5, Introduction (B)]. Run-length
encoding takes symbol grouping into account and this means that using a combination
of run-length encoding of bitmaps and taking the Burrows-Wheeler Transformation of
the input string and using the wavelet tree it is possible to achieve compression within
the lower bound of kth-order entropy.

17

4.2.2 Run-Length encoding

Run-length encoding (RLE) is a simple process where the number of consecutive repeats
of each symbol is stored instead of storing the symbols themselves. If we have the string
aaaaacccaaaaabbbaa we can run-length encode this to a5c3a5b3a2 which is a smaller
string containing the same information. It is necessary to store the symbol and its
number of consecutive repeating occurrences because we need to be able to identify
which symbol occurs where and how many times in order to be able to reproduce the
original string. The longer the sequence of a repeating symbol is, the less space is used
since it can be stored as one number plus the related symbol.

When representing the string using a wavelet tree, the problem gets reduced to run-
length encoding a string of bits (the bitmap in each node). Since a binary number only
has an alphabet of size two it is not necessary to store both the symbol and its occurrence
but only the occurrence, if we adopt the convention that the first number is always the
amount of 0s and the second number is always the amount of 1s, continuing this trend
for the entire string so that even-index numbers correspond to 0 and odd-index to 1. As
an example, if we look at the bitmap of an input string aaaaacccaaaaabbbaa which is
000001110000000000 when stored in a wavelet tree, then it can be encoded and stored
as the numbers 5 3 10. Figure 6a shows an example of a wavelet tree with run-length
encoded bitmaps.

If we do not consider how a computer saves numbers but only consider the amount
of length-encoding numbers that needs to be stored then our example RLE compression
of 000001110000000000 achieves a great reduction in space. From 18 numbers to only 3
numbers, which contain the same information.

If we do consider how a computer saves numbers then the reduction is not that great
because if we assume that each number is represented as an integer, then the run-length
encoded bitmap uses more space than just storing the original bitmap. This is because
an integer uses 4 bytes of space which is 32 bits and we need to store three integers giving
us a total of 32bits×3 = 96bits which is significantly larger than just the 18 bits we need
to store for the original bitmap assuming we can store 1 and 0 using only 1 bit1. This
means that the symbols in the string need to, on average, repeat consecutively more than
32 times before RLE achieves better space usage than just storing the bitmaps. This is
assuming 4-byte integers are used to store the RLE values. To be able to support storing
the RLE of any bitmap, even one containing only 0s or only 1s, the RLE values should
be able to store as high a value as the bitmap is long, which might require more bytes
per value. A 32-bit unsigned integer supports storing a value up to 232 = 4 294 967 296.
Alternatively, variable-length encoding of the numbers can be used. The limit on bitmap
length is also the maximum supported length of input string for a wavelet tree.

RLE is still useful despite of this limitation when using fixed-length encoding because
you usually want to compress massive amounts of data and if that data uses an alphabet
that is small enough then, as previously stated RLE can achieve compression close to
the zero-order entropy when working with binary alphabets.

1This can be accomplished using C++ and Vector<bool>

18

bananahat#
ananahat#b
nanahat#ba
anahat#ban
nahat#bana
ahat#banan
hat#banana
at#bananah
t#bananaha
#bananahat

⇒

#bananahat
ahat#banan
anahat#ban
ananahat#b
at#bananah
bananahat#
hat#banana
nahat#bana
nanahat#ba
t#bananaha

Figure 4: Example of a Burrows-Wheeler transformation of the string bananahat

If the Burrows-Wheeler transformation is applied to the string before it is saved in
the wavelet tree and run-length encoded then the number of consecutive repeats of a
symbol is increased which enables even greater compression.

4.2.3 Burrows-Wheeler transformation

The Burrows-Wheeler Transformation (BWT) transforms a string S into a string of
the same length with the same characters with the characteristic that characters are
grouped into runs of similar characters. This characteristic enables higher compression
ratios when using techniques such as run-length encoding. The transformation is re-
versible, meaning it is possible to produce the original string from the Burrows-Wheeler
transformed string, without any other information. Sorting S would enable similar, or
possibly better, compression ratios using run-length encoding, but it will not be re-
versible.

A string S of n characters is transformed by the Burrows-Wheeler transformation [4,
Section 2] by forming n cyclic shifts of S. These n permutations of S are then sorted
in lexicographical order. An extra character (#), not in the alphabet of S, is added to
keep track of the end of the original string. The BWT of S is then the concatenation of
the last character of each permutation in sorted order, excluding #.

In Figure 4 we present an example transformation of the string bananahat. The list
to the left in Figure 4 is the cyclically shifted permutations of S and the list to the right
contains the same permutations, but in lexicographically sorted order. The result of the
Burrows-Wheeler transformation is then the characters at the last index in each column,
highlighted in bold in Figure 4. The Burrows-Wheeler transformation of S = bananahat
becomes BWT(S)= tnnbhaaaa. The original string is identified by having a # at the
end.

Looking at BWT(S) we can see that equal characters are now grouped together. It
would not make much sense to compress something without being able to decompress it
again. Burrows et al. [4, Section 2] describes an algorithm for getting the original string
from the Burrows-Wheeler transformed string. Their algorithm is not very intuitive, so

19

M =

dca#
ca#d
a#dc
#dca

⇒M ′ =

#dca
a#dc
ca#d
dca#

Add 1 Sort 1 Add 2 Sort 2 Add 3 Sort 3 Add 4 Sort 4

a
c
d
#

#
a
c
d

a#
ca
dc
#d

#d
a#
ca
dc

a#d
ca#
dca
#dc

#dc
a#d
ca#
dca

a#dc
ca#d
dca#
#dca

#dca
a#dc
ca#d
dca#

Figure 5: Example of how to do reverse BWT on string “acd#”. The returned value is “dca#”.

we have added a description of a more intuitive algorithm 2 that reverses BWT. It is
worth noting that the algorithm we describe is less efficient than the one Burrows et
al. [4, Section 2] describes. The point of describing a more intuitive algorithm is to more
easily convince the reader that it is possible to reverse BWT.

It is possible to reverse BWT by taking the BWT, sorting it and then adding the
BWT in front of the sorted value and then sorting that. This procedure continues until
the number of characters in each row is equal to the length of the BWT. An example
of the process in shown in Figure 5. After each sorting step each column in the sorted
result corresponds to the column at the same position in M’. After the last sorting the
result is equal to M’. The original string is then the value with the end of line character
at the end.

Figure 6 shows two small examples of wavelet trees using run-length encoding, one
constructed on the string bananahat (Figure 6a) and the other on the Burrows-Wheeler
Transformation of bananahat (Figure 6b). We can see in Figure 6b, highlighted by the
numbers in bold, that fewer Run-length encoded values needs to be stored than for the
non-Burrows-Wheeler transformed string in Figure 6a.

One might wonder how Rank and Select queries can be useful when the input
string is Burrows-Wheeler transformed, as the results of the queries become essentially
unrelated to the original string S, without an obvious way of transforming the query
results back to what they would have been on a tree constructed on the original non-
transformed string. We have not found any way to transform the results back, and the
main use of constructing a Wavelet Tree on the BWT of a string seems to us, by far, to
be compression.

Rank and select queries on the BWT of a string does, however, have uses when
working with the FM-index, named after its inventors Paolo Ferragina and Giovanni
Manzini, which is a self-index based on the Burrows-Wheeler transformation BWT (S)
that is able to find occurrences and positions of patterns (sub-strings) in S by looking at
BWT (S). The procedure for doing so is described by Mäkinen and Navarro [6, Section

2http://en.wikipedia.org/wiki/Burrows-Wheeler_transform#Explanation

20

http://en.wikipedia.org/wiki/Burrows-Wheeler_transform#Explanation

bananahat
2,1,1,1,3,1

baaaha
1,2,1,1

baaaa
0,1,4

aaaa b

h

nnt
2,1

nn t

(a) RLE Wavelet Tree on string bananahat
with alphabet Σ = abhnt

tnnbhaaaa
0,3,6

bhaaaa
1,1,4

baaaa
0,1,4

aaaa b

h

tnn
0,1,2

nn t

(b) RLE Wavelet Tree on
BWT (bananahat) = tnnbhaaaa with
alphabet Σ = abhnt

Figure 6: Comparison of Wavelet Trees using Run-Length Encoding on a string and its Burrows-
Wheeler Transformation

2].

4.2.4 Huffman-shaped Wavelet Trees

Mäkinen and Navarro [6, Section 4] describes a Huffman Shaped Wavelet Tree which
skews the tree to one side and places symbols with higher frequencies towards the other
side so that they are closer to the root than those that have a lower frequency. More
precisely, they are placed in the tree in such a way that the path from the root to a leaf
corresponds to the binary Huffman Code [16, Introduction] of the symbol of that leaf.
Using a Huffman Shaped Wavelet Tree is an alternative to run-length encoding.

This approach skews the tree and as a result increases the height of the tree, which for
uniform data would result in higher average query time, but by placing the most frequent
symbols highest and least frequent symbols lowest, it decreases query time massively for
symbols with high frequency. Queries on a Huffman shaped Wavelet Tree for a symbol
that has a high frequency then returns faster than queries for a symbol that was less
frequent. Assuming symbols that occur with high frequency are also queried for more
often, the average query time are reduced when using a Huffman-shaped wavelet tree.

The Huffman Code [16, Introduction] of a symbol occurring with high frequency is a
shorter binary string than the Huffman code of a symbol occurring with low frequency.
The most frequent symbol could be encoded in as little as one bit! This entails that
the storage space required for the many occurrences of the most frequent symbols would
be massively reduced, while the space required for the least frequent symbols would be
increased. If the difference in frequency is sufficiently high, the reduction in space for
the most frequent symbols would outweigh the increase in space for the least frequent
and the overall storage requirement would be reduced.

Since the Huffman encoding is based on frequency of symbols it achieves the best

21

performance and space complexity when symbols are non-uniformly distributed. If the
data is uniformly distributed then the length of all Huffman codes would be similar
resulting in a balanced tree having performance and space complexity similar to a normal
Wavelet Tree.

4.3 Information Retrieval

A wavelet tree can be used to efficiently answer numerous queries in different problem
domains. In this section we describe in some detail a select number of information
retrieval scenarios.

4.3.1 Access, Rank, and Select Queries

The three queries supported by a wavelet tree are access, rank, and select. They are
often used together to answer more complex queries when the wavelet tree is used as
e.g. a dictionary or a self-index. They can also form the building blocks for many other,
more advanced algorithms and queries.

The access query for position p will return S[p] = c, or, the character c at position p
in the original input string S. The wavelet tree supports access in O(log σ) time.

The rank query for a character c and a position p will return how many times the
symbol s occurs in the input string up to position p. The select query for character c
and occurrence parameter o will return the position of the oth occurrence of c in the
input string.

G. Navarro [1, Section 5] points to an application found by Ferragina and Manzini [17,
Section 3] that uses access and rank3 queries to find the number of occurrences of a
pattern p in a string S by storing and querying the Burrows-Wheeler transformation of
the string SBWT , enabling compression along with efficient query times. G. Navarro [1,
Section 5] also point to other similar results and improvements on the previous results
by others, showing there is a wide interest in using wavelet trees to store a sequence and
query for the occurrences of patterns within that sequence.

G. Navarro [1, Section 5] further points out the uses of a wavelet tree as a positional
inverted index. By storing the list of word identifiers in the wavelet tree both the text
itself and the inverted index is stored. Access queries will then return the word at the
given position while selectc(S, o) can be used to get the oth word in the inverted list of
a word c for the string S. Rank queries can be used effectively in some list intersection
algorithms. The efficiency can be improved by using multi-ary wavelet trees or Huffman-
shaped wavelet trees as the non-uniformity of word usage in language makes it a good
candidate for Huffman coding.

The positional inverted index application can also be extended to document re-
trieval [1, Section 5] by introducing a document boundary character such as $ and
storing the concatenation of all the documents with the document boundary charac-
ter in between each. The first document containing some word c is document num-
ber j = Rank$(S, p) + 1 where p = Selectc(S, 1). Document j ends at position

3Ferragina and Manzini calls rank queries “Occ” in their paper

22

p′ = Select$(S, j) and contains o = Rankc(S, p
′)−Rankc(S, p) occurrences of the word

c. The next occurrence of the word c in another document is at pnext = Selectc(S, o+1).

4.3.2 Range Quantile Query

A range quantile query is a query that returns the kth smallest number within a sub-
sequence of a given sequence of elements. If we are e.g. given a list of price changes
on a laptop during the last year then a range quantile query is able to answer what
the kth-smallest price of the laptop was within for instance a month of that year. It is
therefore also easy to find quantiles like the 2-quantile (median) or the 3-quantile. To
e.g. find the median, k can be defined as half the length of the subsequence. This would
return the middle element of the subsequence. The 3-Quantile can be found by setting k
to 1

3 of the length of the subsequence. Quantiles are important values within such fields
as statistics and economics.

Range Quantile queries especially are interesting to us because they do not require
any changes to the wavelet tree and uses it in its simple form. Our optimizations can
therefore be applied directly without modification.

Gagie et al. [8] show how the wavelet tree can be used to support efficient range
quantile queries on a sequence S of n numbers in O(log σ) time if rankb is supported in
O(1) time [8, Section 3]. The range is denoted as S[l..r]. A range quantile query based
on a wavelet tree works by computing two rank queries on the bitmap of each node in a
traversal from the root to a leaf node.

Algorithm 4 Range Quantile Query

function RangeQuantileQuery(k, l, r)
if current node is leaf then

return number in leaf
end if
0sInRange← rank0(S[l..r]) = rank0(r)− rank0(l − 1)
if 0sInRange ≤ k then

l = rank0(l − 1) + 1
r = rank0(r)
return LeftNode.RangeQuantileQuery(k, l, r)

else
k = k − 0sInRange
l = rank1(l − 1) + 1
r = rank1(r)
return RightNode.RangeQuantileQuery(k, l, r)

end if
end function

The two queries are rankb(l − 1) and rankb(r) where rankb is the binary rank.
rankb(l − 1) is used to find the number of 1s and 0s in b[1..(l − 1)] and rankb(r) −
rankb(l− 1) gives the number 1s and 0s in b[l..r]. The algorithm goes to the left if there

23

6,2,0,7,9,3,1,8,5,4
1001100110

2,0,3,1,4
00101

2,0,1
100

0,1
01

0 1

2

3,4
01

3 4

6-7,9,8,5
00110

6,7,5
010

6,5
10

5 6

7

9,8
10

8 9

Level 1:
k = 5
l = 3
r = 9

Level 2:
k = 2
l = 2
r = 5

level 3:
k = 2
l = 2
r = 3

Level 4:
k = 1
l = 1
r = 1

Figure 7: Range Quantile Query on a Wavelet Tree. S = {6, 2, 0, 7, 9, 3, 1, 8, 5, 4}, k = 5, l =
3, r = 9.

are more than k 0s in b[l..r] and set l = (number of 0s in b[1..(l−1)])+1 and r = (number
of 0s in b[1..r]). The algorithm goes to the right if there are less than k 0s in b[l..r] and
subtract the number of 0s in b[l..r] from k and set l = (number of 1s in b[1..(l− 1)]) + 1
and set r = (number of 1s in b[1..r]). This procedure continues recursively until it hits a
leaf and then returns the number stored in the leaf which corresponds to the kth smallest
number in S[l..r].

Algorithm 4 describes the pseudo-code for a range quantile query where rank1 is
a binary rank query which returns the number of 1s in the bitmap of S in each node
generated by the wavelet tree. rank0 return the number of 0s. The argument to rank0

and rank1 is the position to find the number of occurrences up to. This means that
rank1(r) for instance returns the number of 1s in the bitmap until position r.

An example of a range quantile query can be seen in Figure 7. The numbers in bold
indicates the range S[l..r] where S = {6, 2, 0, 7, 9, 3, 1, 8, 5, 4} and l = 3, r = 9 and k = 5.
When k = 5 it means that we are looking for the 5th smallest number within S[l...r]
which is 7 indicated by the leaf that the query ends up in before terminating. l and r
indicates the range to look within. The right side of the figure shows how k, l and r
develops in each recursive call of the Range Quantile Query.

24

CPU
Package

Processor
Board

CPU Chip

L1-D L1-I

L2
Cache

L3 Cache
Main Memory
RAM

Keyboard
Controller

Graphics
Controller

Disc
Controller

Figure 8: The three cache levels. Figure borrowed from: [11, Section 4.5.1]

Part II

Hardware, Implementation & Test

In this part of the thesis we describe what hardware penalties we focus on optimizing
and how and why they occur. We discuss choices we have made in the implementation
like which C++ data structures to use. We also describe our test setup, what tools we
have used for testing and discuss the effect of using uniform vs. non-uniform distributed
data in our tests.

5 Cache, Branch Prediction and Translation Lookaside Buffer

In our optimizations we try to make our algorithms better utilize the way certain hard-
ware components function on the computer in order to improve the practical running
time. These components are the cache, the branch prediction unit and the translation
lookaside buffer.

5.1 Cache design and cache misses

A cache is a small fast memory storage that holds the most recently used memory. Using
caches can improve the memory access time many-fold, which is important since memory
access is often a bottleneck in programs. Modern CPUs have a prefetcher that attempts
to predict future memory accesses and fetches them into the cache ahead of time. There-
fore, the pattern in which a program accesses the memory can have significant influence
on the performance of the program. Modern memory systems usually have three levels
of caches: Level 1 (L1), Level 2 (L2) and Level 3 (L3) [11, Section 4.5.1].

25

Figure 8 shows how the three cache are placed in the relation to the CPU. The L1
cache resides on the CPU chip itself and usually has a size in the range from 16 KB to
128 KB and because it is placed directly on the CPU chip it is able to provide extremely
fast memory access. The L2 cache is placed next to the CPU chip on the CPU package
and it is connected to the CPU via a high speed path. The L2 cache typically has a size
between 512 KB and 1 MB which means that it can hold more data but is not able to
provide as fast access as L1. The L3 cache is placed on the processor board and usually
has a size around 3 MB. Since it is placed further away from the cpu it is not able to
provide as fast access as L1 and L2 but still much faster than fetching data from RAM.

All three caches are inclusive which means that L2 contains the data from L1 and
L3 contains the data from L1 and L2. This means that if data is evicted from L1 it will
still reside in the L2 and L3 caches or if data is evicted from L2 it will still reside in L3.
This is an advantage because it allows fast access to data even if it is evicted from L1 or
L2. If the caches were not inclusive then it would result in a many more data requests
to the main memory.

There are two types of address locality that the caches exploit to improve perfor-
mance: Spatial Locality and Temporal Locality. Spatial Locality is that, when memory
locations have addresses numerically close to a recently accessed memory location, they
have increased probability of being accessed soon. Temporal Locality is that, when
memory locations have been accessed recently, they have increased probability of being
accessed again soon. The cache exploits spatial locality by fetching more data than has
been requested, either by loading a larger chunk of memory than requested, such as a
cache-line, or by speculatively fetching more cache-lines based on previously recognized
access patterns. This speculation is performed by the cache prefetcher and assumes that
it is possible to anticipate future requests by looking at the previous access pattern.
Temporal locality is exploited by choosing what to evict on a cache miss and normally
it is the data entries that has been accessed least recently that are evicted.

Data in the main memory is split into blocks of fixed size called cache-lines. There
are usually 4 to 64 consecutive bytes in a cache-line. Some of these cache-lines are always
present in the caches. If a requested word is in the cache, a trip to main memory can be
avoided, but if the word is not in the cache then a cache-line must be evicted from the
cache (assuming that the cache is full, which it always is after the first few seconds of
operation) and the cache-line containing the word must be fetched from main memory
or a lower level cache if one is present. This is called a cache miss and has a high
penalty because fetching a new cache-line is expensive. The general idea is to have the
most heavily used cache-lines in the caches as much of the time as possible to reduce the
amount of cache misses.

5.1.1 Cache associativity

When designing a cache it is important to consider whether each cache-line can be stored
in any cache slot or only in some of them. There are three approaches to solving this
problem; direct mapped cache, n-way set-associative cache and fully associative cache.

In a direct mapped cache each cache-line can only be stored in a specific cache slot,

26

the address of which is found by using a mapping function on the address of the original
main memory address, e.g. the address modulo the number of cache slots. This means
that two cache-lines cannot be mapped to the same slot simultaneously. Given a memory
address it is only necessary to look for it in one place in the cache and if it is not there
then it is not in the cache. Using this approach, and an appropriate mapping function,
consecutive memory lines are placed in consecutive cache slots. The problem with a
direct mapped cache is that since there are many more cache-lines in main memory than
there are space for in the cache, many cache-lines ends up competing for the same slot.
These competing cache-lines might end up constantly evicting each other which results
in a substantial performance loss.

This problem can be fixed by using a n-way set-associative cache, which is a cache
that allows n slots for each cache address. This way if we have two cache-lines A and B
whose addresses map to the same cache address and that address is already occupied by
A while B tries to use the same address then A does not have to be evicted because the
cache has n − 1 other slots to place B in. If all n slots are occupied, then a cache-line
from one of them has to be evicted. The question then becomes: Which one?

A popular algorithm, that determines which cache-lines to evict is called LRU (Least
Recently Used). It works by keeping an ordering of the slots at a cache address. When a
cache-line that is present in the cache is accessed the LRU algorithm updates the list by
moving the entry corresponding to the accessed cache-line to the top of the list. When
an entry needs to be replaced it is the one at the end of the list that is evicted because
it is the least recently used entry.

A fully associative cache allows any cache-line to be saved in any cache slot but it is
complicated and costly to implement in hardware because it for instance might need to
keep an ordered LRU list for the entire cache which would require a lot of bookkeeping.

The n-way set-associative cache is the most popular choice because it has a good
trade-off between implementation complexity and cache-hit rate.

5.2 Branch Prediction and Misprediction

There are many steps in executing a single instruction in a modern computer. It has to
be fetched, decoded, registers has to be loaded with the required data etc. Because of
this, modern computers are highly pipelined, meaning that they execute different steps
for consecutive instructions in parallel. That is, instruction 1 might be executed while
instruction 2 is being decoded while instruction 3 is being fetched from the program
code memory section. A pipelined architecture can cause great speed improvement, but
because of how it works, it works best on non-branching code because the result of a
branch determines which instructions should be fetched, decoded and executed next.
When a branching instruction is encountered, the CPU can either choose to stall until
the branching instruction has been executed, or it can try to predict the outcome of the
branch before it is executed with the condition that it must be able to roll back any
instructions executed between the prediction and the execution of the branching code.
Modern programs are typically full of branch instructions.

27

if i = 0 then
k ← 1

else
k ← 2

end if

A possible translation to assembly looks like this:

1. CMP 0, 1 : compare i to 0
2. BNE Else : branch to Else if not equal
3. Then: MOV k, 1 : move 1 to k
4. BR Next : unconditional branch to Next

5. Else: MOV k, 2 : move 2 to k
6. Next:

Figure 9: Program fragment with conditional and unconditional branches

There are conditional branches and unconditional branches. An example of an un-
conditional branch and a conditional branch is shown in Figure 9 4 where BNE Else is
a conditional branch and BR Next is an unconditional branch.

An unconditional branch is a simple jump to a specified label, it is not based on a
condition and is less of a problem than conditional branches because while the target of
the jump is known before the instruction is executed, it is not yet known when the fetch
unit goes to fetch the next instruction. Having no branching instructions also means
the fetch unit is able to read consecutive words from memory and make better use of
prefetching.

A conditional branch jumps to one of two places in the code based on whether a
given condition is true or false. The ambiguity in a conditional branch is problematic
because of the nature of modern pipelined CPU architectures where the stage of the
pipeline that computes the result of a comparison is many stages later than the fetching
unit. Before the result of the comparison is computed, the fetcher does not know where
in the program code to fetch from.

Old pipelined machines would just stall until it was decided what branch to take.
Doing this has a heavy impact on performance, especially if there is a lot of conditional
branches in a program. Modern machines try to predict what branch will be taken, using
a branch prediction unit, and then executes that code until it is known whether the branch
was predicted correctly or not. If the branch was predicted correctly then the execution
simply continues. If the branch was mispredicted then the executed instructions in the
mispredicted branch needs to be rolled back and the correct branch must be taken.
Undoing the effects of the wrong execution path is an expensive operation which means
that it is important to minimize the amount of branch mispredictions as much as possible

4Example borrowed from: [11, Section 4.5.2]

28

to get good performance.

5.2.1 Branch Prediction techniques

There are generally two ways to do branch prediction; Static branch prediction and
Dynamic branch prediction.

In Static branch prediction the branch taken is always fixed. There are, in general,
four ways to choose what branch to take and it is the compiler that chooses which to use
of the first three based on where it makes sense. The profile-driven prediction scheme is
not something that the compiler can suddenly decide to do:

1. Branch always not taken: It is assumed that the branch is not taken which means
that the instruction flow can continue as if the branch condition is false.

2. Branch always taken: This works in the opposite way of the above. Here it is
assumed that the condition is always true and the branch is taken. This approach
makes sense with a pipeline where the branch target address is known before the
branch outcome.

3. Backward taken forward not taken: Here backward branches are always taken
which for instance is the branch at the end of a loop that go back to the beginning
of the next loop iteration. The forward branches are not taken.

4. Profile-driven prediction: Here the branches of the program is profiled by run-
ning the program and the information is given to the compiler to use for branch
prediction. This of course requires the program to be compiled then run in order
to be profiled and then compiled again to incorporate the branch info.

In Dynamic branch prediction the branch prediction is carried out at runtime
and tries to the adapt to the program’s current behaviour. This is better than just
having some static schemes to choose from because it allows more complex and usually
more correct decisions. The basic idea in dynamic branch prediction is to use the past
branch behaviour to predict the future branch.

One way to do dynamic branch prediction is to have a history table that logs condi-
tional branches as they occur, to be able to look up what direction they took when they
appear again. The simplest way to implement the history table is to have it contain
one bit for each conditional branch instruction that indicates whether the conditional
branch was taken or not last time it was executed. With this approach the branch will
be predicted to go in that same direction as it did the last time. If the prediction is
wrong the bit in the history table is flipped.

Using only one bit in the history table to indicate that a branch was taken or not
poses some problems. When a loop is finished the branch at the end will always be
mispredicted and change the bit in the history table. When the loop is run again the
branch at the end of the first iteration will be mispredicted. In the case of nested loops
occurring in a frequently called function, the amount of mispredictions increases and the
performance suffers.

29

To eliminate the loop mispredictions two bits can be used instead of one in such a
way that a branch must be predicted wrong twice in a row for the prediction scheme
to change. This means that the different possible bit values becomes 00, 01, 10 and 11.
Bit value 00 indicates that the last two branching instructions resulted in not jumping
and “no jump” is predicted. If a conditional branching instruction is reached where this
prediction is wrong the last bit is set to 1 and the bit value becomes 01. The predicter
still predicts “no jump”. If this prediction is correct for the next conditional branching
instruction the binary value is set back to 00 and the prediction continues predicting “no
jump” as before. If the previous “no jump” prediction instead was wrong at a 01 value, it
will be changed to 11 and the future prediction changed to “jump”. Two mispredictions
are then required to change back to bit value 00 and “no jump” prediction, in a similar
way it goes from 00 to 11, except using 10 as the in-between value.

When the branch is correctly predicted there is still a problem. The address to go to
for some conditional branches are computed values obtained from doing arithmetic on
registers. Since computation takes place after fetching, the address is unknown and the
prediction becomes useless. A way to fix this problem is to store the address branched
to last time for the particular branch, in the history table. The previous address can
then be used to branch to when the corresponding conditional branch is predicted again.

5.3 Virtual Memory and Translation Lookaside Buffer misses

Modern computers use virtual memory to address the problems of sharing limited mem-
ory between multiple processes and/or users. Virtual memory hides the presence of
physical memory and instead presents an abstract view of main memory by concealing
the fact that physical memory is not allocated to a program as a single continuous region
while also concealing the actual size of the main memory. This creates the illusion that
the available memory for a given process is larger than what is physically available. The
illusion is accomplished by dividing the virtual memory into smaller subsections called
pages, which can be loaded into physical memory when needed. Translating a virtual
address into a physical address is an expensive operation and the Translation Lookaside
Buffer (TLB) helps to speed up this process.

5.3.1 Virtual memory: Pages

A virtual memory address va is interpreted as a pair containing the page number and
a word number (offset within the page). A physical memory address pa is interpreted
a pair consisting of the page frame number and the word number within the frame [12,
Section 8.2.1].

When loading a virtual memory page into the physical memory it is necessary to be
able to translate va to pa. Since the word number is the same in both va and pa the
translation only needs to find the physical page frame that contains the virtual page.
Therefore it is necessary to keep track of the page and its current page frame which can
be done using a page table.

30

Figure 10: Virtual Address Translation. This figure is borrowed from [12, Figure 8-7]

5.3.2 Virtual memory: Segmentation

Sometimes a process contains multiple dynamically changing elements. Placing such
elements in a single address space is a difficult problem. The problem is solved by
segmentation [12, Section 8.2.2].

A segment is a collection of address spaces that can have different sizes. This allows
the virtual memory to be organized in the same way as a given application by using a
segment for each logical element in the application e.g. a function, an array or table.
Segmentation and paging is combined to allow a multisegment address space while also
having a simple address translation algorithm. The concept is shown in Figure 10.

5.3.3 Translation Lookaside Buffer

The translation from va to pa gets an extra parameter when adding segmentation; the
segmentation number. The physical address is then found by first finding the page in
the segmentation table and then finding the corresponding frame in the page table and
then finding the frame in the physical memory. This means that the translation from va
to pa requires three physical reads.

To reduce the number of reads needed when a virtual address is translated, a trans-
lation lookaside buffer (TLB) is used [12, Section 8.2.5]. The TLB saves the most recent
translations of va to pa, i.e. translated page numbers, to make them quickly available
for future use. This means that subsequent accesses of a virtual address within a short
period is able to bypass segmentation- and page table lookups and simply just access the
needed page frame from the TLB and find it in the physical memory. When the page

31

is available in the TLB it is called a TLB hit. The TLB is not a large buffer and it can
only hold a few virtual page translations at a time. A TLB miss occurs when a given
virtual page translation is not available in the TLB and as a consequence the virtual
page needs to be translated using table lookups. A TLB miss is therefore expensive and
it is a good idea to minimize them as much as possible to improve performance.

6 Notes on Implementation

6.1 Using Integers as Characters

The Wavelet Tree is a data structure for strings. Using the C++ char array or C++11
string types would seem natural in this case, but they each have problems. The C and
C++ char type is only of size 1 byte allowing us only to use an alphabet size of up to
256. This makes testing the dependency of the running times on alphabet size difficult,
as we expect inaccuracies in the running time will exceed the difference in running time
between the available sizes of the alphabet.

The C++11 string and arrays of type char32 t does not have this problem and
supports character types up to 32-bit unsigned. The problem then lies in output and
readability as characters corresponding to byte values below 32 are special non-printable
control characters such as carriage-return and backspace. At higher byte values other
non-printable control characters and otherwise unreadable characters appear again. This
means we would have to be selective with the allowed byte values in our alphabets if we
want it to be readable for output and debugging, thereby ending up with an alphabet that
is non-continuous on the set of byte values as a result, which is inconvenient. Because
of this, we have for convenience chosen to simply use vectors of integers as our strings
in our implementations. E.g. we will use uint instead of char32 t, which both take
4 bytes of memory. We expect that this will have no impact on performance as both
characters and integers are simply different representations of byte values.

In our implementation, we assume that the alphabet is always continuous on the
sorted set of byte values, i.e. the alphabet spans all values possible between some
minimum and maximum value, with no gaps. Thus, we store the alphabet as a minimum
and maximum value, instead of storing each value in some data structure to pass around
or point into. This is for convenience as any other non-continuous alphabet could simply
be mapped to a continuous run of byte values and used in the same way. This mapping
could e.g. be done by storing an array of the alphabet in sorted order and using pointers
into this array to signify the characters. Lookup into the array is not necessary unless
printing for human reading, since comparison of the pointer addresses returns the same
result as comparing the bytes.

We will still use the terms “character/symbol” and “string” in our descriptions of
the algorithms even though we have implemented them as integers and integer arrays,
as we feel the terms “character/symbol” and “string” are more intuitive and give clarity.

32

6.2 Generating the Data

We implemented a small script in Python to generate our input strings of 4-byte integer
values and write them in binary format to files. This was slower than e.g. piping from
/dev/random into a file, but we needed to constrain the alphabet and even though slow,
a script was the easiest way to achieve that.

6.3 Reading Input

At first the input data was read from stdin using the getline(cin, &string) function.
Once we applied a profiler we found this to be horrendously slow, our Näıve algorithm
spending about 20 % of its running time on resizing IO buffers. We then switched to
using the ifstream class and IO time was reduced significantly to below 1 % of total
running time.

6.4 Verifying the Results

To ensure that our implementations are correct, we implemented some simple and slow
algorithms in python to calculate rank and select on the same input data we construct
the wavelet trees on. The point being that the python implementation should be so
simple and easy to understand that it cannot contain errors and therefore produce the
correct results for comparison. We then compare results from rank and select queries
on our wavelet tree to results from the same queries using the python implementation.
When they agree on several randomly selected sets of query parameters, we feel confident
that our wavelet tree construction, rank, and select implementations are correct.

6.5 Combating Over-Optimization

The C++ compiler (g++) in the GNU Compiler Collection (GCC) is an optimizing
compiler and can sometimes using static analysis recognize that the results and possi-
ble side-effects of a computation will not be used in the code and will in those cases
completely remove that computation from the compiled code as an optimization. This
means that the compiler could potentially remove the parts of or the entire computation
for our queries when we test them, if the results are not used for anything. To ensure
that the compiler does not throw needed computations out the window in our tests, the
results of each query is collected in an array and printed to stdout. It is only printed
after the collection of measurements is done to affect the running time minimally.

6.6 Reducing Construction Time Memory Usage

Since the Wavelet tree is a recursively defined data structure, we also implement it
recursively. This causes any stack-allocated variables to be held in memory until we
leave the scope of the constructor function. We traverse and split the input string into
its left and right parts in each node constructor and thus end up holding the input
string twice in memory: once in the variable holding the input string and once in the

33

two variables holding the left and right split strings. This is wasted memory because
the input string is not actually needed any longer once we have split it into its left
and right parts. Because one sub-node constructor is simply called first and then the
other when the first has completed and finally return once both subnodes has completed
constructing themselves, we end up completing the construction of the nodes in post-
order. This means the scopes of the root node and those near the root is kept alive for
most of the running time of the construction algorithm, and much memory is wasted.
The solution is to allocate these strings on the heap instead, passing pointers to the
subnode constructors and having them delete them (as their input strings) once they
have split them. Doing this reduced the memory usage so much that we could run it for
input strings with a length above 108 characters without exhausting the 8GB available
memory on our test machine.

6.7 Bitmap implementation choice

There are several bitmap implementations available to us. In the Standard Templating
Libary (STL) of C++ there is std::bitset<size t N> and std::vector<bool>. From
the Boost library there is boost::dynamic bitset<>.

std::bitset While it would technically be possible to use the std::bitset, it requires
that the size of the bitset is known at compile time and passed as a template
parameter. This means it would be necessary to recompile the program for each
size n of the input string. It would also be necessary to allocate a bitmap with
room for n bits for each sub-node as that is the theoretically possible size required,
making the size required for the bitmaps of the tree O(n · |nodes|) = O(n · σ)
instead of O(n · h) = O(n log σ). Another reason why we cannot use std::bitset

is because it does not support pointer access, which means that it is impossible to
do queries using popcount, which is a CPU instruction we utilize to improve the
practical running time of Rank and Select queries and is described in Section 8.1.
We also expect that an actual usable practical implementation should be able to
handle different sizes of input at run time instead of compile time.

std::vector<bool> is a specialised implementation for bool that packs the data so
that each bool only takes up one bit and is not an actual C++ container, though
it tries to mimic some of the behaviour. It is basically the STL implementation of
a dynamically allocated bitset. This is the implementation we decided to use for
our bitmap because it allows dynamic allocation and pointer access.

boost::dynamic bitset is the Boost library’s take on a dynamic bitset. It does not
try to mimic a container and lacks some features such as an iterator because of
that. It also does not guarantee that the bits will be allocated consecutively in
memory and has no raw pointer access to the data in memory. This is a problem
when calling popcount on all machine words from beginning up to some index.

We chose to use vector<bool> mainly because it supported direct pointer access into
the backing array and that backing array was a single continuous array so we could do

34

pointer arithmetic across an entire bitmap. boost::dynamic bitset does not support
any of this.

Pieterse et al. [18] has tested 5 different bitvector implementations for C++, in-
cluding std::vector<bool> and boost::dynamic bitset. In terms of running time,
std::vector<bool> performs the worst of the tested bitvectors for their test case. But,
their test case does not at all resemble the way we use it. We do not utilize any of
the extra functions or features they have tested such as the reset operation and bitwise
operations on entire arrays.

In terms of memory, std::vector<bool> performed the best by using the least
amount of memory, owing to its simple implementation storing no additional meta in-
formation and using only a single raw array as its backing data format. This is a
characteristic we like for our purposes as we basically use it as an array supporting
access to single bit values.

6.8 Challenges in Implementation

The wavelet tree is a somewhat simple data structure as a tree structure of bitmaps
implemented using pointers and dynamic bitsets. The construction of the wavelet tree
was not a great challenge, neither was the basic forms of rank and select queries. But,
in later iterations of our wavelet tree, we implemented more and more intricate designs
of the bitmaps, spending more and more time debugging to make it work absolutely
correctly.

We are not experts in C++ and have in fact programmed very little in it previously,
which both introduced and complicated many issues that someone with more experience
with C++ would likely have had little trouble with. The sheer number of different
algorithms we implemented for the various variations of the wavelet tree only exacerbated
the time spent implementing and debugging.

Notable challenges include implementing rank and select queries that utilized con-
catenated bitmaps, implementing support for aligning the precomputed blocks with ma-
chine pages, and handling and masking machine word correctly when using the cpu
intrinsic popcount instruction.

Popcount Instruction works on whole machine words at a time and so our code had
to figure out when it was worth using the instruction and handle any excess bits
counted or any bits not counted.

Concatenated Bitmaps required that our code correctly handled the edge cases where
bitmaps touch each other, making sure to only count the number of 0s or 1s on
the correct side of the boundary. This was done by using pointer arithmetic and
calculating various offsets, misalignments and offsets of offsets and misalignments.
It only became more complicated when using precomputed values as well.

Page-aligned Blocks only introduced more handling and bookkeeping of offsets and
offsets of offsets.

35

7 Notes on The Experiments

Here we discuss some things general for all our experiments, or all those where applicable.

7.1 Testing Machine Specifications

CPU Intel Core i5-3230M

OS Ubuntu 14.04 64-bit

Kernel Linux 3.13.0

RAM 8 GB

Level 1 Data Cache 32 kB

Level 2 Total Cache 256 kB

Level 3 Total Cache 3072 kB

7.2 General Setup

Our code was compiled using GCC 4.8.2 with compiler flags -O3 -std=c++11 -march=native.
The -march=native flag was necessary to use the native popcount cpu instruction. Our
PAPI library version was 5.4.0.0 using perf version 3.13.11-ckt18.

We ran 1000 queries 5 times for each variable parameter and registered the total
running time for each set of 1000 queries and then used the average of those 5 as the
result. Examples of variable parameters used in our tests are: the alphabet size, the
block size and the skew of the tree.

We calculated the standard deviation of the 5 runs and include it in the graphs as
errorbars. All our graphs include the standard deviation as errorbars. If one appears
not to have any errorbars that means the standard deviation is so small it is difficult or
impossible to see.

7.3 Choice of Input String

We have chosen to construct the input strings used in our experiments so that each
character occurs with the same probability at each position. This means the string has
a uniform distribution of characters from the alphabet. We have chosen to do so for
several reasons, among them being that we think it is a realistic use case, e.g. for Range
Quantile Queries or Geometry Processing, as well as making the choice of character to
query for in our experiments make less difference. The even amount of occurrences of
each character also means there will be little difference in the size of bitmaps between
the nodes in a single layer of the tree.

7.3.1 Uniform vs. Non-Uniform data

Uniform data for a wavelet tree is a string with each character occurring with the same
probability at each position and therefore with similar frequencies. If the data is non-
uniform it means that some symbols from the alphabet will appear with a significantly
higher frequency than others. If one knows the frequencies of all symbols in the alphabet,

36

without needing it to be exact, then one can build a Huffman shaped Wavelet Tree
(described in Section 4.2.4) and we expect it will beat out any balanced wavelet tree in
terms of performance. The frequencies can be found by a simple linear scan of the input
string before building the tree.

We are more interested in the general case of being able to perform well on any
input string and so we do not want to implement optimizations that require a specific
character distribution in the input string. Using non-uniform data for our testing with a
general wavelet tree will also introduce bias into our results. This is because the sizes of
the bitmaps in each node in a given level of the tree would not be equal, as they would
for uniform data. When we query the tree and take a path with many large bitmaps it
will take longer than a path with many small bitmaps. Depending on which non-uniform
distribution is used, some characters might not even appear at all in the input string, and
querying for them would terminate early. This is especially true for Select queries that
find the leaf node corresponding to the character that was queried for and then spends
most of the its time traversing up the tree looking for the position in the complete input
string. If the queried-for character did not exist in the input string, a select query would
terminate before even having gone down the full length of the tree, because the leaf node
corresponding to the character does not exist. Rank queries on the other hand would
still take much the same time on non-occurring characters as on occurring characters,
because they spend most of their time in the single downward traversal of the tree they
perform, and still will perform for non-occurring characters as it is only near the end of
this traversal that the character will be found to not occur.

Therefore having non-uniform data would introduce a bias in our query tests based
on the symbol we are querying for and it is a bias that would be difficult to avoid without
introducing more bias by choosing exactly which characters to query for.

There is also the problem of choosing which occurrence to query for in the case of
select, as the character should occur at least that many times. When using uniform data
we know that it is extremely unlikely for any character to occur less than some minimum
number of times, because of their equal occurrence probability.

If we used non-uniform data we would also have the problem of choosing which
non-uniform distribution we should use, and there are many to choose from.

To compare the effects of using uniform vs. non-uniform data we have made an
experiment that compares the running time of building the wavelet tree and doing Rank
and Select queries for the two distributions. The experiment is described in Section 8.2.1.

7.3.2 Non-uniform distribution choice

Not all non-uniform data is alike, and there are many ways to distribute the frequencies
of the characters in the alphabet. The wavelet tree has applications within full text
indexing which suggests that using a distribution based on how words are distributed
within a normal English text could be a good choice for testing purposes, because it
would be a realistic use case. Zipf’s Law describes such a distribution [19, abstract]
but it requires a distribution parameter s that describes the frequency relation between
each symbol, e.g. if the most frequent word has double the frequency of the 2nd most

37

frequent word and this relation continues down the list of most frequent words, it is
a Zipf’s Law distribution with an s parameter of 2. We have not been able to find
anyone that describes which parameter value would produce a distribution most closely
resembling real world English. We have searched through various articles to find an s
value representative of the English language, but it does not seem like there is a single
good value as it depends a lot on the type of text, e.g. scientific journals vs. newspapers
vs. books. This is also a conclusion that Piantadosi [19, abstract] arrives at.

It is possible to estimate s for a given text but doing so then creates the problem of
choosing a representative text to estimate s from. We tried using the word frequencies
in the NGSL [20] wordlist which contain the 31,241 most used words in the English
language and the frequency with which they appear, to estimate s. NGSL is based
on data from the Cambridge English Corpus which is a multi-billion word collection of
written, spoken and learner texts and is the largest of its kind. This fact combined with
the fact that NGSL is fairly new (2013) makes us assume that the frequencies in the
NGSL wordlist are accurate enough for our purpose.

Estimating s using a subsequence of words from NGSL gave us a value close to 1 and
it only grew closer to 1 the more words we used from the list. This is a problem because
with an s parameter of 1, a Zipf’s Law distribution is uniform. It also tells us that the
English language, or at least the part that has been aggregated in NGSL, might not, in
fact, be following the Zipf’s Law closely, as we would expect our calculations to converge
towards some constant value > 1. Instead we use the data from the NGSL word list
and generate our own non-uniform dataset based directly on the word frequencies found
in the NGSL word list. This way we end up with a more realistic non-uniform dataset
than if we had used the Zipf’s Law model since the data is based on real empirical data
and we avoid the problem of choosing a good s value.

7.4 Choice of Query Parameters

It is important to ensure that we do not introduce a bias in our experiments on the rank
and select query performances by our choice of query parameters. As we have chosen
to use a randomly generated input string with uniform distribution of characters for
most of our tests, there should be little difference in the frequency of characters and
little difference in query performance based on the exact choice of character. There is,
however a difference of where in the tree the node each character corresponds to, and
we should make sure to use characters from various positions in the alphabet, to have
the queries together traverse as much of the tree as possible, to avoid caching hiding the
actual performance of the queries.

For the rank queries there is also the position parameter, determining how far into
the string the query should look and therefore how far into each bitmap the query should
look. A high value (close to the length of the string) might seem like a good idea to
make the query go through most of the bitmaps, but we do not want to introduce a bias
by using some constant high value, nor do we want to risk introducing a bias by only
looking at high values for the position parameter. Again we choose to use values from
all parts of the range of valid values for the parameter.

38

We are also interested in avoiding introducing any bias by using only one type of
combination of parameters. If we had e.g. let both parameter values depend on the
index of a single for-loop around the call to the query, we would have only tested low
character values together with low position values and high character values together
with high position values.

Instead we let one parameter ascend from valid low values to valid high values with
even spacing to reach the highest valid value in the lastly performed query. Meanwhile,
the other parameter increases more rapidly with wider spacing, and then wraps around
before passing highest valid value to then start again at low values, with an offset to not
repeat parameter values, doing so many times before the end. This ensures the queries
are performed for all combinations of high, medium and low parameter values in our
experiments.

7.5 Tools Used

We have looked at and tested the capabilities of several profilers and tools for determin-
ing the number of cache misses, branch mispredictions and translation lookaside buffer
misses.

7.5.1 Tools

We have used these tools to count cache misses, branch mispredictions, etc., measuring
memory usage and finding hotspots in our code.

Perf 5 is a performance analysing tools primarily implemented in the Linux kernel,
available from version 2.6.31. It supports reading and reporting various counters
from the hardware, meaning it does not emulate the CPU or anything similar, as
some other tools like Callgrind do. It can profile the entire system or a specific
process, but not subsections of a program.

PAPI 6, short for Performance Application Programming Interface, will use the perf
kernel driver when available but itself pre-dates perf. It requires the analysed
program itself to set up and initialize PAPI, but therefore also supports starting
and stopping the counter data collection at specific points in the program, enabling
profiling of subsections of the program.

Massif 7 is a heap profiler. It can count how much heap memory a program is using
during its run by recording calls to malloc, calloc, realloc, memalign, new,
new[], and other similar functions. It then gathers them in a number of snapshots
and detailed snapshots, which can be scheduled by the program itself too. Massif
can be useful for finding how much memory a program uses and which parts of a
program uses most memory.

5perf.wiki.kernel.org/index.php/Main_Page
6icl.cs.utk.edu/papi/software/
7valgrind.org/docs/manual/ms-manual.html

39

perf.wiki.kernel.org/index.php/Main_Page
icl.cs.utk.edu/papi/software/
valgrind.org/docs/manual/ms-manual.html

Callgrind 8 is a callgraph analyser tool in the Valgrind suite. It supports wrapping
a single program. Valgrind compiles the analysed program into an intermediate
representation and runs that completely in a virtual machine to extract information
for its tools. This causes the program to run much slower while being analysed,
but this is a minor concern for us because it only increases the time it takes to tun
our experiments but does not affect the results. Callgrind outputs a .callgrind file
which can then be viewed in the kCacheGrind GUI program. We use it for finding
hotspots in our code; which parts our program is spending most of its time in and
therefore which parts we should try to optimize.

We calculate the CPU clock cycles using the PAPI TOT CYC papi event which returns
the total number of unhalted CPU clock cycles, including when the CPU clock changes
to a higher frequency in what Intel calls “Turbo Boost” or more generally “dynamic
overclocking”. We expect this value to be more accurate than calculating cycles using
PAPI get real cyc() which estimates the cycles based on wall time9 and this means
that PAPI get real cyc() depends on the Time Stamp Counter (TSC) frequency which
is constant. Because of this the TSC frequency is not based on CPU frequency in any way
and because work gets done at CPU frequency and not TSC frequency, PAPI TOT CYC

seems like the best choice. This is also recommended by Intel10.
In Table 1 we have listed the various counters and values we have read using PAPI

and their description. Not every test uses every one of these.
Because PAPI does not support gathering all combinations of hardware at the same

time, we had to gather Translation lookaside buffer misses, level 2 cache misses, and
level 3 cache misses in a separate run of the program with the same parameters. We do
not expect that this will have any significant influence on the results of our experiments.

8valgrind.org/docs/manual/cl-manual.html
9icl.cs.utk.edu/projects/papi/wiki/PAPIC:PAPI_get_real_cyc.3

10software.intel.com/en-us/articles/measuring-the-average-unhalted-frequency

40

valgrind.org/docs/manual/cl-manual.html
icl.cs.utk.edu/projects/papi/wiki/PAPIC:PAPI_get_real_cyc.3
software.intel.com/en-us/articles/measuring-the-average-unhalted-frequency

Table 1: PAPI counters and data sources we used and their description

PAPI Source Description

PAPI get real cyc() Real Cycles / Wall Time Cycles

PAPI get real usec() Wall Time (microseconds)

Event PAPI TOT CYC Total Cycles

Event PAPI L1 DCM Level 1 data cache misses

Event PAPI L2 DCM Level 2 data cache misses

Event PAPI L3 TCM Level 3 total cache misses
(level 3 data cache misses was unavailable)

Event PAPI L2 DCH Level 2 data cache hits
(hits only available for level 2)

Event PAPI BR MSP Conditional branch instructions mispredicted

Event PAPI BR CN Conditional branch instructions in total

Event PAPI TLB DM Data translation lookaside buffer misses

PAPI get dmem info() Memory information as meminfo object

meminfo.size Size of Memory used

meminfo.resident Size of Resident memory used

meminfo.high water mark Size of Peak memory usage

41

Part III

Algorithms & Experiments

This part of the thesis deals with what we have implemented, what optimizations we
have made to reduce cache misses, branch mispredictions and translation lookaside buffer
misses, and how we have tested and analysed these optimizations and their effect on the
resulting running time and memory usage.

8 Simple, Näıve Wavelet Tree: Rank and Select

This section deals with the simple, straightforward, näıve implementation based on the
description by Navarro [1, Section 2], before any smart ideas and optimizations were
introduced. We will call this version of the wavelet tree SimpleNaive.

The construction of the wavelet tree is implemented similarly to the pseudo-code
in Section 3.1. In our implementation, alphabets are stored as two integer values: a
minimum and a maximum. It is explained in Section 6.1 how this is equivalent to
storing the full alphabet and passing pointers into it around. Bitmap is stored as a
vector<bool> which is a tightly packed data structure, only using 1 bit per bool11, plus
a little bookkeeping data and at most 8 bytes minus 1 bit of superfluous stored data
when the amount of bits stored does not align with 8 bytes.

Rank queries is implemented as described in Section 3.3 and binary rank is imple-
mented as a simple linear scan of the bitmap. Select queries is implemented as described
in Section 3.4 with binary select implemented as a simple linear scan of the bitmap.

8.1 Optimizations

8.1.1 Binary Rank using Popcount

To improve BinaryRank we will use the intrinsic cpu instruction popcount, which
will count the number of 1s in the binary representation of the number that is passed
to it. Our use of popcount to improve binary rank and select queries was inspired
by González et al. [21] who used it to improving binary rank and binary select for
bit arrays. Unlike González et al., we do not use a popcount function implemented
in software, but rather the built-in popcount instruction in the CPU instruction set,
which we assume to be the fastest way to calculate popcount since it is only a single
instruction implemented in hardware. The built-in popcount cpu instruction takes as
argument an unsigned int or an unsigned long. The vector<bool> stores the bits
in a backing array of unsigned longs and a pointer to the desired position in this array
can be retrieved from the vector<bool>. The implementation will therefore be working
on unsigned longs and we will call their size (64 bits on machine 1) our wordsize. When
using popcount, BinaryRank remains in theory an O(n

wordsize) = O(n) operation, as

11http://www.cplusplus.com/reference/vector/vector-bool/

42

http://www.cplusplus.com/reference/vector/vector-bool/

wordsize is a constant factor, but it has a large practical effect on performance as can
be seen in Section 8.2.3.

To use popcount we call builtin popcountl which is a function built into the
GCC compiler12. It takes an unsigned long as a parameter and returns the number of
1s in it. builtin popcountl will automatically figure out how to do popcount based
on what CPU you are using. Popcount as an intrinsic cpu instruction is supported on
both AMD13 and Intel arhitectures14. We have verified, by looking at the produced
assembly code, that popcount is calculated using the cpu instruction popcnt on our test
machine.

The binary rank can then be found by summing the result of calling popcount on
each word of the bitmap up to a given position p. When the position argument of the
rank query is not a multiple of the word size, it is necessary to constrain what part of
the last word is counted using popcount. This can be done by constructing a bitmask by
bitshifting the number 1 p times towards the most significant bit and then subtracting
one, as that will create a word where the p least significant bits are set to 1 and the rest
to 0. Then we do a bitwise AND operation of this bitmask and the word containing the
bit corresponding to p, and call popcount on the result. As an example, assume a word
contained the bits 10101 but we were only interested in the 3 least significant bits of the
word, the 3 rightmost bits in this representation. We could construct the bitmask 00111
by bitshifting 1 three times to the left making it 01000, and then subtracting 1 from it,
making it 00111. Doing a bitwise AND operation of 10101 and 00111 produces 00101,
containing exactly the 3 bits from the original word we were interested in, and replacing
the rest with zeroes which will not increment the value of the result of a popcount
operation on it. The result is the same as if we could popcount only the three bits we
were interested in.

As also noted in [1], we do not need to count the number of 0s, although required
by the algorithm, as we can simply take the number of bits in the bitmap and subtract
the number of 1s to calculate the number of 0s.

8.1.2 Binary Select using Popcount

We improved Binary Select by again using the popcount instruction. We iterate
through the words of the bitmap and call popcount for each word and sum up the
results along the way. When the sum after the next word would be greater than the
sought number of occurrences we discard the popcount result for the next word and fall
back to the simple binary select for that next word to find the position within that word.

If we define the input occurrence parameter as o, the number of words iterated
through so far as w, the sum so far as sum, and the wordsize as ws, then the occurrence
argument for that last simple binary select is then the o− sum and the output position
is w × ws + BinaryRank(bitmapwords[ws + 1], o− sum) 15.

12gcc.gnu.org/onlinedocs/gcc-4.1.2/gcc/Other-Builtins.html
13support.amd.com/TechDocs/24594.pdf
14software.intel.com/sites/landingpage/IntrinsicsGuide
15Using simple binary rank without popcount

43

gcc.gnu.org/onlinedocs/gcc-4.1.2/gcc/Other-Builtins.html
support.amd.com/TechDocs/24594.pdf
software.intel.com/sites/landingpage/IntrinsicsGuide

Again, when popcount for 0s instead of 1s is needed, we simply subtract the result
of popcount from 1 to obtain the count of 0s.

8.2 Experiments

8.2.1 Uniform vs. Non-Uniform data

We have tested and graphed the build wall time as well as the rank and select query
wall times in Figure 11. The non-uniform data has been generated by extracting word
frequencies from the NGSL [20] word list, then generating a 108 characters long string
using an alphabet of integer characters the size of the NGSL word list, each character
with the corresponding frequency from the word list, but randomly permuted so each
frequency of character occurs at a random place in the alphabet. The frequencies remain
the same, only the position of the frequencies in the alphabet changes. The permutation
was done to avoid the bias of having all the most frequent characters in the beginning
of the alphabet and thus in the leftmost side of the wavelet tree.

In Section 7.3.1 we theorized that building the tree on non-uniform data would be
slightly faster as some of the characters would not occur in the string and therefore some
of the nodes in the tree would not have to be created. We also theorized that much the
same would happen for Select queries as it could terminate much faster when a character
could not be found in the tree. We did not expect it would make as much difference
for rank queries as they cannot terminate as early as select queries for non-occurring
characters.

Looking at Figure 11 we see that our theories have been confirmed. The build time
in Figure 11a is noticeably lower for the non-uniform data. The select query time in
Figure 11c is almost half for non-uniform data as that of uniform data. The rank wall
times are much more similar and it is on uniform data that it is slightly faster, but only
by about 1.6 %. We expect this is because the non-uniform data just so happens to be
distributed so that some of the query parameters used in our test result in a slightly
slower execution compared to the uniform data. When looking at the numbers of branch
mispredictions and cache misses and so forth, we find that the rank queries on the non-
uniform data have about 4 % more level 3 cache misses, and even less difference in the
other measurements.

8.2.2 Running time of Tree Construction vs Alphabet Size

We would like to find out whether our implementation of the construction of the tree
conforms to the theoretical running time of O(n log σ) and how much of an improvement
using the popcount cpu instruction was for the queries.

The general test setup is as described in Section 7.2. The query parameters were
chosen as described in Section 7.4.

To test what Big-O notation running time our construction algorithm was running at,
we tested the running time of building the tree relative to the alphabet size by running
the program 5 times for each size of the alphabet, and took the average value of the

44

0

2

4

6

8

10

12

W
a
ll
ti

m
e

(s
e
c
o
n
d
s)

Non-Uniform
Uniform

(a) Build Wall Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

W
a
ll
ti

m
e

(s
e
c
o
n
d
s)

Non-Uniform
Uniform

(b) Rank Wall Time

0

0.2

0.4

0.6

0.8

1

W
a
ll
ti

m
e

(s
e
c
o
n
d
s)

Non-Uniform
Uniform

(c) Select Wall Time

Figure 11: Build time and Rank and Select query time for uniform and non-uniform data based
on the NGSL word list.

resulting measurements for each measurement type we used. We tested for alphabet
sizes 2p with p = [8...23] and used a constant input string of length n = 108 characters,
except in a single test (Figure 12e) where we used n = 102.

A theoretical running time of O(n log σ) is equivalent to a · n log σ where a is some
constant factor. Assuming our construction algorithm has this running time, a plot of
the wall time divided by n log σ should converge on the constant factor a as σ → ∞ In
Figure 12a we have plotted this, and find that it could be said to be converging on a
constant value until reaching an alphabet size of about 216 whereafter it increases as σ
increases, with what looks like exponential growth. This means our implementation of
the construction of a wavelet tree is not conforming to the theoretical running time for
higher alphabet sizes.

To attempt to understand why our algorithm performs so, we turn to the many other
measurements available to us through PAPI: branch mispredictions, cache misses, etc.

Looking at the raw wall time and branch misprediction numbers in Figure 12b it
might seem natural to conclude that the branch mispredictions are to blame.

But if we instead plot the rate of branch mispredictions, as we have done in Fig-
ure 12c, we can see that the rate of branch mispredictions stay constant for most of the
tested alphabet sizes, and even decrease for large alphabet sizes.

We next turn to look at cache misses, plotting all three levels in Figure 12d and see
that cache misses increase for larger alphabet sizes up to an alphabet size of around
218 after which they seem to remain constant for even larger alphabet sizes. This is in
contrast to the wall time over theoretical running time plot in Figure 12a that seem to
remain somewhat constant until about 218 after which it increases. We can conclude
that the cache misses are not the problem.

We then considered that the difference in theoretical and practical running time

45

might be our algorithm spending a constant amount of time per node, constructing it.
This factor would be independent of the size of the input, n, and scaling linearly with
alphabet size, σ as that determines the number of nodes in the tree. If so, the actual
running time should then be a · n log σ + bσ. Since n in our previous experiment is
somewhat large (108), it might be the dominating factor in the running time. So to
show whether the added bσ term can explain the running time, we redid the experiment
with a reduced length input string n = 102 and plotted it in Figure 12e divided by
log(σ) + σ to see whether it would converge on some constant as σ →∞.

We can see in Figure 12e that it does not converge on any constant value other than
0, meaning the constant factor from each node cannot explain our implementation’s
running time.

Having not found an explanation we pull data for translation lookaside buffer misses
from the experiment and plot it together with wall time, both divided by log σ, in
Figure 12f

We can see that the TLB Misses increase drastically from alphabet size about 220

and up. Having found no other reasonable explanation for the discrepancy between the
theoretical and our implementation’s actual running time, we find it probable that the
TLB Misses are the culprits here.

In our further experimentation of the further optimization attempts we do, we will
be using an alphabet size of 216. It is a realistic use case to use a type such as char,
wchar16 t or wchar32 t which are stored in 8, 16 and 32 bits respectively. char’s size
of 8 bits corresponds only to the ASCII table with 256 entries and we believe that many
real-world scenarios require a larger alphabet. wchar16 t enables an alphabet up to
216 = 65, 536, which should be enough for many use cases, such as full text indexing.
Zachery B. Simpson16 has found that no book occurring in the Gutenberg Project uses
more than 43113 distinct words. According to one website17, testing suggests an average
adult has a vocabulary of 20,000 - 35,000 words. Others18 19 cite researchers saying about
60,000 words is the actual limit when including names. Whichever is the actual number,
they all suggest that an alphabet size of 216 is sufficient to index all the occurring words
in a realistic use case text.

Looking at the graphs from this experiment we can see that building the tree using
an alphabet size of 216 is still fairly quick, not running into much trouble with TLB
misses, and not exceeding the expected asymptotically bound running time.

We also attempted using an alphabet size of 32, but our machine did not have enough
memory for that to be possible on a sizeable input string.

16mine-control.com/zack/guttenberg/
17testyourvocab.com/blog/2013-05-10-Summary-of-results
18worldwidewords.org/articles/howmany.htm
19english.stackexchange.com/questions/93289

46

mine-control.com/zack/guttenberg/
testyourvocab.com/blog/2013-05-10-Summary-of-results
worldwidewords.org/articles/howmany.htm
english.stackexchange.com/questions/93289

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

1.8e+06

2e+06

28 210 212 214 216 218 220 222 224

W
a
ll
T
i
m
e
/
lo
g
(
σ
)

Alphabet Size (log scale)

WallTime
log(σ)

(a) Wall Time divided by theoretical running time

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

28 210 212 214 216 218 220 222 224
0

5e+07

1e+08

1.5e+08

2e+08

2.5e+08

3e+08

W
a
ll

T
im

e
(m

ic
ro

se
c
)

B
ra

n
c
h

M
is

se
s

Alphabet Size (log scale)

Wall Time Branch Miss

(b) Wall Time and Branch Mispredictions

0

0.02

0.04

0.06

0.08

0.1

28 210 212 214 216 218 220 222 224

A
m

o
u
n
t

Alphabet Size (log scale)

Branch Miss Rate

(c) Branch Misprediction Rate

0

5e+07

1e+08

1.5e+08

2e+08

2.5e+08

3e+08

3.5e+08

4e+08

4.5e+08

5e+08

28 210 212 214 216 218 220 222 224

A
m

o
u
n
t

Alphabet Size (log scale)

L1 CM

L2 CM

L3 CM

(d) Level 1-3 Cache Misses

1e-05

0.0001

0.001

0.01

0.1

1

10

28 210 212 214 216 218 220 222 224

W
a
ll
T
i
m
e
/
lo
g
(
σ
)
+
σ

Alphabet Size (log scale)

WallTime
log(σ)+σ

(e) Wall Time divided by log(σ) + σ

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

28 210 212 214 216 218 220 222 224
0

500000

1e+06

1.5e+06

2e+06

2.5e+06

W
a
ll

T
im

e
(m

ic
ro

se
c
)

T
L

B
M

is
se

s

Alphabet Size (log scale)

WallTime
log(σ)

TLBMiss
log(σ)

(f) Wall Time and Translation Lookaside Buffer
Misses divided by theoretical running time

Figure 12: Various Measurements for the construction of the SimpleNaive Wavelet Tree over various alphabet
sizes.

47

8.2.3 Rank and Select using Popcount

We wanted to see how much of an improvement using the native cpu instruction popcount

was, and how it affected the cache misses, branch mispredictions and TLB misses.

In Figure 13a, Figure 13b, and Figure 14 we see the resulting relative cpu cycles, wall
time, branch mispredictions, translation lookaside buffer misses, and cache misses for our
rank and select queries, respectively. We have chosen the measured values of the queries
not using popcount to be index 100 and calculated and plotted the relative values of the
queries using popcount, to show which values increase or decrease by relative amounts,
all within the same graph. In Figure 14 we list the actual raw values as well as the
percentages graphed in Figure 13a and Figure 13b.

In all three figures we see that the algorithm using popcount is much faster, using
only a fraction of the time of the other algorithm, about 0.011 % for rank and 0.0051 %
for select. We see a massive decrease in branch mispredictions for both rank and select
queries. For the select queries we see a great reduction in translation lookaside buffer
misses as well as cache misses, especially Level 2 and 3. For the rank queries, we see
some improvement in TLBM and L1 CM and a slightly larger improvement in L3 CM,
but we also see a high increase in L2 CM rate to more than double. The higher L2 cache
miss rate comes from both having fewer L2 hache hits and many more L2 cache misses.
We have no good explanation to offer as to the L2 cache miss rate increases so much,
other than the algorithm being different and having a different access pattern. It is not
a problem at any rate, as we can see in the massive decrease in running time.

We believe the massive reduction in branch mispredictions accounts for some of the
saved cpu cycles. Agner Fog has tested the Ivy Bridge architecture and found that the
branch misprediction penalty is “15 cycles or more”20. We have not tested this claim
ourselves, but choose to trust him, as we only use it to get an approximate percent value
of how much of the difference in running time the branch mispredictions can account
for. Given that the branch misprediction penalty on the Ivy Bridge architecture, on
which this experiment was run, is about “15 cycles or more”20, we can calculate an
estimate of how many cpu cycles the branch misprediction reduction has saved us. The
number of saved branch mispredictions for rank is then 1.40 ·109−2.27 ·104 = 1.40 ·109

mispredictions. Assuming a penalty of 15 cycles this becomes 1.40 ·109×15 = 2.10 ·1010

cpu cycles saved, and given that the total number of cycles saved is 3.97·1011−4.42·109 =
3.93 ·1011, it is 2.10 ·1010/3.93 ·1011 = 0.0533 = 5.33 % of the total amount of cpu cycles
saved. This means that the branch mispredictions do have an effect, but it is only a
small part of this increase in speed. The main improvement, we expect, comes from
using only a few cpu cycles per word of the bitmap to calculate the binary rank, as well
as possibly the slight decrease in L1 and L3 cache misses.

By similar calculations the saved cpu cycles from branch mispredictions for select
is at least 48,84 % of the total saved. We expect this is because of the much higher
number of branch mispredictions and the lower number of cycles for the original select
algorithm.

20Section 3.7 in http://www.agner.org/optimize/microarchitecture.pdf

48

http://www.agner.org/optimize/microarchitecture.pdf

Looking at the values in Figure 14 we find that, of the measurements we collect, cache
misses are among the highest and were not reduced significantly by using the popcount

instruction. Cache misses are expensive and reducing them could greatly increase the
speed of queries on the wavelet tree.

0

50

100

150

200

CPU
Cycles

W
all Time

BM TLBM
L1

CM

L2
CM

L2
CHits

L2
CM

Rate

L3
CM

P
e
rc

e
n
t

o
f

S
im

p
le

Simple
Using Popcount

(a) Rank

0

50

100

150

200

CPU
Cycles

W
all Time

BM TLBM
L1

CM

L2
CM

L2
CHits

L2
CM

Rate

L3
CM

P
e
rc

e
n
t

o
f

S
im

p
le

Simple
Using Popcount

(b) Select

Figure 13: Rank and select queries using simple binary rank and select vs. rank and select
queries using binary rank and select using the popcount instruction. Y-Axis is index 100 of the
simple queries, that is, every value is percent of the value for the simple query.

9 Precomputing Binary Rank in Blocks

Using the profiling tool callgrind, we concluded that most of the work during queries is
performed inside each node, calculating the binary rank of each bitmap. Rank queries
are simply summing up results of popcounting each word, and we considered whether
precomputing these sums for blocks spanning several words, covering the bitmaps could
improve the query times. When a block does not line up with the position of a rank query
is for, the algorithm can simply fall back to doing popcounting of either the remaining
uncovered words or the extraneously covered words, whichever has fewer words. See
Section 9.1.1 for more explanation of this.

The rank values can be precomputed easily and cheaply by doing so as the tree is

49

Figure 14: Values for Figure 13a and Figure 13b

Rank no popcount popcount Percent

CPU Cycles 3.97e+11 4.42e+09 1.113 %

Wall Time 1.33e+08 1.49e+06 1.115 %

BM 1.40e+09 2.27e+04 0.002 %

TLBM 5.65e+05 4.25e+05 75.306 %

L1 CM 1.76e+08 1.76e+08 99.935 %

L2 CM 1.68e+07 3.03e+07 180.189 %

L2 CHits 1.59e+08 1.42e+08 88.883 %

L2 CM Rate 0.11 0.21 202.726 %

L3 CM 1.59e+07 1.08e+07 67.497 %

Select no popcount popcount Percent

CPU Cycles 1.01e+12 5.22e+09 0.517 %

Wall Time 3.39e+08 1.76e+06 0.518 %

BM 3.27e+10 3.06e+05 0.001 %

TLBM 1.34e+06 5.27e+05 39.326 %

L1 CM 1.28e+08 1.28e+08 99.782 %

L2 CM 1.68e+07 7.16e+06 42.530 %

L2 CM 1.12e+08 1.21e+08 108.114 %

L2 CM Rate 0.15 0.06 39.338 %

L3 CM 1.57e+07 3.62e+06 23.110 %

built where each individual bit of the bitmap already needs to be computed and stored.
The algorithm increments a counter for the corresponding block each time it sets a bit
to 1 in the bitmap.

The size of the precomputed blocks, b, is a new variable that could have influence on
the running time and memory usage. Some advantages of larger blocks is less memory
usage and fewer precomputed value lookups for the same part of the bitmap. Some
advantages of smaller blocks are that they can cover more precisely the part of the
bitmap that is relevant to the query, leading to fewer calls to popcount. Later, in
Section 9.4, we will analyse how the optimal block size b depends on the input size
n, and later again we will experiment with varying block sizes to see how it works in
practise for a wavelet tree and to see how it corresponds to the theoretical analysis.

To further reduce the space used by the precomputed values, we considered concate-
nating all the bitmaps into one big bitmap and keeping a single vector of precomputed
rank values for blocks for the entire bitmap. That would eliminate the many cases where
the length of a bitmap does not align with the block size and the last precomputed value
for that bitmap will therefore not cover an entire block, leading to more precomputed
values than minimally needed to cover all the bitmaps.

We also considered the cost of TLB misses and how ensuring that entire pages are
skipped as often as possible might increase the query performance. We try to achieve
this by page-aligning the blocks.

We will test and compare the Rank and Select running times and memory usage of
four wavelet trees using precomputed rank values for blocks: one using concatenated

50

bitmaps and aligned blocks, one using concatenated bitmaps but not aligned blocks, one
only using aligned blocks and one using neither.

9.1 Concatenating the Bitmaps

The bitmaps are allocated as one giant bitmap the size of the maximum possible size
required to store all the bitmaps for all the nodes. They are stored in a Depth-First-
Search-right (DFSr) manner, that is, the bitmap of the right child of a node comes right
after the bitmap of the node.

There are many other alternative memory layouts that might provide better perfor-
mance. The one we expect to have the greatest potential for improving the wavelet tree
performance, is the van Emde Boas memory layout [14, Abstract] because of its cache-
oblivious nature. It would be a challenge to implement, because the size of a bitmap of a
node is unknown before the bitmap of the parent has been calculated, and so the position
of each bitmap in the giant bitmap cannot be known before the parent of each has been
calculated, meaning construct the tree must be constructed in vEB layout order. To
support construction of the wavelet tree in vEB layout order our construction algorithm
would have to be dramatically changed, possibly utilizing concurrency constructs such
as a job queue and message passing, and so we skip this work for now and save it for
future work in Section 13.2.

The sum of the size of all bitmaps on one layer of the tree can at most be n and we
can at most have log σ layers, so the maximum size becomes

n log σ ,

where n is the number of characters in the string and σ is the alphabet size. Luckily
for us, memory allocation in Linux does not actually take up space because Linux uses
optimistic memory allocation which means that only when the memory is accessed will
the actual physical memory be used 21. This fact enables overcomitting which allows
allocation of more memory than what is available which can be a problem for long
running processes. As a result we can conclude that allocated memory is not present
in physical memory before it is actually initialized. The effect of an optimistic memory
allocation scheme and overcomitting is tested by Andries Brouwer 22 who confirms that
it is possible to allocated more memory using malloc() than what is physically available.
So over-allocating the bitmap should not take up any more space than what will actually
be needed.

An offset and a size for the bitmap is the stored in each node, so it is possible to
index into the giant bitmap and access the bits corresponding to the node. This should
also cause a decrease in memory usage as the offset and size are stored in an unsigned
long and unsigned int respectively, taking a total of 64 + 32 = 96 bits per node, where
each individual bitmap requires storage of at least a pointer to it, a point to where its
internal array starts and a pointer to where it ends, taking up 3 × 64 = 192 bits per

21http://man7.org/linux/man-pages/man3/malloc.3.html
22http://www.win.tue.nl/~aeb/linux/lk/lk-9.html

51

http://man7.org/linux/man-pages/man3/malloc.3.html
http://www.win.tue.nl/~aeb/linux/lk/lk-9.html

Figure 15: Rank value of a part of a bitmap is equal to the precomputed value for the block
minus the rank of the other remaining part.

= -

Precomputed Rank

Position Position

Block

End

Block

node. Additionally, when using an individual bitmap for each node, they would have
been word-aligned, and the bits between the last used bit and the end of the last used
word would have gone unused and so, wasted.

A vector is also allocated to hold the precomputed block values of size

VectorSize =
BitmapSize

b
.

Instead of storing a pointer to the bitmap and precomputed values vector in each node,
they are stored once for the whole tree and then passed down through the query methods
when the tree is queried.

In order to be able to index into said vector, integer division of the bitmap offset and
the block size is used. It is an efficient and simple way to precompute the rank values
of blocks of fixed size of the bitmap, as we do not have to traverse the tree again.

9.1.1 Edge Cases

The rank of a string can be expressed as the sum of the rank of any number and various
sizes of subparts as long as they together perfectly cover the string and do not overlap.
Because the blocks must perfectly cover the string and not overlap, and the bitmaps of
each node are not of same size, nor multiples of some single value, we have a problem
if we want to use uniformly sized and distributed blocks. The problem exists at the
boundary between bitmaps, where the precomputed rank value will be the sum of the
rank of the end of the first bitmaps and the rank of the beginning of the second bitmap.

Looking at a single bitmap for a node, there is an edge case for the first and last part
of the bitmap, because they do not fill an entire block, so the corresponding precomputed
value cannot simply be used as-is. Instead, the rank of the part of the block that the
bitmap does not fill can be computed and then subtracted from the precomputed rank
value. This is only worth doing when the bitmap fills more than half a block, because then
the other part is smaller than half a block and therefore quicker to compute. Figure 15
illustrates this.

9.1.2 Page-aligning the Blocks

Translation Lookaside Buffer misses are expensive and to avoid those, we can try to
reduce the number of pages that is loaded. Using concatenated bitmaps and the pre-
computed vector of ranks, we only need to load pages of the bitmap at the beginning and

52

end of each node’s bitmap, to compute the popcounted version of binary rank directly
on the bitmap, and only within one block at each end. If the blocks are not aligned with
the memory pages, then, even if the block size is less than a page, it might span more
than one page and thus more than one page of memory must be loaded into the TLB.
More precisely, the algorithm might at most load

2 ·
(⌈

b

pageSize

⌉
+ 1

)
pages to do the popcount binary rank computation at the beginning and end of each
node.

If the blocks are page-aligned, and has block sizes divisible by the page size or that
the page is divisible by, the extra +1 will disappear, because a block can no longer span
more pages than the number of pages its size is a multiple of. This means we can ensure
that at most

2 ·
⌈

b

pageSize

⌉
memory pages of the bitmap are loaded for each node by page-aligning the blocks. With
an alphabet size of 216 this amounts to saving up to 16 page loads per query.

While we expect that this will save some expensive TLB misses it also has some
drawbacks, especially when not using concatenated bitmaps. For a wavelet tree not
using concatenated bitmaps, using page-aligned blocks will cause the first precomputed
value of each non-page-aligned bitmap to not cover an entire block, increasing the number
of precomputed values needed to cover the bitmap as well as additional computations
to calculate exactly which part of the bitmap it covers. For the wavelet trees using
concatenated bitmaps, these computations are needed regardless of block alignment, as
the blocks are already not aligned with the individual bitmaps, and so we expect that it
is an improvement to page-align the blocks in this case. We test this by implementing
a variation of the wavelet tree using concatenated bitmaps that does not page-align the
blocks.

We test whether it increases the performance of rank and select queries when not
using concatenated bitmaps in Section 9.5.1.

9.2 Select Queries with Precomputed Ranks

Select queries, although they do not return a rank value, can still utilize the precomputed
rank values to skip much computation directly on the bitmap by iterating though them.
Partway in a select query, if the sum of the occurrences found so far and the rank value
of the current block of the bitmap is more than the queried-for occurrence, we can add
that rank value to our occurrences seen so far and skip ahead to the next block and
perform the same test. If the sum is less than the queried-for occurrence, we know the
occurrence will be found in the current block and the previously implemented method
of calculating select using popcount can then be used, starting at this block.

53

9.2.1 Edge Cases

As with rank queries, there are edge cases at the beginning and end of each bitmap.
However, in this case, the edge case at the end is easily handled as the test of sum of
rank and occurrence-so-far should fail, sending the algorithm into the block with the
previous select query method, finding the occurrence with no problem and no specific
handling of the edge case. This is assuming the input occurrence parameter is valid,
meaning that at least that many occurrences of that character is in the original input
string.

For the other case, at the beginning of the bitmap, almost exactly the same as in the
case for the rank query is done. In fact, a rank query is used to calculate the rank of
the first part of the bitmap, using the trick of subtracting from the precomputed value
if larger than half a block size, to figure out whether the occurrence is in the first part
of the bitmap, and therefore whether a select query should be run on it or not.

Using Rank Queries in Select Queries
We would like to analyze whether it is worth using a rank query to find out whether
we should do a select query on the first part of the bitmap when using concatenated
bitmaps, as the rank query is purely extra work in the cases where the occurrence is in
that part of the bitmap.

We will assume an equal number of occurrences in the string of each character in the
alphabet, a uniform distribution of each character in the string, and an equal probability
of each valid parameter for the select query. A valid character parameter is one that
exists in the input string and a valid occurrence parameter is an integer above 0 and
below or equal to the number of occurrences appearing in the input string.

The rank query is a computation of worst-case cost O(b2) because it will at most
popcount half of the block, because the precomputed rank value is utilized when ad-
vantageous. The select query using popcount in the first partial block is an operation
of worst-case cost O(b) because it can at most popcount the entire block. So, in the
worst case, when the sought-after occurrence is in the first partial block of the bitmap,
O(b2) work is wasted, yet when the occurrence is elsewhere, O(b) work is saved. This
means that the boundary between where using the rank query becomes a gain or a loss
in performance is where the ratio between the number of times the occurrence is to be
found in and outside the first partial block of the bitmap is 2

3 . That is, when considering
the worst-case query time for both queries, if the occurrence is to be found outside the
first partial block of the bitmap more than one third of the time, using the rank query
first to see if that partial block should be select queried is a gain in performance.

This is giving the select query a disadvantage in the analysis, even when the partial
block is close to a block in size and it might terminate early if the sought-after occurrence
of the character if found early in the partial block.

We expect it is an improvement, though it is not 100 % certain, but we will use it
going forward for the algorithms using concatenated bitmaps. We have considered doing
tests to determine whether it is an improvement for the running time or not, but as we

54

are under time constraints and we feel we have other, far more interesting, things to
implement and test we will not be testing this.

9.3 Extra Space Used by Precomputed Values

Storing the precomputed values requires more memory: one number per block. There
are O(nb) blocks per level of the tree, and so an extra memory consumption of O(nb log σ)
words making the total memory consumption O(n log σ + (σ + n

b log σ) · ws) bits.

Since each precomputed value cannot exceed the block size in bits, assuming we do
not use block sizes exceeding 216 = 65536 bits, or 216

8 = 8192 bytes, we can store them
in 16-bit unsigned integers, called unsigned short int in C++ on our machine. Since
the page size on our machine are 4096 bytes we should not use a block size larger than
8192
4096 = 2 pages if we want to use 16-bit unsigned integers.

In Section 9.5.1 we find that the optimal block size is 16384 bits = 2048 bytes = 1
2

page.

Assuming the precomputed values are then stored as 16-bit unsigned short integers
it will only consume an extra 16 bits or 2 bytes per block and there are BitmapSize

b of
these blocks when the bitmaps are concatenated. This means, assuming a block size of
2048 bytes, a relative extra space consumption of

2 · BitmapSize
b

BitmapSize
=

2

b
=

2

2048
= 0.0009765625 = 0.098 %

of the bitmaps, which is even less when considering the total space used including the
nodes.

When the bitmaps are not concatenated there is a higher space consumption by the
precomputed values, as each precomputed value do not cover an entire block and more
precomputed values is therefore needed to cover all the bitmaps. When the blocks are
not page-aligned, each node has potentially one precomputed value not covering an entire
block at the end of its bitmap. When blocks are page-aligned, there is another precom-
puted value potentially not covering an entire block at the beginning of each bitmap.
The extra space consumption by the precomputed values when not concatenating the
bitmaps is therefore limited proportionally to the number of nodes, which is at most
2σ − 1, making it limited proportionally by the alphabet size.

We expect to see a difference in memory usage between using concatenated bitmaps
and non-concatenated bitmaps as well as between using page-aligned and non-page-
aligned blocks. However, we expect most of the difference to come from the space
used by the bitmaps themselves, and therefore a noticeable difference between the data
structure concatenating the bitmaps and the others, with a little difference between
using page-aligned and non-page-aligned blocks, with the one using page-aligned blocks
using most memory.

55

9.4 Dependence of Optimal Block Size on Input Size

Whether or not using precomputed values in blocks is an improvement in running time
of rank queries or not, depends on which block size is used. If the block size is only 1
bit, then there is nothing to be gained from looking up the value via the precomputed
rank instead of looking at the bit in the bitmap. If the block size is the same size as the
entire bitmap, then it can only be useful when the positional parameter p for the rank
query is above half the size of the bitmap, as the rank of a smaller part of the bitmap
beyond the halfway point can then be calculated and subtracted.

The work needed to compute the binary rank of a bitmap of size n without using a
precomputed value, but using popcount on pieces (machine words) of the bitmap of size
ws is O(n

ws) to scan the bitmap using popcount up to the word spanning position p and
O(1) to calculate the rank up to position p within that word using popcount, making it
in total O(n

ws).

When using lookups of precomputed values, the analysis is similar. It costs O(nb + b)
to calculate the binary rank when using precomputed values, as it costs O(nb) to scan
the blocks, and O(b) to calculate the rank within a single block using popcount. The
optimal block size should be one that minimizes this. The derivative of n

b + b is 1 − n
b2

and its root is n = b2 making the optimal block size b =
√
n. This is only the optimal

block size for a single bitmap, and a wavelet tree has many bitmaps of varying sizes n
that are lower near the leaves. This means that the best block size in a wavelet tree is
either one that varies for each bitmap or, if using a fixed block size, some value below
the theoretically optimal block size for the root bitmap.

Later, in Section 9.5.4, we show using a fixed block size b for all bitmaps in a wavelet
tree, whether the optimal b does indeed depend on n and whether the practically optimal
value of b is below the theoretically optimal size of b for the root bitmap.

9.5 Experiments

We will test and compare the Rank and Select running times of three wavelet trees us-
ing precomputed rank values for varying block sizes: one using concatenated bitmaps
and aligned blocks named Preallocated, one using concatenated bitmaps but not aligned
blocks named UnalignedPreallocated, one using aligned blocks but not concatenated
bitmaps, called Naive, and one using unaligned blocks and non-concatenated bitmaps
called UnalignedNaive. In table-form:

Name Concatenated Bitmaps Page-aligned Blocks

Preallocated yes yes

UnalignedPreallocated yes no

Naive no yes

UnalignedNaive no no

Later, we will compare the memory usage and query times with the non-precomputed
version called SimpleNaive.

56

Test Setup
The general setup is as described in Section 7.2. The query parameters were chosen as
described in Section 7.4.

9.5.1 Query Running Time for Bitmap with Precomputed Blocks for dif-
ferent Block Sizes

Rank Queries

In Figure 31a we have plotted the rank query wall time in µs for the wavelet trees
using precomputed rank values. See Figure 31a in Appendix A for a graph of the same,
covering a wider range of block sizes, from 26 to 220 bits, showing that the wall time is
worse for both smaller and larger block sizes than the ones in Figure 31a.

We see that both concatenating the bitmaps and page-aligning the blocks is consis-
tently slower, which was expected for concatenating the bitmaps, but not entirely so for
page-aligning the blocks. Preallocated is on average about 6.22 % slower than Unaligned-
Preallocated, so page-aligning the blocks when using concatenated bitmaps is a 6.22 %
performance hit. Preallocated is on average about 13.85 % slower than Naive, meaning
concatenating the bitmaps when using page-aligned blocks is a 13.85 % performance hit.

Naive has its fastest running time at 1 page per block, whereas both trees using
concatenated bitmaps (Preallocated and UnalignedPreallocated) seem to have a slightly
better performance with a slightly higher or slightly lower block size, at 0.75 and 1.25
page per block.

UnalignedNaive is the surprising outlier in this graph with a much lower wall time,
especially for smaller block sizes. At block size = 0.5 page size, where UnalignedNaive
is fastest, it only takes 65.58 % of the time that Naive does at block size = 1 page size,
where Naive is fastest.

Much of the increased running time of Rank queries on the two Preallocated wavelet
trees can be explained by the increased amount of instructions needed to calculate the
rank of the first part inside the first block of each bitmap because the precomputed
value includes part of the preceding bitmap, as well as the ineffectiveness of utilizing the
precomputed rank values for small bitmaps, for the same reason. This is also corrob-
orated by Figure 16c that plots the number of branches executed. It introduces more
branches to the code to check for alignment and to find which part of the giant bitmap
corresponds to the current node. We can see that it is the Preallocated tree using both
concatenated bitmaps and page-aligned blocks that execute the most branches, while
UnalignedNaive executes much, much fewer than all the others. This looks similar to
the wall time plot in Figure 31a.

By examining Figure 16b and Figure 16d we can conclude that part of the wall time
difference between using and not using concatenated bitmaps is due to the increased
number of branch misses from a higher branch miss rate.

In Figure 16d we initially see a surprising increase in the branch misprediction rate of
UnalignedNaive for smaller block sizes. When looking at Figure 16b we see that it follows
somewhat the same increase in branch misprediction amount for smaller block sizes as the

57

others, making us conclude that UnalignedNaive has a higher branch misprediction rate
alone because it has fewer easily predicted branches but the same amount of branches
difficult to predict compared to the others for smaller block sizes. We expect this is a
result of UnalignedNaive where it is not necessary to do any calculations to figure out
which part and how much of the bitmap the first precomputed value covers, as it always
covers an entire block of the bitmap and is perfectly aligned with the start of the bitmap
instead of a memory page. This means that a number of if-statements comparing the
size of the bitmap with the block size to figure out whether the precomputed value can
be used is not present in UnalignedNaive, where they are present in the others.

Looking at Figure 17a we can see that our expressed goal of reducing TLB misses
when using page-aligned blocks is achieved when not using concatenated bitmaps, though
only little but TLBs are not reduced when concatenated bitmaps are used which is in
line with our expectation. On the other hand, we see that TLB misses are reduced
to about 29.80 % when using concatenated bitmaps in the page-aligned version and to
about 26.39 % when not page-aligning the blocks. This improvement was not enough to
make up for the extra bookkeeping code, however, it seems. We also notice that the two
trees using non-concatenated bitmaps, Naive and UnalignedNaive has a noticeable drop
in TLB misses at a block size of 1 page size.

Looking at the level 1 data cache misses we can see that there are fewest cache misses
when a block size is equal to half a page size, with a sharp rise in cache misses again for
smaller block sizes. We expect this is the main reason that UnalignedNaive exhibits the
best running time at that block size instead of at lower values. The others also seems to
have the best level 1 data cache performance for rank queries at half a page per block,
while their wall times are best at a full page per block. This might be explained by total
branch execution, as we saw in Figure 16c, they execute many more branches at lower
block sizes, which we expect to be because of the extra bookkeeping code needed.

The level 2 data cache miss rate plotted in Figure 17e is generally worst for block
size = 0.5 page size, but looking at the raw cache misses in Figure 17c we generally
see more cache misses for higher block sizes, meaning that the level 2 data cache miss
rate cannot explain the better performance at block size = 1 page size for every tree
other than UnalignedNaive. Looking at Level 2 data cache misses in Figure 17c and
the level 2 data cache miss rate in Figure 17e, we do not see much difference between
the different tree implementations, except that the Naive tree has a noticeable drop in
both the raw amount and the rate at block size = 1 page size, just like it had for TLB
misses. It is interesting, though, that they all have a somewhat high, 0.35 − 0.4, level
2 data cache miss rate around 0.5-0.75 page per block, where they all have good wall
time performance. This could be explained by the good level 1 data cache performance
at those block sizes. To explain what we mean, let us assume there is a fixed amount of
operations accessing memory that is hard for the cache to have prefetched or otherwise
loaded beforehand, independent of the block size. E.g. when the queried-for position is
reached in a bitmap and the rank algorithm jumps to a different node and a different
bitmap. When the first cache level can handle more and more of the ’easy’ memory
operations, fewer of those are left to be handled by the second cache level, yet the same

58

amount of ’hard’ memory accesses are hitting the second cache level, and so the miss
rate of the second cache level will increase for lower block sizes, but not because of more
misses, but because of fewer hits, as can be seen in Figure 17d. In fact, the level 1
cache misses and level 2 cache hits, in Figure 17d and Figure 17b respectively, look near
identical.

In Figure 19f we have plotted the level 3 total cache misses. We notice that all four
trees have fairly low level 3 cache misses at the lowest tested block size of 0.25 page size.
The trees using concatenated bitmaps then rise to have the most level 3 cache misses at
around 1 page per block then decreasing again at higher block sizes. What is perhaps
most interesting in this graph is that the Naive tree again has a large dip at 1 page per
block. We expect this dip, combined with the others, is what causes Naive to have its
fastest rank query wall time at 1 page per block.

Select Queries

In Figure 31b we see the wall time of 1000 Select queries for the different wavelet trees
using precomputed rank values. Again, see Figure 31b in Appendix A for a graph of
the same, covering a wider range of block sizes, from 26 to 220 bits, showing that the
wall time is worse for both smaller and larger block sizes than the ones in Figure 31b.
We can see that all have the best running time at half a page per block, though some
of them have about the same speed at 0.75 page per block. We expect the main reason
for this is to be found in the level 1 data cache performance data, which is shown in
Figure 19b as we can see that they have better level 1 data cache performance at lower
values, except for Naive, which has its best performance at 0.5 page per blockand for
decreasing block sizes the cache misses increase again.

In much the same way as for rank queries, the branch mispredictions, as plotted in
Figure 18b, decrease as block size increases, but looking at Figure 18d we can see that
the branch misprediction rate is highest at about 0.75 page per block and much smaller
at smaller block sizes, this is because much more branching code, correctly predicted, is
executed at block sizes below 0.75 pages per block, as can be seen in Figure 18c.

The amount of TLB misses across block sizes seen in Figure 19a is similar to the
TLB misses for rank queries in Figure 17a as we again see that the biggest reduction in
TLB misses comes from using concatenated bitmaps and that page-aligning the blocks
does make a difference when using non-concatenated bitmaps but no difference when
using concatenated bitmaps.

Just as with rank queries, we see higher level 2 data cache miss rate at lower block
sizes in Figure 19e, and again we expect the level 1 data cache misses are the cause as
we see level 1 misses matches up with level 2 hits in Figure 19b and Figure 19d.

However, unlike for the rank queries, the amount of level 2 data cache misses are not
lower for smaller block sizes, in fact they are higher than at 1 page per block, where each
type of wavelet tree has its minimum, with Naive having the largest drop there. We see
this drop again in level 3 total cache misses in Figure 19f. For both level 2 and level 3
cache misses, we also see a dip at 2 pages per block and lesser dips at 0.5 pages and 1.5

59

pages per block. These sizes correspond to where blocks most often align with full pages
as a block of size 2 pages will align with two pages and two blocks of size half a page
will align with one page and two blocks of size 1.5 page will align with three pages.

The fact that the level 2 and level 3 performances are so near-identical can be ex-
plained by the fact that they are inclusive, meaning that everything contained in level 2
is also in level 3 and if all the cache misses in level 2 are from the prefetcher not being
able to figure out what data is needed next, and it loads directly into level 2 then the
level 3 cache will never have the correct data while 2 does not.

Why this results in fewer level 2 and level 3 cache misses, we do not know.

0

2000

4000

6000

8000

10000

12000

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

W
a
ll

T
im

e
(µ
s
)

Block Size (number of pages)

Naive
Preallocated

UnalignedNaive
UnalignedPreallocated

(a) Wall Time

0

10000

20000

30000

40000

50000

60000

70000

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

B
ra

n
c
h

M
is

p
re

d
ic

ti
o
n
s

Block Size (number of pages)

Naive
Preallocated

UnalignedNaive
UnalignedPreallocated

(b) Branch Mispredictions

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

B
ra

n
c
h
e
s

E
x
e
c
u
te

d

Block Size (number of pages)

Naive
Preallocated

UnalignedNaive
UnalignedPreallocated

(c) Branches Executed

0

0.005

0.01

0.015

0.02

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

B
ra

n
c
h

M
is

p
re

d
ic

ti
o
n

R
a
te

Block Size (number of pages)

Naive
Preallocated

UnalignedNaive
UnalignedPreallocated

(d) Branch Misprediction Rate

Figure 16: Various measurements of Rank queries on Wavelet Trees with Precomputed Rank Values for
varying block sizes, part 1

60

0

1000

2000

3000

4000

5000

6000

7000

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
L

B
M

is
se

s

Block Size (number of pages)

Naive
Preallocated

UnalignedNaive
UnalignedPreallocated

(a) TLB Misses

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1e+06

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
a
c
h
e

M
is

se
s

Block Size (number of pages)

Naive
Preallocated

UnalignedNaive
UnalignedPreallocated

(b) Level 1 Data Cache Misses

0

50000

100000

150000

200000

250000

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
a
c
h
e

M
is

se
s

Block Size (number of pages)

Naive
Preallocated

UnalignedNaive
UnalignedPreallocated

(c) Level 2 Data Cache Misses

0

100000

200000

300000

400000

500000

600000

700000

800000

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
a
c
h
e

H
it

s

Block Size (number of pages)

Naive
Preallocated

UnalignedNaive
UnalignedPreallocated

(d) Level 2 Data Cache Hits

0

0.1

0.2

0.3

0.4

0.5

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
a
c
h
e

M
is

s
R

a
te

Block Size (number of pages)

Naive
Preallocated

UnalignedNaive
UnalignedPreallocated

(e) Level 2 Data Cache Miss Rate

0

20000

40000

60000

80000

100000

120000

140000

160000

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
a
c
h
e

M
is

se
s

Block Size (number of pages)

Naive
Preallocated

UnalignedNaive
UnalignedPreallocated

(f) Level 3 Total Cache Misses

Figure 17: Various measurements of Rank queries on Wavelet Trees with Precomputed Rank Values of varying
block sizes, part 2

61

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

W
a
ll

T
im

e
(µ
s
)

Block Size (number of pages)

Naive
Preallocated

UnalignedNaive
UnalignedPreallocated

(a) Wall Time

310000

315000

320000

325000

330000

335000

340000

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

B
ra

n
c
h

M
is

p
re

d
ic

ti
o
n
s

Block Size (number of pages)

Naive
Preallocated

UnalignedNaive
UnalignedPreallocated

(b) Branch Mispredictions. Notice the y-axis not
starting at 0.

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

B
ra

n
c
h
e
s

E
x
e
c
u
te

d

Block Size (number of pages)

Naive
Preallocated

UnalignedNaive
UnalignedPreallocated

(c) Branches Executed.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

B
ra

n
c
h

M
is

p
re

d
ic

ti
o
n

R
a
te

Block Size (number of pages)

Naive
Preallocated

UnalignedNaive
UnalignedPreallocated

(d) Branch Misprediction Rate

Figure 18: Various measurements of Select queries on Wavelet Trees with Precomputed Rank Values of varying
block sizes, part 1

62

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
L

B
M

is
se

s

Block Size (number of pages)

Naive
Preallocated

UnalignedNaive
UnalignedPreallocated

(a) TLB Misses

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
a
c
h
e

M
is

se
s

Block Size (number of pages)

Naive
Preallocated

UnalignedNaive
UnalignedPreallocated

(b) Level 1 Data Cache Misses

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
a
c
h
e

M
is

se
s

Block Size (number of pages)

Naive
Preallocated

UnalignedNaive
UnalignedPreallocated

(c) Level 2 Data Cache Misses

0

200000

400000

600000

800000

1e+06

1.2e+06

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
a
c
h
e

H
it

s

Block Size (number of pages)

Naive
Preallocated

UnalignedNaive
UnalignedPreallocated

(d) Level 2 Data Cache Hits

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
a
c
h
e

M
is

s
R

a
te

Block Size (number of pages)

Naive
Preallocated

UnalignedNaive
UnalignedPreallocated

(e) Level 2 Data Cache Miss Rate

0

50000

100000

150000

200000

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
a
c
h
e

M
is

se
s

Block Size (number of pages)

Naive
Preallocated

UnalignedNaive
UnalignedPreallocated

(f) Level 3 Total Cache Misses

Figure 19: Various measurements of Select queries on Wavelet Trees with Precomputed Rank Values of varying
block sizes, part 2

63

790

800

810

820

830

840

850

860

870

880

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

M
e
m

o
ry

U
sa

g
e

(M
B

)

Block Size (number of pages)

Naive
Preallocated

UnalignedNaive

UnalignedPreallocated
SimpleNaive

(a) Reported by PAPI

710

712

714

716

718

720

722

724

0 0.5 1 1.5 2

0.99

0.995

1

1.005

1.01

M
e
m

o
ry

U
sa

g
e

(M
B

)

R
e
la

ti
v
e

to
N

a
iv

e
In

te
g
e
r

Block Size (number of page sizes)

Naive
Preallocated

UnalignedNaive
UnalignedPreallocated

SimpleNaive

(b) Reported by Massif.

Figure 20: Difference in Memory Usage of wavelet trees with precomputed ranks of varying block size. Notice
the y-axis not starting at 0 and at different values.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

W
a
ll
ti

m
e

(s
e
c
o
n
d
s)

NaiveInteger
UnalignedNaive

(a) Rank

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

W
a
ll
ti

m
e

(s
e
c
o
n
d
s)

NaiveInteger
UnalignedNaive

(b) Select

Figure 21: Comparison of wall time of rank and select queries between SimpleNaive not using precomputed
values and UnalignedNaive using precomputed values.

64

9.5.2 Memory Usage of Precomputed Rank Values

We have used both Massif, the heap profiler included in the Valgrind Suite and PAPI
to record the memory usage of our programs. We focus on the output from Massif
instead of PAPI, because the memory usage values we could extract using PAPI made
little sense, with values indicating that the trees using precomputed values used less
memory than the SimpleNaive tree with no extra precomputed values. We have plotted
the values from PAPI in Figure 20a.

We do not know why PAPI gives us these nonsensical results, but it might have
something to do with Linux’s aggressive caching and buffering. We are not entirely sure
whether deleteed memory might still be counted as used memory by PAPI because of
such caching. Massif, on the other hand, manually counts calls to such functions as new
and delete and calculates the memory usage from these, making it unaffected by any
caching scheme employed by the Linux kernel. Massif is also designed for the purpose of
profiling program memory usage, whereas PAPI is simply an API to access performance
metrics from the underlying OS.

Massif only counts heap allocations and deallocations per default and not for stack,
data, BSS or code segments. We manually tell Massif to count our stacks as well and
include that in our calculations. The remaining uncounted data, BSS and code segments
should not affect our results noticeably as those segments are usually tiny compared to
the size our program is using. But it might be the case that it is in fact these segments
causing the strange results from PAPI, and that using concatenated bitmaps uses more
memory than not and storing more information in the tree somehow uses less memory,
sometimes, though we find this unlikely and choose to trust Massif’s output more.

Massif outputs ’snapshots’ of the memory usage taken at certain points in the code
where it deems them useful to the user. We have not simply used the snapshots produced
automatically by Massif, but rather used the Client Request mechanism 23of valgrind
to send a snapshot command to the valgrind gdbserver, telling it to take a snapshot
right after we have finished building the tree. The values presented in Figure 20b is thus
calculated from such Massif snapshots taken right after the tree has completed building.

Looking at Figure 20b we see that the memory usage of the trees using precomputed
values but not concatenated bitmaps, Naive and UnalignedNaive use more memory
than the tree not using precomputed values, SimpleNaive, but only about 0.5 %. We
also see that memory is indeed saved by using the concatenated bitmaps in Preallocated
and UnalignedPreallocated, though only about 1.5 % compared to the other trees using
precomputed values.

Our attempts to reduce the memory usage by concatenating the bitmaps seems to
have succeeded, but looking back at the running times for the rank and select queries in
Figure 31a and Figure 31b, we suspect the few percentage reduction in memory usage
is not worth the massive decrease in rank query performance and the slight decrease in
select query performance.

23http://valgrind.org/docs/manual/manual-core-adv.html

65

http://valgrind.org/docs/manual/manual-core-adv.html

9.5.3 Improvement of using precomputed values

We have found that our UnalignedNaive precomputed tree using block size = 0.5 page
size is the fastest for rank queries for input size n = 108 characters, and about as fast as
the Naive tree for select queries. We therefore consider UnalignedNaive at block size 0.5
page size to be our best wavelet tree implementation so far, even though it uses more
memory than SimpleNaive or the Preallocated variants.

We have compared the running time of 1000 rank and select queries for Unaligned-
Naive and SimpleNaive in Figure 21. The wall time for rank queries on the Unaligned-
Naive tree is only 0.27 % of the wall time of rank queries on the SimpleNaive tree as can
be seen in Figure 21a. The wall time for select queries on the UnalignedNaive tree is
only 0.73 % of the wall time of select queries on the SimpleNaive tree as can be seen in
Figure 21b.

We can see that it is a great improvement to use precomputed rank values in both
rank and select queries, with more gain for rank.

9.5.4 The Dependence of Optimal Block Size on Input Size

We have run our experiment for rank queries on the UnalignedNaive wavelet tree using
varying block sizes, for 4 different input sizes, n = [105, 106, 107, 108], to show that the
optimal block size b depends on n, and to show that the optimal block size b is less that
the theoretically optimal b for the root bitmap, when using a fixed block size throughout
the wavelet tree. We did not run this experiment for select queries, because of problems
choosing appropriate query parameters for the smaller input sizes, and because we felt
little additional valuable information would be gained.

In Figure 22 we have plotted the wall times for various block sizes for four different
values of n. The x-axis is logarithmic as we tested for block size values as powers of 2, to
reach a wide range of block sizes without having to run hundreds of tests yet still have
several tests at low values.

For all four graphs in Figure 22 we can see that the performance at the theoretical
optimal block size for the root bitmap at

√
n is good, and close to the minimum in

wall time. Therefore, the wavelet tree using precomputed rank values in blocks should
compute its block size based in the size of the input for better performance. A further
improvement might be to compute the block size for each node of the tree individually.
We have, however, not done this in our implementation, because of some problems with
the implementation and time constraints.

Surprisingly, we find that the minimum in wall time is at a block size not below the
theoretical optimal block size, but instead slightly above it if anything at all. We had
expected that the other bitmaps, smaller than the root bitmap and therefore having
smaller optimal block sizes, would have skewed the optimal block size downward. The
difference in performance between the theoretically optimal block size of

√
n and the

measured optimal block size is small, especially for the larger input sizes, and using a
block size of

√
n would be a sufficient optimization in most cases.

66

0

200

400

600

800

1000

1200

1400

1600

1800

26 28 210 212 214 216 218

W
a
ll

T
im

e
(µ
s
)

Block Size (bits)

UnalignedNaive

(a) n = 105

0

1000

2000

3000

4000

5000

6000

26 28 210 212 214 216 218

W
a
ll

T
im

e
(µ
s
)

Block Size (bits)

UnalignedNaive

(b) n = 106

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

26 28 210 212 214 216 218

W
a
ll

T
im

e
(µ
s
)

Block Size (bits)

UnalignedNaive

(c) n = 107

0

50000

100000

150000

200000

250000

26 28 210 212 214 216 218

W
a
ll

T
im

e
(µ
s
)

Block Size (bits)

UnalignedNaive

(d) n = 108

Figure 22: Walltimes for varying block sizes are four different input sizes. The vertical blue line is at
√
n, the

theoretical optimal block size for the root bitmap. Notice that the x-axis is logarithmic.

67

10 Precomputed Cumulative Sum of Binary Ranks

We have found that using precomputed rank values is a great improvement to the running
time of both rank and select queries, though with a higher gain for rank queries. It
works so well, because it allows the algorithms to skip most of the bitmaps, only directly
accessing them near the position that was queried for in case of rank queries and near
the sought-after occurrence in the case of select queries, and relying on the precomputed
values for the rest of the bitmap.

It is still however necessary to iterate through the precomputed values. Most of the
time the algorithms are interested in the rank value at some position inside a bitmap and
it is the rank from the beginning of the bitmap to the position and rarely just the rank
of that particular block. Therefore it might be possible to save a number of instructions
by not iterating through the precomputed values if the precomputed values were already
this cumulative sum of rank values through the bitmap.

We implement this based on UnalignedNaive, again testing the performance for var-
ious block sizes to fin the optimal block size and then compare that performance to the
UnalignedNaive wavelet tree from Section 9.5.1.

10.1 Advantages of Cumulative Sum

As previously mentioned, the rank and select query algorithms do not actually need the
rank values of individual blocks, but rather the cumulative sum rank value from the
beginning of the bitmap to some position. If we instead implement the precomputed
values as being the cumulative sum of rank values of each block from the beginning of
the bitmap up to and including the block corresponding to the precomputed value, we
can save a lot of precomputed value lookups in the rank and select queries.

Calculating the cumulative rank sums during the construction does not require much
more computation. It can e.g. be done by a single sweep through the precomputed values
vector after having computed the entire bitmap, adding each precomputed value to the
next in the vector.

Rank queries will benefit from the precomputed values being cumulative sums be-
cause they can do a single lookup of the precomputed value corresponding to the block
covering the queried-for position. The need to calculate rank by using popcount within
a single block remains unchanged. This means that the required work per level of the
tree changes from O(nb + b) to O(b) because binary rank becomes an O(b) operation,
making the total work required for a rank query O(b log σ).

Select queries should also see some benefit. Previously, the select query would iter-
ate through the precomputed values and sum them up, looking for when it surpasses
the sought-after occurrence, and then calculate the position within a single block using
popcount and manual counting of bits within a single word. Using cumulative precom-
puted rank values, the select query is able to use binary search on the precomputed
value vector to find the word wherein the occurrence is. Using popcount within a block
and manual counting within a word still remains unchanged. This makes the previously

68

required work per level change from O(nb + b) to O(log n
b + b), making the total work

required for a select query O((log n
b + b) log σ).

In Section 10.5.2 we test what block size achieves the best running time for rank,
select and branchless select. We test rank for low block sizes since O(b log σ) indicates
that the lower b is, the faster the running time is. The running time for select can also
be written as O(b log σ + log n

b log σ) and comparing it to the running time of rank we
can see that select has an extra term: log n

b log σ. The effect of this extra term is that
our expected optimal block size is higher for select than for rank, because this term
decreases as b increases.

10.2 Disadvantages of Cumulative Sum

The memory analysis remains the same as before, at O(n log σ + (σ + n
b log σ) · ws)

bits, because it is still one number stored per block. However, in practical terms, the
precomputed values are no longer limited in value size by the block size but rather the
bitmap size, as the last value in the precomputed rank value vector could potentially
become as large as the bitmap is long. Storing the cumulative sums will then require
more bytes per value and thus use more space in the end.

The bitmap size is limited by the input string length and so, for our choice of input
string with length 108 characters, each precomputed value must be able to store a value
up to 108. It takes at least 28 bits to store the value 108, because 227 < 108 < 228.
Because the value types supported by x86 and C++ must be byte (8-bit) aligned and
use a number of bytes that is a power of 2, the smallest type we can use is the 4-byte type
unsigned int capable of storing values up to 232. This means the vector, instead of
holding 2-byte unsigned short ints, must hold 4-byte unsigned ints, doubling the
space required to store the precomputed values. We expect this increase in memory
usage to be tiny, as it is another 2 bytes per block, of which there are n

b per layer of the
tree, of which there are log n. So with our input string of length n = 108 and a blockSize
of 210 = 1024 bits, we expect an extra memory usage of about 634 kB:

Memory usage = 2 · 108

1024
· log 108 ≈ 648, 814 bytes ≈ 634 kB

We have already seen that the UnalignedNaive wavelet tree for this input size and
block size and an alphabet size of 216 uses about 721 MB of memory, so another few
hundred kilobytes is barely worth mentioning. We will see in our experiments how much
actual memory is used and whether the difference in running time can make up for the
increase in storage space required.

10.3 Optimal Block Size

Like when using non-cumulative precomputed rank values, the block size can affect the
performance. But, unlike using non-cumulative precomputed rank values, when using
cumulative precomputed rank values the optimal block size b for rank queries is not
affected by the input size n. This is because the rank algorithm no longer has to linearly

69

scan through the precomputed rank values, but can perform a single lookup before using
popcount. This is also reflected in the running times of O(nb + b) for non-cumulative and
O(b) for cumulative, as there is no n term in the cumulative running time.

From the theoretical running time of O(b), we expect the optimal block size to be
small. However, any block size below the size of word popcount operates on, 64 bit for
our machine, will likely not be any improvement, as using popcount to calculate the
rank within that word takes constant time. The only exception, we expect, is if a block
size of 1 bit was used and the algorithm modified to just use that precomputed value
and not use popcount, which corresponds to precomputing the answer to every possible
rank query, and using a lot of memory in the process. We will not be testing this, though
we will do experiments for block sizes smaller than 64 bit.

For select queries, there is still a dependence on n, as it has to perform a binary
search over the precomputed rank values, and that is reflected in the theoretical running
time of O((log n

b + b) log σ).

10.4 Select Queries with less branching code

When implementing the select query for the cumulativeSum wavelet tree, we realized
it included a lot of if/else branches that could be difficult to predict by the branch
prediction unit. We anticipated that we might improve upon the query by eliminating
as much branching code as possible. That is, reduce the number of if/else statements,
while-, and for-loops in the code and instead replace them with “clever” arithmetic
operations achieving much of the same.

One large disadvantage of this approach was that it resulted in a binary search that
did not terminate early if the correct block was reached, but would instead always jump
and do a lookup log(blocksInNode) times for each node. Many of the later jumps that
would be skipped by terminating early lie close in memory and with high probability
exist in the same cacheline and thus be fast to lookup. This fact, combined with a
reduction in branch mispredictions could make this “branchless” version faster.

Based on experiments we found that (Select) was slower when using the “branchless”
approach than just using the simple approach (see Section 10.5.4). When we realized
this we attempted to combine the two approaches to get the best from both: early
termination from the simple approach and less branching code meaning fewer branch
mispredictions from the “branchless” approach. However, whatever we tried, it always
seemed to be slower than the simple approach, and so we stopped trying to combine the
two and there a no experiments for a combined approach.

It makes sense that the branchless select is slower than the branching version of select
with mispredictions. According to Agner Fog24 the branch misprediction penalty in the
Ivy Bridge Architecture is at least 15 clock cycles. If a branch is very hard to predict by
going one way half the time and the other way the other half, it would be mispredicted
about 50 % of the time, making it cost on average 1 + 15

2 = 8.5 clock cycles if we assume
that a correctly predicted branch costs 1 clock cycle. This means that our alternative

24Section 3.7 in http://www.agner.org/optimize/microarchitecture.pdf

70

http://www.agner.org/optimize/microarchitecture.pdf

method of computing something without using branches must cost less than 8.5 clock
cycles to be an improvement. Looking at our code, the alternative method where we
have attempted to reduce branches could easily cost much more than 8.5 clock cycles.
This also fits with our experimental data (see Section 10.5.4 and Figure 26) because
both cache misses, branch mispredictions and TLB misses are smaller for “branchless”
select than for the branching version of select, yet the wall time is higher. An increased
amount of cycles can explain why this method results in a slowdown while reducing
hardware based penalties.

10.5 Experiments

With the following experiments we want to test whether the changes described in the
previous section achieves any improvements in practice. We want to know what effect the
changes have on the amount of hardware penalties incurred and try to explain why. We
show the trade-off between build time, memory usage and running time of queries. We
test tree construction and rank and select queries for different block sizes of cumulative
sums of precomputed rank values to find the one achieving the best running time. We
compare rank and select for UnalignedNaive vs. using cumulative sum and show how
their running time and hardware penalties differ.

10.5.1 Build Time And Memory Usage For Various Block Sizes

In Figure 23 we have plotted the wall time and memory usage of building the Unaligned-
Naive and CumulativeSum Wavelet Trees. In Figure 23a we can see that it takes slightly
longer to build the tree when we have to calculate the cumulative sum across the precom-
puted values we store. The difference at 210 is 0.49 seconds, which is a 3.33 % increase
from UnalignedNaive to CumulativeSum, and for other block sizes similar differences
are found.

In Figure 23b we can see that, as expected, CumulativeSum takes more memory,
but only significantly so when using block sizes less than 28 bits (8 bytes). At the
lowest block size we tested for, 23 bits, we see a massive increase in memory usage. For
CumulativeSum, the memory usage at a block size of 23 bits is about double that at a
block size of 28 bits.

If we look closer at the raw data at block size 210 for which we calculated an expected
extra memory usage of 634 KB., there is an increase of 350 KB in memory usage when
storing the cumulative sum, which constitutes an increase of about 0.38 %, and is even
less than what we expected and is negligible compared to the expected increase in running
time.

10.5.2 Optimal Block Size For Rank And Select

We have made tests of the running time of Rank, Select, and SelectBranchless queries
on wavelet trees of varying block sizes from 22 to 216 bits. The test results are shown in
Figure 24.

71

From Figure 24a we observe that the best running time of rank queries is achieved
using a block size of 26 = 64 bits. The blue line indicates the theoretically best block
size of 64 bit as explained in Section 10.3 and now confirmed by this test.

Select achieves the best running time with a block size of 211 = 2048 bits which can
be observed in Figure 24b and the branchless version achieves the best running time
using a block size of 210 = 1024 bits as seen in Figure 24c The found block sizes fits with
the theoretical Big-O analysis. Rank is best with a small block size and select is also
better with a relatively small block size that is larger than for rank.

In a realistic use case one would want to build a single tree using one block size and
do rank and select on that tree and not have two trees with different block size, one for
rank and one for select. From our experiments, a block size of 1010 = 1024 bits seem to
be the best choice when using an input string of 108 characters. It has close to optimal
query running time for both rank and select, and only uses about 0.38 % more memory.

72

0

2

4

6

8

10

12

14

16

18

22 24 26 28 210 212 214 216

W
a
ll
ti

m
e

(s
e
c
o
n
d
s)

Block size (bits)

CumulativeSum UnalignedNaive

(a) Wall Time

700

800

900

1000

1100

1200

1300

1400

1500

22 24 26 28 210 212 214 216

M
e
m

o
ry

u
sa

g
e

(M
B

)

Blocksize (bits)

CumulativeSum
UnalignedNaive

(b) Memory Usage. Note that the y-axis does not
start at 0.

Figure 23: Measurements on Building the UnalignedNaive and CumulativeSum wavelet trees. The x-axis
(block size) is logarithmic.

0

1000

2000

3000

4000

5000

6000

7000

22 24 26 28 210 212 214 216

W
a
ll
ti

m
e

(µ
s
)

Block size (bits)

CumulativeSum

(a) Rank. Blue line marks expected best block size.

0

2000

4000

6000

8000

10000

12000

22 24 26 28 210 212 214 216

W
a
ll
ti

m
e

(µ
s
)

Block size (bits)

CumulativeSum

(b) Select.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

22 24 26 28 210 212 214 216

W
a
ll
ti

m
e

(µ
s
)

Block size (bits)

CumulativeSum

(c) Branchless Select.

Figure 24: Running times of CumulativeSum rank and select for varying block sizes with n = 108 characters.
The x-axis (block size) is logarithmic.

73

10.5.3 Rank Queries

In Figure 25 we have plotted various measurements for Rank queries on the Unaligned-
Naive and CumulativeSum trees. In Figure 25a we can see that storing and using the
cumulative sum of rank values instead of the rank values for each block improves the
running time of rank queries. UnalignedNaive spends 4.05 milliseconds on 1000 queries,
where CumulativeSum spends 1.43 milliseconds, a reduction in running time of 64.7 %.

Looking at Figure 25b, Figure 25d we can see that the tree using cumulative sums
has much fewer branch mispredictions but a higher misprediction rate, which can be
explained by the fact that fewer conditional branches are executed overall during rank
queries as seen in Figure 25c. The decreased amount of branch mispredictions can
be explained by the removal of a for-loop in CumulativeSum that iterated over the
precomputed values, summing them up to calculate the rank, instead replacing it with
a single lookup of a precomputed value.

In Figure 25e we see that the CumulativeSum tree has slightly more Translation
Lookaside Buffer Misses than UnalignedNaive but not lot, so the amount of TLB misses
are not reduced when using a cumulative sum.

In Figure 25f, Figure 25g, and Figure 25i we can see that rank queries on the Cumu-
lativeSum wavelet tree has a much better level 1 cache, level 2 and 3 cache performance
because of the decreased amount of cache misses. Cache misses are reduced and this
helps to improve the CumulativeSum rank running time because fewer cache lookups
are needed.

In Figure 25h we can see that the amount of level 2 cache hits decrease significantly
when using cumulative sums of the precomputed values. The explanation for the decrease
in level 2 cache hits might lie in the reduction of level 1 cache misses as seen in Figure 25f,
like results from previous experiments. The reduction in level 2 cache hits is mainly the
amount of cache lookups that the level 1 cache instead was able to handle. The reduction
of level 1 cache misses is on average 319 996 and the reduction in level 2 cache hits is on
average 213 818 which seems to support this. The level 2 cache miss rate (not shown) is
therefore somewhat misleading as it would suggest a worse cache performance where the
truth is that CumulativeSum has a much better cache performance, having much fewer
level 1 cache misses, which helps to explain why the rank queries are faster.

10.5.4 Select Queries

In Figure 26 we have plotted the same measurements as in Figure 25, but for Select
queries, including our “branchless” variant of the cumulativeSum select query.

In Figure 26a we can see that storing and using the cumulative sum of precomputed
rank values is also an improvement for select queries, with a reduction in wall time of
40 %. Our “branchless” approach is also faster than not using the cumulative sum, but
much slower than the simpler approach only achieving a wall time reduction of 18 %.

Looking at Figure 26c we can see that both approaches using the cumulative sum
executes much fewer conditional branches, which could be caused by using the binary
search instead of having to iterate through every precomputed value from the beginning

74

of the bitmap to the position where the sought-after occurrence lies. The “branchless”
select also executes fever branches than the branching version of select. The difference
is not large though, which could mean that most of the branches are from traversing the
tree rather than computing the binary select on the bitmap.

In Figure 26b and Figure 26d we can see that the branching approach using cumula-
tive sum has, as expected, more branch mispredictions and a higher branch misprediction
rate than both of the others. The additional number of branch mispredictions contribute
about 936 255 extra clock cycles compared to UnalignedNaive which, assuming 15 clock
cycles per misprediction, is only 4.5 % of the total number of clock cycles, which is
20 954 197, used in the cumulative sum branching select query.

In Figure 25e we can see that the branching approach also has more TLB misses
than the others, yet this still has not made it slower than the others.

In Figure 26f, Figure 26g, and Figure 26i we can see that using a tree with cumulative
sum again has better level 1, level 2 and 3 cache performances than UnalignedNaive. The
“branchless” approach has the best level 1 cache, level 2 and 3 cache performances as was
also the case for rank. We see a reduction in level 2 cache hits as for rank in Figure 26h
from UnalignedNaive to the two CumulativeSum approaches. This rediction can again
be explained mainly by the reduction in level 1 cache misses as seen in Figure 26f. Level
2 cache misses are a little higher for branching CumulativeSum than for UnalignedNaive.
The “branchless” select reduces the hardware penalties more that branching select but
it is still slower because requires more cycles to achieve “branchless” select and the
hardware penalty reduction does not make up for this increase.

In the end we can confirm based on our measurements that it can be explained why
Rank and Select is faster for CumulativeSum than for UnalignedNaive. We feel the
performance gain for queries by far make up for the small increase in time and memory
usage when building the tree.

CumulativeSum is already theoretically better than UnalignedNaive (see Section 10.1)
because of the cumulative sums allowing binary rank to be computed in O(b) time. The
tests show the practical effect of this theoretical improvement and confirms that the
improvement also works in practice.

75

0

1

2

3

4

5

W
a
ll
ti

m
e

(m
il
li

se
c
o
n
d
s)

UnalignedNaive
CumulativeSum

(a) Wall Time

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

B
ra

n
c
h

M
is

p
re

d
ic

ti
o
n
s

UnalignedNaive
CumulativeSum

(b) Branch Mispredictions

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

B
ra

n
c
h
e
s

E
x
e
c
u
te

d

UnalignedNaive
CumulativeSum

(c) Branches Executed

0

0.02

0.04

0.06

0.08

0.1

0.12

B
ra

n
c
h

M
is

p
re

d
ic

ti
o
n

R
a
te

UnalignedNaive
CumulativeSum

(d) Branch Misprediction Rate

0

1000

2000

3000

4000

5000

6000

7000

T
L

B
M

is
se

s

UnalignedNaive
CumulativeSum

(e) TLB Misses

0

100000

200000

300000

400000

500000

600000

700000

C
a
c
h
e

M
is

se
s

UnalignedNaive
CumulativeSum

(f) Level 1 Cache Misses

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

C
a
c
h
e

M
is

se
s

UnalignedNaive
CumulativeSum

(g) Level 2 Cache Misses

0

50000

100000

150000

200000

250000

C
a
c
h
e

H
it

s

UnalignedNaive
CumulativeSum

(h) Level 2 Cache Hits

0

20000

40000

60000

80000

100000

120000

140000

C
a
c
h
e

M
is

se
s

UnalignedNaive
CumulativeSum

(i) Level 3 Cache Misses

Figure 25: Measurements on Rank Queries on the UnalignedNaive and CumulativeSum Wavelet Trees. Part
1.

76

0

2

4

6

8

10

12

14

W
a
ll
ti

m
e

(m
il
li

se
c
o
n
d
s)

UnalignedNaive
CumulativeSum

CmSumBranchless

(a) Wall Time

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

B
ra

n
c
h

M
is

p
re

d
ic

ti
o
n
s

UnalignedNaive
CumulativeSum

CmSumBranchless

(b) Branch Mispredictions

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

B
ra

n
c
h
e
s

E
x
e
c
u
te

d

UnalignedNaive
CumulativeSum

CmSumBranchless

(c) Branches Executed

0

0.05

0.1

0.15

0.2

B
ra

n
c
h

M
is

p
re

d
ic

ti
o
n

R
a
te

UnalignedNaive
CumulativeSum

CmSumBranchless

(d) Branch Misprediction Rate

0

2000

4000

6000

8000

10000

T
L

B
M

is
se

s

UnalignedNaive
CumulativeSum

CmSumBranchless

(e) TLB Misses

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

C
a
c
h
e

M
is

se
s

UnalignedNaive
CumulativeSum

CmSumBranchless

(f) Level 1 Cache Misses

0

50000

100000

150000

200000

250000

C
a
c
h
e

M
is

se
s

UnalignedNaive
CumulativeSum

CmSumBranchless

(g) Level 2 Cache Misses

0

50000

100000

150000

200000

250000

300000

C
a
c
h
e

H
it

s

UnalignedNaive
CumulativeSum

CmSumBranchless

(h) Level 2 Cache Hits

0

50000

100000

150000

200000

C
a
c
h
e

M
is

se
s

UnalignedNaive
CumulativeSum

CmSumBranchless

(i) Level 3 Cache Misses

Figure 26: Measurements on Select Queries on the UnalignedNaive and CumulativeSum and CumulativeSum-
Branchless Wavelet Trees. Part 1.

77

11 Cumulative Sum with Controlled Memory Layout and
Skew

In this section, we describe our attempt to improve the query times for the wavelet tree
by controlling the memory layout and skewing the tree. Skewing the tree means that
we force it to be unbalanced with a bias to one side. Brodal et al. [13, Abstract] showed
that skewing a binary search tree could reduce the amount of cache misses and branch
mispredictions considerately. Enough, in fact, to increase the speed of searching the tree
manyfold, even though the skewing increased the depth of the tree structure.

To reduce cache misses by skewing the tree we must control the memory layout,
because by skewing the tree to the right, we increase the likelihood of a traversal similar
to a depth-first-search going down the right side first (DFSr). So we want to place the
data in memory so that a DFSr traversal through the tree would result in sequential
address accesses. Allocating memory dynamically as we go might produce a similar
layout and controlling the memory may not lead to increased performance, but it is the
only way to ensure the memory layout is as we want it.

Skewing the tree has the disadvantage of increasing the height, or depth, of the tree.
J. Nievergelt and E. M. Reingold [22] defined the height for a skewed binary tree to be
at most:

hmax =
log(m+ 1)

log 1
1−α

,

where m is the total number of nodes in the tree, that is 2σ− 1 in our wavelet tree, and
α = 1

skew and skew is the skew parameter, see Section 11.2. Together this makes the
height at most

hmax =
log(2σ)

log skew
skew−1

.

Which, when the tree is balanced (skew = 2), makes the height at most hmax = log σ+1
which agrees with our definition of the height h = dlog σe.

Let us analyse the theoretical worst case running time of constructing and querying
a balanced wavelet tree vs. a skewed wavelet tree. Constructing a balanced wavelet tree
takes O(n log σ) time because the height of the tree is dlog σe and there are n elements
in each level. When skewing the tree the height of the tree becomes as defined above
and the construction time becomes O(n · hmax).

The query time for rank on a balanced wavelet tree is O(b log σ) and for select
O(b log σ + log n

b log σ). In the skewed version of the tree the rank query time then be-
comes worst-case O(b·hmax). The query time for select becomes O(b·hmax+log n

b · hmax).
The memory usage becomes O(n · hmax + (σ + n

b · hmax) · ws) bits.
From the theoretical analysis of construction time and query time of a skewed wavelet

tree it is theoretically not an improvement to skew the tree. Skewing the tree can however
reduce branch mispredictions, as shown by Brodal et al. [13, Abstract]. It does so by
giving the branch in the direction the tree is skewed a much higher probability of being
the correct than the other, which enables the branch prediction unit to predict correctly
more often. Skewing the tree can also reduce cache misses by increasing the probability

78

that the next piece of memory the algorithm accesses is already loaded into a cacheline
by the time it is accessed because of prefetching.

The algorithms for construction and queries in this implementation remain mostly
the same as before in CumulativeSum, but with modifications to handle a controlled
memory layout and a skew of the tree.

11.1 Prefetching

Prefetching is a feature of the CPU whereby it can fetch other parts of the memory into
cachelines even though it was not requested yet, if it expects it will be requested soon,
to avoid having the program waiting for this fetching. See also Section 5.1. In more
advanced versions, it can even look at the access into memory of the running program
and try to determine a pattern and prefetch memory according to this pattern. Looking
at the Intel Optimization Manual [23] for our architecture25 we find that it has streaming
prefetchers loading into level 1, level 2, and level 3. The streaming prefetchers detect
accesses to ascending or descending addresses and can prefetch up to 20 lines ahead or
behind. Our architecture also has a prefetcher that can detect strides in memory access,
as well as a “Next Page Prefetcher” that can load another memory page when detecting
memory accesses near the page boundary 26.

11.2 Skewing The Tree

Skewing the tree is done by changing the way we find which character in the alphabet
to split on in the construction of each node. The split character is the last character in
the alphabet of the left child node and to be able to skew the calculation we calculate it
as

SplitCharacter =

⌊
alphabetSize − 1

skew
+ alphabetMin

⌋
where alphabetSize is the size of the alphabet at this node, alphabetMin is the first
character in the alphabet at this node, and skew is the skew parameter which is 2 for a
balanced tree and higher for right-skewed trees. E.g. a skew value of 4 skews the tree
by 75 % to the right so that, in each node, 25 % of the alphabet is put into the left child
node and 75 % is put into the right child node. We only use integer values as characters,
so the calculated split character is rounded down.

11.3 Controlled Memory Layout

We still want to support dynamic input and alphabet sizes without recompilation, so
the nodes must be dynamically allocated on the heap.

The size of a node is known at compile time as it contains fixed-size pointers to the
parent node and left and right child nodes, as well as a boolean value to flag it as a

25Our architecture is Ivy Bridge, but the optimization manual sections for Sandy Bridge holds true
for Ivy Bridge as well, as stated in section 2.2.7 in [23].

26See section 2.2.7 of [23]

79

Bitmap

Word Word

Bitmap Prefetching

Word

cache line

prefetched
cache line

Bitmap - Rank / Select

cache line

Rank / Select
stops here

Next Bitmap..

Skips prefetched cache line
and looks at the next bitmap

Next Bitmap..

Next Bitmap..

Figure 27: How access patterns in a concatenated bitmap can defeat cache prefetching

leaf node and its bitmap as a vector, which internally stores a pointer to its backing
array. As such, the memory for the nodes is allocated by allocating an array and then
instantiating the nodes into that array. A reference to a pointer is passed into the array
from parent to child nodes during construction, so they know where to allocate their
child nodes. The pointer points to the position of the last node in the array, and so
before each instantiation of a new node, we increment the pointer so it points to free
space, then place the new node there.

The memory layout of the bitmaps are not controlled, because skewing the tree will
not help the prefetcher with regards to the bitmaps, except in a few specific cases, because
of the way the bitmaps are used and the resulting access patterns. The algorithms for
rank and select stop querying each bitmap at some position inside the bitmap and then
continue to the next bitmap in the next node. The problem is shown in Figure 27. The
drawing assumes the bitmap is stored sequentially and the prefetcher prefetches the next
cache line (colored green), but the algorithm stops at some position and skips ahead to
the next bitmap. Rank stops when it reaches the position the query was searching up to,
given as a parameter. Select stops when it has found the sought number of occurrences
in the bitmap. In both of these cases the rest of the bitmap is not used and any such
data the prefetcher has fetched would have been in vain. The prefetcher cannot tell from
the algorithms access pattern when it will jump ahead to the next bitmap, and every
such jump will therefore give rise to a cache miss. This makes it unable to utilize the
prefetched data and will try to access memory that is not in the cache yet; a cache miss.

80

So regardless of where the bitmap that is accessed next is stored, following right after
the first or elsewhere in memory, a cache miss will occur.

The exceptions to this are when either the entire bitmap is used for the query, that
is, when the rank query is for the entire string, or the bitmap is small enough that
the beginning of the next bitmap can fit within the same word. The first case is not
a common query in most use cases, and the second case is rare when the input string
is much bigger than the alphabet, and would only happen near the leaf nodes. Neither
scenario happens often enough to warrant controlling the bitmap memory layouts.

11.4 Experiments

11.4.1 Queries when skewing the Wavelet Tree using uncontrolled and con-
trolled memory layout

In this experiment we want to test whether queries on a skewed tree using controlled
memory layout is an improvement in running time and how a change in running time
can be explained by the amount of incurred hardware penalties.

Test Setup
The general setup is as described in Section 7.2. The query parameters were chosen as
described in Section 7.4. The results can be seen in Figure 28, Figure 29 and Figure 30.
We skew the wavelet tree as described in Section 11.2). The block size used for testing
the build time and memory usage is 1024, as we found that to be the overall best when
weighing both rank and select time and memory usage. The block size used for rank
is 64 bit and 2048 bit for select, as that gave the best performance for each, and we
wanted to give each the best possibility to perform well when skewed. The less time
that is spent in binary rank and binary select, the greater the influence on running time
of branch mispredictions and cache misses gets from navigation of nodes in the tree.
Skewing the tree can improve running time by reducing these branch mispredictions and
cache misses from navigating the tree. Therefore, the less time that is spent in binary
rank and binary select, the better opportunity skewing the tree has to improve running
time.

Results
Looking at Figure 28a, we can see that it takes more time to build a skewed tree,
with increasing time spent as the skew increases. It appears to be a linear increase in
running time as skew increases, especially from skew parameter 3 and higher. Looking
at Figure 28b we can see that it also takes more memory the more we skew the tree. If
we look at Figure 29 and Figure 30 we can see that query times for both rank and select
also increase linearly with increasing skew.

We can already conclude that skewing the tree is not worth it in terms of build time,
memory usage or query times. We still look closer at our measurements and try to
explain why it is not worth it.

81

Looking at Figure 29b and Figure 30b we can see the amount of cache misses increases
as skew increases for both rank and select queries and for all three levels of cache. If
we instead look at level 2 data cache hits in Figure 29c and Figure 30c, we can see that
they in fact increase as well, and at a higher rate than the cache misses, which is also
what the rising cache hit rate signifies. The high increase in level 2 data cache hits is no
benefit, however, when level 2 data cache misses still increase, as it is the misses that
cause a penalty and no increased amount of cache hits can make up for that penalty.

In Figure 29d and Figure 30d we see an increase in branches executed, which is to
be expected, as the depth of the tree increases, more nodes must be traversed using
branching code. While more branches are taken overall, we also see in Figure 29e and
Figure 30e a reduction in both the amount of branch mispredictions and the branch
misprediction rate as the tree is skewed further. The reduction in the raw amount of
branch mispredictions leads directly to a reduction in performance penalties incurred,
but the increase in total number of conditional branches executed might not be worth it.
The amount of branches executed at skew factor 6 compared to skew factor 2 (balanced)
increases by 37,149 for rank and 1,365,427 for select, whereas the amount of branch
mispredictions are only reduced by 1,377 for rank and 63,116 for select, meaning that
there is 21 additional branches per branch misprediction saved for rank and 27 for select.
A branch misprediction penalty must then be at least either 21 or 27 cpu cycles before it
would be worth it in terms of branch mispredictions, assuming a single branch instruction
takes one cpu cycle. Agner Fog has tested the Ivy Bridge architecture and found that
the branch misprediction penalty is “15 cycles or more”27, so it seems the reduction in
branch mispredictions is not worth the increase in total branches.

Figure 29f and Figure 30f show the amount of Translation Lookaside Buffer Misses
encountered as the tree is skewed. While it has higher variation and both dips and rises
the more the tree is skewed, it does still show a general increase at higher skew parameter
values.

In the end we can confirm that skewing the tree is no improvement even though the
amount of branch mispredictions are reduced. This reduction simply does not make up
for the increased amount of cache misses, increased cycles from more executed branches
and increased TLB misses. Furthermore, skewing uses more memory.

27Section 3.7 in http://www.agner.org/optimize/microarchitecture.pdf

82

http://www.agner.org/optimize/microarchitecture.pdf

0

2

4

6

8

10

12

14

16

18

20

2 2.5 3 3.5 4 4.5 5 5.5 6

W
a
ll

T
im

e
(s

e
c
o
n
d
s)

Skew Parameter

(a) Wall Time

0

100

200

300

400

500

600

700

800

900

2 2.5 3 3.5 4 4.5 5 5.5 6

M
e
m

o
ry

u
sa

g
e

(M
B

)

Blocksize (bits)

(b) Memory Usage

Figure 28: Build Wall Time and Memory Usage of CumulativeSum for various skew.

83

0

200

400

600

800

1000

1200

1400

1600

1800

2 2.5 3 3.5 4 4.5 5 5.5 6

W
a
ll

T
im

e
(s

e
c
o
n
d
s)

Skew Parameter

(a) Wall Time

0

10000

20000

30000

40000

50000

60000

70000

2 2.5 3 3.5 4 4.5 5 5.5 6

C
a
c
h
e

M
is

se
s

Skew Parameter

Level 1 Level 2 Level 3

(b) Cache Misses

0

5000

10000

15000

20000

2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.2

0.4

0.6

0.8

1

H
it

s

H
it

R
a
te

Skew Parameter

Hits Hit Rate

(c) Level 2 Data Cache Hits & Hit Rate

0

20000

40000

60000

80000

100000

120000

2 2.5 3 3.5 4 4.5 5 5.5 6

B
ra

n
c
h
e
s

E
x
e
c
u
te

d

Skew Parameter

(d) Branches Executed

0

2000

4000

6000

8000

10000

2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.2

0.4

0.6

0.8

1

B
ra

n
c
h

M
is

p
re

d
ic

ti
o
n
s

B
ra

n
c
h

M
is

p
re

d
ic

ti
o
n

R
a
te

Skew Parameter

Branch Mispredictions
Branch Misprediction Rate

(e) Branch Mispredictions

0

2000

4000

6000

8000

10000

12000

2 2.5 3 3.5 4 4.5 5 5.5 6

T
ra

n
sl

a
ti

o
n

L
o
o
k
a
si

d
e

B
u
ff

e
r

M
is

se
s

Skew Parameter

(f) Translation Lookaside Buffer Misses

Figure 29: Measurements for Rank Queries on CumulativeSum for various skew.

84

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

2 2.5 3 3.5 4 4.5 5 5.5 6

W
a
ll

T
im

e
(µ
s
)

Skew Parameter

(a) Wall Time

0

50000

100000

150000

200000

250000

300000

350000

400000

2 2.5 3 3.5 4 4.5 5 5.5 6

C
a
c
h
e

M
is

se
s

Skew Parameter

Level 1 Level 2 Level 3

(b) Cache Misses

0

10000

20000

30000

40000

50000

60000

70000

2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.2

0.4

0.6

0.8

1

H
it

s

H
it

R
a
te

Skew Parameter

Hits Hit Rate

(c) Level 2 Data Cache Hits & Hit Rate

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

4e+06

2 2.5 3 3.5 4 4.5 5 5.5 6

B
ra

n
c
h
e
s

E
x
e
c
u
te

d

Skew Parameter

(d) Branches Executed

0

100000

200000

300000

400000

500000

2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.2

0.4

0.6

0.8

1

B
ra

n
c
h

M
is

p
re

d
ic

ti
o
n
s

B
ra

n
c
h

M
is

p
re

d
ic

ti
o
n

R
a
te

Skew Parameter

Branch Mispredictions
Branch Misprediction Rate

(e) Branch Mispredictions

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

2 2.5 3 3.5 4 4.5 5 5.5 6

T
ra

n
sl

a
ti

o
n

L
o
o
k
a
si

d
e

B
u
ff

e
r

M
is

se
s

Skew Parameter

(f) Translation Lookaside Buffer Misses

Figure 30: Measurements for Select Queries on CumulativeSum for various skew.

85

Part IV

Conclusion

12 Conclusion

In this Thesis we have described the wavelet tree, a versatile data structure offering
solutions within problem domains such as data compression and information retrieval.
We describe in detail how a wavelet tree is constructed and how it is queried in three
ways: access, rank, and select.

We have performed a survey on the applications of wavelet trees including efficient
data compression and fast information retrieval with more detail on how the wavelet
tree is used for some of the applications.

We have described some characteristics of modern CPUs that result in penalties in
running time for some cases, such as cache misses (CM), branch mispredictions (BM)
and translation lookaside buffer (TLB) misses. We have described how these penalties
are incurred and why they result in performance loss.

We have implemented and tested the construction of a wavelet tree, comparing it to
the theoretical running time and found the theoretical running time only holds up to a
certain alphabet size whereafter an exponentially rising amount of TLB misses reduces
performance significantly.

We have implemented rank and select queries and performed a number of modi-
fications, attempting to reduce the amount of hardware penalties they encounter by
changing how they are calculated, changing the shape of the tree, changing what is
stored and how it is stored.

We have performed a number of experiments to measure and document the change in
amount of hardware penalties encountered as well as running times and memory usage
to see if our modifications were any improvement. The modifications and the results of
the experiments are summed up below.

Using popcount CPU instruction to improve binary rank and select query running
times within each node of the tree by reducing the amount of CPU cycles needed.
Result: High improvement in running time.

Precompute and store binary rank values in blocks for each bitmap in each node.
Use the precomputed values for the most part to reduce the amount of CPU cycles
and memory accesses needed.
Result: High improvement in running time.

Concatenate bitmaps and precomputed values to reduce memory usage and pos-
sibly improve cache performance.
Result: Small improvement in memory usage, worse running time.

Align bitmaps with memory pages to reduce TLB misses.
Result: Slightly worse running time.

Store cumulative sum of precomputed values instead of raw binary rank values
to further reduce CPU cycles and memory accesses needed.

86

Result: Fastest improvement of running time out of all our optimizations but
uses more memory than the others but only 0.5 % more than a wavelet tree with
concatenated bitmaps, which is the one that uses the smallest amount of memory.

Replace branching code with arithmetic operations in select queries to reduce
number of branches and thereby branch mispredictions.
Result: Worse running time than normal branching select.

Skewing the tree with a controlled memory layout to reduce branch mispredictions.
Result: Branch mispredictions were reduced but it resulted in a worse query run-
ning time and increased memory usage.

In general, improvements that reduced the raw amount of computations and memory
accesses needed were a big improvement, whereas improvements focusing on reducing a
single type of penalty, such as BM or TLB misses, were either barely an improvement
or no improvement at all.

13 Future Work

We have many ideas for future work on practical implementation and optimization of
wavelet trees.

13.1 Interleaving Bitmap and Precomputed Cumulative Sum Values

Calculating the binary rank using a precomputed cumulative sum value and a bitmap
requires a lookup in two separate vectors both of which can introduce a cache miss. If
the precomputed cumulative sum values were to be interleaved with the bitmap, so that
the precomputed value for a block would lie right next to that block from the bitmap,
we expect the second of these cache misses could be avoided.

More precisely, in our implementation two vectors containing different data are
stored: one containing the bitmap values and one containing the precomputed values.
Instead of this, a new data type could be defined that contained both a block of the
bitmap and its precomputed value, and then a single vector containing this data type
could then be stored.

We expect this would avoid a cache miss, because the access pattern of a rank query
is to access the precomputed value for a block, and then the corresponding block in the
bitmap, and if the block from the bitmap is in the same cacheline as the precomputed
value, accessing it right after will not lead to a cache miss.

13.2 vEB Memory Layout

We tried a right-side depth-first memory layout in Section 11 when we tried to skew
the tree. Without trying to skew the tree, other memory layouts might still be able to
improve the performance of the wavelet tree. Brodal et al. [13] tested several memory
layouts for their skewed binary search tree and found that the blocked memory layout
based on van Emde Boas Trees performed best for all skew values. It could be interesting

87

to try a van Embe Boas memory layout for a balanced wavelet tree to see if it could
improve the query performance.

13.3 d-ary

Alex Bowe [10] has shown that multiary wavelet trees can work in practise. In our
implementations we have used a binary wavelet tree which means its height is the base-2
logarithm of the alphabet size. With a d-ary tree the height would be reduced to base
d logarithm of the alphabet size. This could improve access, rank, and select query
performance significantly as their traversal down or up the tree would be significantly
shortened.

A disadvantage of a d-ary wavelet tree is that each bitmap must encode log2(d) bits
of information for each character in the string, to signify which of the subtrees each
character belongs to. This makes using the native popcount cpu instruction impossible,
perhaps unless some clever bitshifting and XORring could be applied to avoid manually
counting sets of bits. On the other hand, using the stored precomputed values means
only few sets of bits would have to be counted and perhaps the benefit from a lower tree
will outweigh the loss from not using popcount.

13.3.1 SIMD

When constructing or traversing a d-ary wavelet tree, finding which of 4 or more subtrees
to either pass a character too or traverse into requires comparing the character with more
than just one split character. To improve the performance of this multi-way comparison,
SIMD instructions might be employed with success.

13.4 Parallelization

To expand on the potential improvement from using SIMD instructions when construct-
ing and traversing d-ary wavelet trees, some amount of parallelization of the algorithms
might improve the performance even further.

13.4.1 On GPU

If parallelization proves to be an improvement, implementing them on the GPU e.g.
using CUDA could be a massive improvement as modern GPUs have several hundred
cores and if well-utilized can surpass the power of a modern CPU.

13.5 RRR structure

The RRR structure allows computation of binary rank in O(1) time. It also implicitly
achieves zero-order compression of the data. RRR uses some of the same concepts as
we do in our CumulativeSum implementation: Precomputed ranks, cumulative sum of
those and concatenation of bitmaps. It could be interesting to measure and analyse the
hardware penalties in this structure, and perhaps improve its running time.

88

Appendices

A Precomputed rank block sizes: larger range

1000

10000

100000

1e+06

26 28 210 212 214 216 218 220

W
a
ll

T
im

e
(µ
s
)

Block Size (bits)

Naive
Preallocated

UnalignedNaive
UnalignedPreallocated

(a) Rank: Wall Time

10000

100000

1e+06

1e+07

26 28 210 212 214 216 218 220

W
a
ll

T
im

e
(µ
s
)

Block Size (bits)

Naive
Preallocated

UnalignedNaive
UnalignedPreallocated

(b) Select: Wall Time

Figure 31: Running time for Rank and Select queries in Wavelet Trees with Precomputed Rank Values for
larger range of varying block sizes. A page size is 215 bits.

89

Primary Bibliography

[A1] Gonzalo Navarro. Wavelet trees for all. J. of Discrete Algorithms, 25:2–20, March
2014. ISSN 1570-8667. doi: 10.1016/j.jda.2013.07.004. [Introduction, Section 4].

[A2] Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. High-order entropy-
compressed text indexes. In Proceedings of the Fourteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’03, pages 841–850, Philadelphia, PA,
USA, 2003. Society for Industrial and Applied Mathematics. ISBN 0-89871-538-5.
[Section 4.2].

[A3] Cristos Makris. Wavelet trees: a survey. Computer Science and Information
Systems, 9(2):585–625, 2012. [Introduction, Section 2.1 pages 588-590].

[A4] M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algo-
rithm. Technical report, 1994. [Introduction].

[A5] Paolo Ferragina, Raffaele Giancarlo, and Giovanni Manzini. The myriad virtues
of wavelet trees. Information and Computation, 207(8):849 – 866, 2009. ISSN
0890-5401. doi: 10.1016/j.ic.2008.12.010. [Introduction (excluding paragraph C
and D)].

[A6] Veli Mäkinen and Gonzalo Navarro. Succinct suffix arrays based on run-length
encoding. In Alberto Apostolico, Maxime Crochemore, and Kunsoo Park, editors,
Combinatorial Pattern Matching, volume 3537 of Lecture Notes in Computer Sci-
ence, pages 45–56. Springer Berlin Heidelberg, 2005. ISBN 978-3-540-26201-5.
doi: 10.1007/11496656 5. [Introduction].

[A7] Francisco Claude and Gonzalo Navarro. Practical rank/select queries over arbi-
trary sequences. In Amihood Amir, Andrew Turpin, and Alistair Moffat, editors,
String Processing and Information Retrieval, volume 5280 of Lecture Notes in
Computer Science, pages 176–187. Springer Berlin Heidelberg, 2009. ISBN 978-
3-540-89096-6. doi: 10.1007/978-3-540-89097-3 18. [Abstract].

[A8] Travis Gagie, Simon J. Puglisi, and Andrew Turpin. Range quantile queries:
Another virtue of wavelet trees. In Jussi Karlgren, Jorma Tarhio, and Heikki
Hyyrö, editors, String Processing and Information Retrieval, volume 5721 of Lec-
ture Notes in Computer Science, pages 1–6. Springer Berlin Heidelberg, 2009.
ISBN 978-3-642-03783-2. doi: 10.1007/978-3-642-03784-9 1. [Section 3].

[A9] Julian Shun. Parallel wavelet tree construction. CoRR, abs/1407.8142, 2014. URL
http://arxiv.org/abs/1407.8142. [Abstract].

[A10] Alex Bowe. Multiary wavelet trees in practice (honours thesis), 2010. URL https:

//github.com/alexbowe/wavelet-paper/raw/thesis/thesis.pdf. [Abstract].

90

http://arxiv.org/abs/1407.8142
https://github.com/alexbowe/wavelet-paper/raw/thesis/thesis.pdf
https://github.com/alexbowe/wavelet-paper/raw/thesis/thesis.pdf

[A11] Andrew S. Tanenbaum. Structured Computer Organization (5th Edition).
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2005. ISBN 0131485210. [Sec-
tions 4.5.1, 4.5.2].

[A12] L. Bic and A.C. Shaw. Operating Systems Principles. An Alan R. Apt Book.
Prentice Hall, 2003. ISBN 9780130266118. [Section 8.2.1 (Paging, Page Tables),
Section 8.2.2 (Segmentation, Paging with Segmentation), Section 8.2.5].

[A13] Gerth Stølting Brodal and Gabriel Moruz. Skewed binary search trees. In Yossi
Azar and Thomas Erlebach, editors, Algorithms – ESA 2006, volume 4168 of
Lecture Notes in Computer Science, pages 708–719. Springer Berlin Heidelberg,
2006. ISBN 978-3-540-38875-3. doi: 10.1007/11841036 63. [Introduction].

[A14] Gerth Stølting Brodal, Rolf Fagerberg, Riko Jacob, and Rolf Fagerberg Riko Ja-
cob. Cache oblivious search trees via binary trees of small height. In In Proc.
ACM-SIAM Symp. on Discrete Algorithms, pages 39–48, 2002. [Abstract].

Secondary Bibliography (not curriculum)

[B15] Rajeev Raman, Venkatesh Raman, and Srinivasa Rao Satti. Succinct indexable
dictionaries with applications to encoding k-ary trees, prefix sums and multisets.
CoRR, abs/0705.0552, 2007. URL http://arxiv.org/abs/0705.0552.

[B16] D.A. Huffman. A method for the construction of minimum-redundancy codes.
Proceedings of the IRE, 40(9):1098–1101, September 1952. ISSN 0096-8390. doi:
10.1109/JRPROC.1952.273898. [Summary].

[B17] P. Ferragina and G. Manzini. Opportunistic data structures with applications.
In Foundations of Computer Science, 2000. Proceedings. 41st Annual Symposium
on, pages 390–398, 2000. doi: 10.1109/SFCS.2000.892127. [Section 3 (excluding
subsections)].

[B18] Vreda Pieterse, Derrick G. Kourie, Loek Cleophas, and Bruce W. Watson. Per-
formance of c++ bit-vector implementations. In Proceedings of the 2010 Annual
Research Conference of the South African Institute of Computer Scientists and
Information Technologists, SAICSIT ’10, pages 242–250, New York, NY, USA,
2010. ACM. ISBN 978-1-60558-950-3. doi: 10.1145/1899503.1899530.

[B19] Steven T. Piantadosi. Zipf’s word frequency law in natural language: A critical
review and future directions (abstract). Psychonomic Bulletin & Review, 21:1112–
1130, 2014. ISSN 1069-9384. doi: 10.3758/s13423-014-0585-6. [Introduction].

[B20] C. Browne, B. Culligan, and J. Phillips. The new general service list, 2013. URL
http://newgeneralservicelist.org.

91

http://arxiv.org/abs/0705.0552
http://newgeneralservicelist.org

[B21] Rodrigo González, Szymon Grabowski, Veli Mäkinen, and Gonzalo Navarro. Prac-
tical implementation of rank and select queries. In In Poster Proceedings Volume
of 4th Workshop on Efficient and Experimental Algorithms (WEA’05) (Greece,
pages 27–38, 2005.

[B22] J. Nievergelt and E. M. Reingold. Binary search trees of bounded balance. In
Proceedings of the Fourth Annual ACM Symposium on Theory of Computing,
STOC ’72, pages 137–142, New York, NY, USA, 1972. ACM. doi: 10.1145/
800152.804906.

[B23] Intel R© 64 and IA-32 Architectures Optimization Reference Manual. Intel, Septem-
ber 2014. URL http://www.intel.com/content/dam/www/public/us/en/

documents/manuals/64-ia-32-architectures-optimization-manual.pdf.
[Section 2.2.7].

92

http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf

	I The Wavelet Tree
	Introduction
	Related Work
	The Wavelet Tree
	Constructing the Wavelet Tree
	Access Query
	Rank Query
	Select query

	Applications
	What The Wavelet Tree Can Represent
	Compression
	Entropy
	Run-Length encoding
	Burrows-Wheeler transformation
	Huffman-shaped Wavelet Trees

	Information Retrieval
	Access, Rank, and Select Queries
	Range Quantile Query

	II Hardware, Implementation & Test
	Cache, Branch Prediction and Translation Lookaside Buffer
	Cache design and cache misses
	Cache associativity

	Branch Prediction and Misprediction
	Branch Prediction techniques

	Virtual Memory and Translation Lookaside Buffer misses
	Virtual memory: Pages
	Virtual memory: Segmentation
	Translation Lookaside Buffer

	Notes on Implementation
	Using Integers as Characters
	Generating the Data
	Reading Input
	Verifying the Results
	Combating Over-Optimization
	Reducing Construction Time Memory Usage
	Bitmap implementation choice
	Challenges in Implementation

	Notes on The Experiments
	Testing Machine Specifications
	General Setup
	Choice of Input String
	Uniform vs. Non-Uniform data
	Non-uniform distribution choice

	Choice of Query Parameters
	Tools Used
	Tools

	III Algorithms & Experiments
	Simple, Naïve Wavelet Tree: Rank and Select
	Optimizations
	Binary Rank using Popcount
	Binary Select using Popcount

	Experiments
	Uniform vs. Non-Uniform data
	Running time of Tree Construction vs Alphabet Size
	Rank and Select using Popcount

	Precomputing Binary Rank in Blocks
	Concatenating the Bitmaps
	Edge Cases
	Page-aligning the Blocks

	Select Queries with Precomputed Ranks
	Edge Cases

	Extra Space Used by Precomputed Values
	Dependence of Optimal Block Size on Input Size
	Experiments
	Query Running Time for Bitmap with Precomputed Blocks for different Block Sizes
	Memory Usage of Precomputed Rank Values
	Improvement of using precomputed values
	The Dependence of Optimal Block Size on Input Size

	Precomputed Cumulative Sum of Binary Ranks
	Advantages of Cumulative Sum
	Disadvantages of Cumulative Sum
	Optimal Block Size
	Select Queries with less branching code
	Experiments
	Build Time And Memory Usage For Various Block Sizes
	Optimal Block Size For Rank And Select
	Rank Queries
	Select Queries

	Cumulative Sum with Controlled Memory Layout and Skew
	Prefetching
	Skewing The Tree
	Controlled Memory Layout
	Experiments
	Queries when skewing the Wavelet Tree using uncontrolled and controlled memory layout

	IV Conclusion
	Conclusion
	Future Work
	Interleaving Bitmap and Precomputed Cumulative Sum Values
	vEB Memory Layout
	d-ary
	SIMD

	Parallelization
	On GPU

	RRR structure

	Appendices
	Precomputed rank block sizes: larger range
	Primary Bibliography
	Secondary Bibliography (not curriculum)

