
Searching with Dynamic
Optimality: In Theory and Practice

Henrik Bitsch Kirk, 20030612
Master thesis

March 1, 2009

au

AARHUS UNIVERSITY
FACULTY OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

Supervisor:
Gerth Stølting Brodal

Master thesis

Abstract

In this thesis we are presenting different techniques for analysing algorithms
designed for skew access sequences along with properties, which categorises these
algorithms. Furthermore are we describing some related data structures, which
support the working set, queueish, emphdynamic finger and the unified property.
We also describe how to implement data structures which supports these properties
in practice.

One of the main results in this thesis is the description and implementation of the
dynamic self adjusting skip lists, which is developed by Prosenjit Bose, Karim
Douïeb and Stefan Langerman from their 2008 paper “Dynamic optimality for skip
lists and B-trees”. The implementation is accompanied with a detailed description
of the data structure and its common operations search, insert, and delete. This
implementation is tested against an implementation of splay trees developed
by Daniel Slaetor and Robert E. Tarjan and presented in the paper from 1985
“Self-adjusting binary search trees”. The splay trees are a commonly used
data structure for skew access sequences due to its easy implementation. The
disadvantage of this data structure is its potential bad I/O and cache performance.
Minimising cache faults and keeping locality is difficult in this structure. The
dynamic self adjusting skip lists has some advantages in preserving locality, as we
will see in this thesis, but the structure is hard to implement and has a constant
factor hidden in the Big-O notation. The results are therefore not surprisingly that
dynamic self adjusting skip lists are performing worse than splay trees even though
they are better at preserving locality. The results of the empirical tests in this thesis
are therefore not surprising that splay trees performs equally good or better under
the different tested scenarios.

To compensate for the growing number of elements in data collections we are in
this thesis also presenting P. Bose et al. dynamic I/O effective B-trees, which they
contribute in the same paper, to solve the adaptive dictionary problem in external
memory. They have used Brian C. Dean and Zachary H. Jones’ translation scheme
from 2007 to translate dynamic self adjusting skip lists to dynamic I/O efficient
B-trees. We are in details describing the translation scheme and the resulting
dynamic I/O effecient B-trees data structure.

February 28, 2009

Master thesis

Resume

I denne afhandling præsenteres forskellige teknikker til analyse af algoritmer, der
er designet til skæve tilgangs sekvenser, vi præsentere sammen med disse teknikker
også egenskaber som kan hjælpe med at kategorisere disse algoritmer. Ydermere
beskriver vi nogle relevante data strukturer, som supporterer working set, queueish,
dynamic finger og unified egenskaberne. Vi beskriver ligeledes hvordan algoritmer
der opfylder disse egenskaber kan implementeres i praksis.

Et af denne afhandlings hovedresultater er beskrivelse samt implementation af
dynamic self adjusting skip listerne, der er udviklet af Prosenjit Bose, Karim Douïeb
and Stefan Langerman, udgivet i deres 2008 afhandling “Dynamic optimality
for skip lists and B-trees”. Implementationen bliver suppleret med en detaljeret
beskrivelse af data strukturen og dens almindelig brugte operationer search, insert
og delete. Splay træet er publiceret af Daniel Slaetor og Robert E. Tarjan i deres
afhandling fra 1985 “Self-adjusting binary search trees”. Splay træet er en gængs
data struktur, til skæve tilgangs sekvenser, da den er meget enkel at implementerer.
En af ulemperne ved denne struktur er den potentielt meget slemmen I/O og cache
præstationsevne. At minimerer antallet af cache fejl og opretholde lokalitet er meget
svært, hvis ikke umuligt i denne struktur. Den selv justerende skip liste har derimod
nogle fordele når der skal opretholdes lokalitet, som vil blive synliggjort i denne
afhandling, modsat er strukturen meget svær at implementere. Der er desuden en
store konstant factor gemt i Big-O notationen. Resultaterne af de udførte test er
derfor ikke overraskende at dynamic self adjusting skip listerne kører ligeså hurtigt
eller bedre end splay træerne under de sekvenser vi har testet de to data strukturer
med.

For at kompenserer for det stigende antal elementer der er i data samlingerne,
præsenteres der også dynamisk I/O effektiv B-træ struktur også udviklet i sammen
2008 afhandling af P. Bose et al., som kan klare det adaptive ordbogs problem i
eksterne hukommelse. P. Bose et al. har brugt et oversættelse system af Brian C.
Dean og Zachary H. Jones fra 2007, som oversætter mellem skip lister og B-træer.
Detaljerne omkring denne ekstern dynamisk optimale B-træ algoritme vil også være
at finde i denne afhandling.

Master thesis

Acknowledgements

First and foremost I want to thank my supervisor Gerth Stølting Brodal for helping
me whenever I needed help on both technical and non technical matters or I were
stuck. Thanks for his always needed constructive criticism when reviewing my
thesis, his insights and suggestions when seeing a flows in my argumentation or
missing pieces in my text.

Also a great thanks to Natasha Russo, Jacob Ulrich, and Claus Andersen for
reviewing this thesis and helping correcting grammatical and logical faults.

On a more practical side, thanks to the staff on DAIMI for lending me a test machine
and letting me tread it as my own for this half year.

This thesis was written in LATEX. Figures made by dia, ipe and gnuplot. The source
code was implemented in C++ and compiled with GCC and SCons.

February 28, 2009

Master thesis CONTENTS

Contents

Abstract ii

Resume iii

Acknowledgements iv

Table of Contents vii

Introduction 1

1 Comparing algorithms 5
1.1 Analysing algorithms . 5
1.2 Algorithmic properties . 7

2 Adaptive search algorithms 11
2.1 Move to front heuristic . 11
2.2 Unified structure . 13
2.3 Queaps . 18

3 Splay trees 25
3.1 Splaying . 26
3.2 Dictionary operations . 27
3.3 Analysis . 29
3.4 Implementation . 34

4 Probabilistic and deterministic skip lists 37
4.1 Probabilistic skip lists . 37
4.2 Deterministic skip lists . 40
4.3 (a,b) biased skip lists . 41

5 Dynamic self adjusting skip lists 45
5.1 Data structure . 45
5.2 Analysis . 50
5.3 Implementation . 53

6 Testing dynamic dictionaries 57
6.1 Test scenario . 57
6.2 Results . 60

February 28, 2009

CONTENTS Master thesis

7 The I/O-model 71
7.1 Analysing in the I/O-model . 71
7.2 Cache oblivious memory mode . 73

8 B-trees 75
8.1 Internal and external B-trees . 75
8.2 Internal analysis . 78
8.3 External analysis . 80

9 Translation between skip lists and B-trees 83

10 Dynamic I/O efficient B-trees 87
10.1 Data structure . 87
10.2 Analysis . 91

11 Future work 95

12 Conclusion 97

Bibliography 100

A Test result 101
A.1 Comparing dynamic self adjusting skip list(continued) 101
A.2 Comparing self adjusting search trees (continued) 102

B Test environment 107
B.1 Equipment . 107
B.2 To compile and run . 109

vii

CONTENTS Master thesis

Introduction

The dictionary problem is a well known and well studied problem in computer
science. The use of fast and reliable searching is reaching well beyond that of
computer science and into everyday problems as well as specific software solutions
like databases, web-search engines and many more.

Searching for an element1 in a large collection is something everyone is doing
everyday, when looking through phone books, searching the content or glossary
of books, or searching our desktops for the right piece of paper. In computer
science the problem was first considered interesting in the fifties, when the amount
of computer memory started growing. The access to larger and larger random
access memory (RAM) in the 1950’s, gave computer scientist reasons to find a more
efficient way of handling available memory.

The simplest heuristic for searching in a potential large collection of n elements
for a key k, would be a sequential scan over all elements. This will find
the element k if present in the collection. The time complexity of scanning
all elements is clearly O(n), in the RAM-model presented by von Neumann
[TG98, pages 16-19]. If we are to search only once this is feasible, otherwise we
should try and do better. We can initially sort the collection, then a faster method
could be a binary search [Knu98, pages 409-417], here the idea is to jump forward
or backwards half the number elements between the last jump point or the end.
This idea is illustrated in Figure 1 and will reduce the searching time2 from O(n) to
(lg n).

1 3 5 8 12 15 16 21 24 29 34 36 37 38 40 43 47 49 51 56 57 58 60 63 66 67 71 79 84 89 93 99

Figure 1: Searching for 57 in sorted collection using binary search

A more complex solution to “the searching problem” would be to build perfectly
binary search trees, see Figure 2 on top of the n elements; this is essentially how

1In this thesis we are using items or elements interchangeably.
2Let lg x be the binary logarithm log2(x + 1) in this thesis.

Master thesis CONTENTS

binary search works. Searches would start at the root of the tree and work its way
down, by comparing the value of k to the value of the node3 x and then going left
or right depending on whether k being smaller or larger than the value of x. The
number of comparisons when searching in a perfectly balanced binary trees is at
most O(lg n), which is the same bound as binary searching and equal to the height
of the tree. Other binary search structures such as red-black-trees, AVL-trees, and
B-trees can also be used as search structures with equal bounds, though the
constants hidden by the Big-O are different, since they only have height O(lg n)
instead of O(blog2 nc+ 1).

10

6

3

2 4

8

7 9

17

13

12 14

20

19 22

Figure 2: Searching for 12 in a binary tree.

Ideally access sequences of lengthm, like the one described in Sequences (1), (2), (3),
should be handled faster than O(m lg(n)) in search structures with n elements. In
the offline case, where the access sequence is known in advance it is easy to build
static search trees that supports these queries in constant O(1) time per access, for
each of these sequences. The problem is more difficult in a dynamic scenario, where
the access sequence is not known in advance and where the search trees dynamically
have to “learn” and “adapt” to the input sequences.

1, 2, 1, 2, 1, 2, . . . , 1, 2, 1, 2 (1)
1, 2, . . . , n, 1, 2, . . . , n, 1, 2, . . . , n (2)
1, n, 1, n, 1, n, . . . , 1, n, 1, n . (3)

Throughout the litterateur there has been different ways to solve skew access
sequences, like the ones shown in Sequences (1), (2), (3). The techniques can be
divided into static and dynamic search structures, which we have briefly mentioned
above. We could also divide them into structures which is designed respectively
for access frequencies and access sequences. For sequence (2) it is easy to argue

3In this thesis we define nodes residing in a tree as internal nodes, and leafs as nodes with no
children.

February 28, 2009 2

CONTENTS Master thesis

that in static binary search structures can achieve better than Ω(n lg n). An example
of static data structures which are build according to access frequency, could be the
biased search tree presented in [BST85] where each element is assigned a weightwi

according to the access frequency of wi and the access cost for an element should be
O(lgW/wi), where W =

∑
iw. Likewise an example of dynamic data structures

designed for handling different access sequences well are splay trees.

In 1985 D. Sleator and R. E. Tarjan proposed a class of search trees
called self-adjusting search trees, specifically they introduces the splay tree data
structure. The splay trees has inspired others to create self-adjusting data structures,
each promising optimality for dynamic searches. A small set of these self-adjusting
data structures are presented in Chapter 2. The splay trees are shown optimal
within a constant factor of the static optimal offline search tree over a sequence of
m = a1, a2, a3, . . . , am accesses. Splay trees also support what is called the working
set property (WS). The WS property states that for an element a with working set
number ti(a), the working set bound is defined:

WS(X) = O

(
m∑

i=1

lg(ti(a))

)
,

where X is the access sequence and the function ti is the number of distinct accesses
at time i since a was last accessed. To give an example on function ti we define the
following access sequence of keys from the set {1, 2, 3, 4, 5, 6, 7, 8, 9}:

1, 2, 4, 5, 6, 1, 5, 6, 7, 1, 6, 7, 8, 8, 9, 4, 2, 4, 4, 1, 1, 5, 6, 8, 1, 5, 6, 7, 4 . (4)

The working set number for key 4 is seen in Table 1.

ith access ti(4)
3 -
16 6
18 1
19 0
29 5

Table 1: Example of values taken by ti(4) for access Sequence 4.

The working set bound gives an amortised access bound of each access bounded
by O(lg(ti(a))). In Chapter 3 we are going into details concerning splay trees. The
details of the dynamic self adjusting skip lists are likewise presented in Chapter 5.
This data structure was presented by Prosenjit Bose, Karim Douïeb and Ste-
fan Langerman [BDL08]. It works under the same access bounds as the splay trees,
at the same time laying ground for expanding the structure to dynamic external

3

Master thesis CONTENTS

memory B-trees. We compare theoretical equal bounds of the splay trees and the
dynamic self adjusting skip lists with empirical tests in Chapter 6.

The tests conducted on splay trees and dynamic self adjusting skip lists show that
even though dynamic self adjusting skip lists are better at preserving locality, splay
trees performs better in most cases because of the dynamic finger property this
structure also supports. Only when the access sequence are purely working set
friendly dynamic self adjusting skip lists performs just as good as splay trees.

Handling increasing data

In this thesis we are working within two algorithmic models. The first is the
RAM model, which is modelling how algorithms behaves in internal memory on
contemporary computers4.

The RAM model or von Neumann model, is a simplification of the RAM computer,
where it is possible to reach a memory cell in constant O(1) time, each memory
cell is able to store an O(lg n) sized integer. This is a simplified model compared
to modern computers, which have multiple levels of memory, and where the rule of
thumb is; as memory grows in size, its access times are also getting slower.

“The searching problem” has in these last years presented itself as an even harder
problem, with the increasing amounts of data in especially different branches
of science, a new model was needed. The expressiveness of the RAM model
is failing to model the scenario when memory requirements are exceeding the
space available in the main memory. The I/O-model [AV88] was introduced
to fill this vacuum in designing algorithms. The I/O-model was presented by
Allok Aggervel and Jeffrey E. Vittel [AV88] in 1988. We are describing this model
in Chapter 7.

In 1972 R. Bayer and E. McCreight presented the B-trees data structure in the
paper [BM72], an example of a B-tree can be seen in Figure 8.1 on page 76.
B-trees works very well on large collections of data. We are here presenting both
the original B-trees and the external B-trees in Chapter 8. P. Bose et al. [BDL08]
presented an extension of the B-trees data structure which is I/O efficient and
satisfy the working set property in external memory. We are presenting the details
concerning translation between skip lists and B-trees in Chapter 9 and I/O data
structure in Chapter 10.

4This thesis is written in 2009.

February 28, 2009 4

Comparing algorithms Master thesis

1 Comparing algorithms

People like choices
Michael T. Goodrich & Roberto

Tamassia, Algorithm Design (2002)

When analysing adaptive search algorithms and comparing their running time
complexities, we normally compare a concrete algorithm with an optimal offline
algorithm. The optimal offline algorithm knows the whole access sequence X in
advance, hence it can make decision based on the whole of X and in particular the
next access. When referring to an online algorithm in this thesis, we refer to an
algorithm which does not know the access sequence in advance.

1.1 Analysing algorithms

In this section we are presenting some related work, which makes analysis of
dynamic data structures, that depends on sequences of updates and searches
possible. Different ways to compare these data structures, against optimal offline
algorithms, is furthermore presented in this section

1.1.1 c-competitiveness

When analysing online algorithms D. Sleator and R. Tarjan [ST85a] proposed a
competitive analysis, where the deterministic online algorithm A is compared to
the optimal offline algorithm OPT . The optimal offline algorithm knows the entire
request sequence σ = σ(1), σ(2), . . . , σ(m) in advance. This is in contrast to the
online algorithm, which does not depend on knowing element σ(t′), where t < t′,
when answering the query σ(t), where 1 ≤ t ≤ m.

Now we can define the costCA(σ) of an online algorithmA over an access sequence
σ. Equally we can define the cost of an optimal offline algorithm is COPT (σ) over
the same access sequence.

Master thesis Analysing algorithms

An online algorithm A is now called c-competitive if there exist constants c and a,
such that the following inequality holds,

CA(σ) ≤ c · COPT (σ) + a ,

for all request sequences σ. If the inequality holds then c is called the competitive
ratio. It should be mentioned that finding an optimal offline algorithm is hard in
some cases.

1.1.2 Potential functions

In algorithm design and analysis it is sometimes practical to analyse an algorithms
average performance, which is called the amortised cost. In a dictionary example
we therefore calculating the amortised cost over an sequence of accesses. The
technique used for this type of analysis is potential functions.

For a fixed input sequence σ of length m, the potential function of algorithm A is
donated by a positive real number Φ. Now let Φi be the potential of the algorithm
after the ith operation of the sequence σ by algorithm A. Let ti donate the cost
of the ith operation by A on access σi. The difference in potential of A after
the ith step is defined by ∆Φi = Φi − Φi−1, the amortised cost ai of A at the
ith step is then defined by ai = ti + ∆Φi.

The hard thing is then to find a suitable potential function for the specific algorithm.

For algorithmA, we can analyseA by using the found potential function as follows;
Run both A and OPT simultaneously on the sequence σ and let oi be the cost of
the ith operation of OPT , defined above. An upper bound on the algorithm A over
the entire sequence σ, can be proved, by bounding the amortised cost of A for each
operation. Consider a non-negative potential function, which initial value is equal
to zero and for each i it should apply that 1 ≤ i ≤ m and ai ≤ c · oi. Then

CA(σ) =
m∑

i=1

ti

≤ Φm − Φ0 +
m∑

i=1

ti =
m∑

i=1

(ti + ∆Φi) =
m∑

i=1

ai

≤
m∑

i=1

oi = c · COPT (σ) .

February 28, 2009 6

Comparing algorithms Master thesis

This way of using potential functions as a method to analyse an algorithms
performance over a sequence of operations is called an amortised analysis. This
method was first shown in the paper [Tar85a] by Robert E. Tarjan from 1985 . This
simply states that an individual operation can be costly, however the average cost
over a sequence can be bounded to an average cost.

A common technique presented in [Hoc97] to prove upper bounds for competitive
ratio, is to construct a potential function.

1.2 Algorithmic properties

Now we have a way to analyse our algorithms, but we need a way to compare
different algorithmic properties. The online algorithms presented throughout this
thesis, are compared by the different properties presented in this section.

1.2.1 Working set property

The working set property (WS) states that for an element xwith working set number
ti(x), the working set bound is defined:

WS(X) = O

(
m∑

i=1

lg ti(x)

)
,

where X is the access sequence and the function ti(x) is the number of distinct
accesses at time i since x was last accessed. This property was presented by
Daniel Sleator and Robert E. Tarjan [ST85b, Theorem 4]. It states that over an
access sequence of size m, which requests the ni element, where 1 ≤ i ≤ m. The
request in an amortised sense only costs O(lg t(ni)) as opposite to O(lg n) cost per
operation on other search trees of size n.

The theorem states that recently accessed elements are faster to access than
elements, which have not been accessed in a long time. Informally the theorem
states that accessing an element x should depend on its working set number ti(x)
and not solely on the number of elements in the data structure. Hence the cost is
O(lg(ti(x))).

7

Master thesis Algorithmic properties

1.2.2 Queueish property

John Iacono and Stefan Langerman introduces in [IL02] a property, which they
call the queueish property and is useful to compare priority queues. It is a
complementary property to the working set property. The main idea is that a data
structure supporting the queueish property, should bound amortised removeMin cost
for the smallest element x to O(lg q(x)). Where q(x) is the number of elements that
have been in the priority queue longer than x. Besides bounding removeMin by
O(lg q(x)), a priority queue should do inserts in amortised constant time to satisfy
the queueish property

Inserting elements into a priority queue structure in almost the same order as
elements are removed, shows the advantages of the queueish property. Elements
inserted in the above order are implying removeMin operations, which uses
amortised constant O(1) time per operation.

1.2.3 Sequential access property

The splay tree described in Chapter 3 has a sub-logarithmic access bound, in the
number of elements in the structure, on certain sequences. Some of which is not
captured by the working-set theorem. When repeatedly searching a data structure
for a sorted sequence of n elements like in this example
{1, 2, 3, . . . , n, 1, 2, 3, . . . , n, 1, 2, . . . , n} it is natural to believe that we can do better
thanO(lg n) per operation. This access sequence only has an amortised cost ofO(1)
per access on splay trees. This result is known as the sequential access lemma and
was first proved by Robert Tarjan [Tar85b, Lemma 4-8]. This bound is proved by
induction, rather than by amortisation like the working set theorem. The proof is
not presented in this thesis.

1.2.4 Dynamic finger search property

The sequential access lemma can be generalised to the dynamic finger theorem. It
was first conjectured in [ST85b, Conjecture 2] and later proved in the paper [Col00]
from 2000 by Richard Cole. The dynamic finger theorem states that an access
to an element, close in term of rank distance to a dynamic finger should be fast.
The rank distance di(x, y), is the number of elements in the data structure at
time i, which are between x and y in key space, where x is included. In splay
trees this access can be amortised bounded to O(lg [di(xi, xi−1) + 2]). Another
example of a data structure supporting this property is the level-linked tree by
Mark Brown and Robert Tarjan [BT78, Section 4], which also supports accesses
in O(lg(di(xi, xi−1) + 2)) worst case cost.

February 28, 2009 8

Comparing algorithms Master thesis

1.2.5 Unified property

The working set and dynamic finger theorems are the best known bounds to analyse
splay trees with respect to an access sequences. It is easily seen that none of the
above methods capture all types of access sequences in one property. The following
m length access sequences, from the set {1, 2, 3, . . . , n − 1, n}, where m ≥ n are
examples, where some or none of the above methods bounds the access sequence
tight enough:

1, 2, . . . , n, 1, 2, . . . , n, 1, 2, . . . (1.1)
1, n, 1, n, 1, n, . . . , 1, n, 1, . . . (1.2)

1,
n

2
, 2,

n

2
+ 1, 3,

n

2
+ 2, 4, (1.3)

In Sequence (1.1) the dynamic finger theorem tightly bounds the access sequences
to an access time of O(m), here the working set theorem clearly states that the
running time is bounded by O(m · lg(n)). In (1.2) the opposite is true, here the
working set theorem tightly bounds the running time to O(m), where the dynamic
finger theorem claims that the running time equals O(m · lg(n)). In (1.3) none of
the two properties result in the right bound. Both are strong enough to conclude that
the bound is at most O(m · lg(n)) comparisons. This bound is not tight enough, it
is clear that the real running time is O(m). This is due to the fact that the element
requested, always is close in key space, to an element which has a recently been
accessed.

An comparison of access bounds can also be seen in Table 1.1.

Access Sequence Working set Dynamic Finger Search Unified conjecture
(1.1) O(m · lg n O(m) O(m)
(1.1) O(m) O(m · lg n) O(m)
(1.3) O(m · lg n) O(m · lg n) O(m)

Table 1.1: Table explaining bounding different access sequences

Here is where the Unified Conjecture 1.1 also presented in [ST85b, Theorem 5, p.
660] is useful.

Conjecture 1.1. (Unified conjecture) The amortised complexity for search, inserts
and deletes xi in a data structure supporting the unified property is

O(min
y∈Ni

lg (ti(y) + di(xi, y) + 2)) ,

where ti(x) is the working set described in Section 1.2.1, and di(xi, xj) is the dy-
namic finger access time from [ST85b, Conjecture 2] presented

9

Master thesis Algorithmic properties

in Section 1.2.4. The number Ni donates the elements in the structure just before
operation i.

It should be noted that this conjecture is strong enough to rightly bound
Equation (1.3) to the amortised cost of O(lg (1 + 2 + 2)) = O(1) per access.
Informally, the unified bound states that an access is fast, if n is close in key space,
to some recently accessed element.

As stated above this conjecture was stated in 1985, but not until 2007 where
M. Bŏdoiu et al. in [BCDI07] presented the Unified Structure, which we are
describing in Section 2.2, where there a structure supporting this property.

February 28, 2009 10

Adaptive search algorithms Master thesis

2 Adaptive search algorithms

Look at the record.
Al Smith (1873 - 1944)

In this section we will present a few data structures that support some of the
described properties like working set, queueish and unified property, all described
in Chapter 1.

Adaptive algorithms is normally a term used for algorithms, which can adapt to the
given input. In this thesis it is synonymous for search algorithms which perform
faster than O(lg n) per access, for n sized collections on specific sequences. The
disadvantages for adaptive algorithms is that their normally are complicated an
hides a big hidden factor in the Big-O notation.

In Section 2.2 we describe the unified structure, which satisfy the stronger unified
property, described in Section 1.2.5, this is a combination of the working set
and the dynamic finger search property. Then in Section 2.3 we are going
to describe the queaps structure, which where first described by
John Iacono and Stefan Langerman [IL02] and satisfies the queueish property
Section 1.2.2. Finally in Chapter 3, we are presenting the splay trees [ST85b] in
details, since we are using the splay trees to compare with dynamic self adjusting
skip lists in our empiric tests later since it satisfy the working set property. But
before this we will present a simple scheme consisting of a linked list in Section 2.1.

2.1 Move to front heuristic

We are starting by describing one of the first algorithms designed to try and make
newly accessed elements easy reachable. This algorithm is a linked list and the main
idea is to move elements around in the list, when they are accessed.

The move-to-front (MF) heuristic was introduced in [ST85a]. It is an earlier scheme
for making recently accessed elements in a collection easy reachable. We have a
linked list of size n and accessing an element x on the ith position is bounded by

Master thesis Move to front heuristic

the distance from the front to the element, which is O(i). The linked list L contains
n unordered elements and it supports the following three operations:

access(x) Locate x in L followed by moving x to the front of L and returning the
element. The worst case cost is O(i) if x is located otherwise O(n).

insert(x) Check if x is already inserted, otherwise insert it as the first element. The
worst case cost is O(n).

delete(x) Locate x in L and remove it if found. The worst case cost is O(i) if i is
in L, O(n) otherwise.

Theorem 2.1. The amortised time for accessing an element is at most O(i) for an
element at position i in the list. Insertion is bounded by O(n) for a list of size n
and deletions is bounded by O(n), for a list with most n elements. This heuristic is
in an amortised sense, within factor two compared to the optimal offline algorithm,
which also represent data as a linked list.

Proof. To prove this we use a potential function. Given two algorithms AMF

and AOPT , where AOPT is any list algorithm. Each algorithm, MF and OPT
respectively, maintains a list containing the same n elements.

We define an inversion (INV) for two lists containing the same elements; Given two
elements i and j, such that i appear anywhere before j in one list and anywhere
after j in the other. We can hereafter define the potential function:

ΦMF (n) = |INVMF | .

AOPT

AMF

1 2 3 i i + 1

i

. . .

k

Figure 2.1: The hatched area in both MF and OPT shares xi elements.

Consider an access in MF ’s list to element i. Let i be located at the kth position in
MF and let xi be the number of elements which is preceding i inMF and succeeds
i in OPT . The number of elements which precede i in both MF and OPT is then
k − xi − 1 (see Figure 2.1). This means that moving i from its position to the front

February 28, 2009 12

Adaptive search algorithms Master thesis

in MF creates k − xi − 1 new inversions and remove xi existing inversions. The
amortised cost of any access in MF is then:

ith placement + |new INV| − |removed INV| = k + (k − xi − 1)− xi

= 2(k − x1)− 1 .

It is clear that k−xi ≤ i, since there is k− 1 elements, which is preceding i in MF
and there are only i − 1 preceding elements in OPT . Thus the amortised cost for
an access is at most 2i− 1 = O(i).

The argument is virtually the same for deletes and inserts. Deletions do not create
new inversions, so the amortised cost is k − xi ≤ i = O(i).

We have showed that access costs at most O(i) and inserts/deletes also is bounded
by O(i) if the element exists in L at position i and only a factor two worse than the
optimal offline algorithm.

�

2.2 Unified structure

The paper by M. Bŏdoiu et al. [BCDI07] introduces a data structure called Unified
structure. This data structure satisfy the unified access bound, described in
Section 1.2.5.

The idea in this structure is to keep recently accessed elements close to the front of
a list, in this case in one of the first smaller trees. An element which is close in key
space to an element which has recently been accessed is only a constant distance
away from each other in the maintained finger search tree. In this structure we will
therefore place any element within a

∑∞
j=k+1 4c2j · 1/22j+1

= O(1) distance of an
element placed in a search tree.

The unified structure meets the requirement of Conjecture 1.1, and have a amortised
access time of O(lg n).

2.2.1 The structure

The unified structure consists of O(lg lg n) balanced search trees
T 0, T 1, . . . , T l, each having size 22j after they have been rebuild, where j ≤ l.

13

Master thesis Unified structure

finger search tree
S

O(22l+1
)

Ordered by wi(x)

T 0

O(221
)

T 1

O(222
)

. . . T l−1

O(22l−1
)

T l

O(22l
)

Figure 2.2: Unified structure containing n elements, which are placed in the finger
search tree and in the O(lg lg n) search trees.

During an operation, a tree T j can not grow larger than
|T j| ≤ |T j|+ |T j−1|+ . . .+ |T 1|+ |T 0|. After a dictionary operation search, insert,
or delete, a tree should furthermore contain less than 22j+1 elements, otherwise an
overflow operation is performed, this is described in Section 2.2.2.

Each element in the unified structure is placed in balanced search trees of growing
size according to their working set number. An element is only represented in at
most one search tree structure at once. Every element residing in T i has all been
accessed more recently than elements in T j for i < j.

All n elements in the unified structure are placed in the finger search tree S. All
elements xk are stored as indirect nodes, with a pointer to a node in S and a pointer
to the search tree T k, where xk are placed. This makes it easy to update nodes in
S and the search trees when elements are moved around.

The search trees T 0, T 1, . . . , T l can be any tree structure that supports insert, delete
and search operations in O(lg |T k|) time and updates a pointer to a node in constant
O(1) time. Similarly the finger search tree should support a search query, to a
dynamic finger inO(lg(r+1)) time, where r is the rank distance between elements.

February 28, 2009 14

Adaptive search algorithms Master thesis

2.2.2 Overflow

An overflow in the unified structure happens when a tree T k becomes to large,
|T k| ≥ 22k+1−1. When this happens we rebuild T k and all smaller trees T j , where
j < k, so they have size 22j for the jth tree.

When tree T k overflows, all elements residing in T 0, T 1, T 2, . . . , T k trees are
redistributed into trees T j , where j ≤ k, such that no tree is larger than 22j and the
elements are inserted according to their working set number. This means elements
with working set number ≤ 22j are placed in a smaller tree than elements with
working set number > 22j . The remaining elements are then divided into two
groups.

• The first group are elements xi where there exists a smaller element y < xi,
within a rank distance of 22k+1 to xi in S. These elements are removed.

• The remaining elements are inserted into tree T k+1. The overflow can then
cascade in T k+1.

After an overflow in T k, the sizes of the trees T k, T k−1, . . . , T 1, T 0 all con-
tains 22j elements, for j ≤ k and tree T k+1 contains maximum 22k+1 . The
size of T k, T k−1, . . . , T 1, T 0 all hold by construction. The elements added to
T k+1 is at most 22k+1

+ 22k
+ · · · + 221

+ 221 . This could potentially mean
that |T k+1| ≥ 22k+2 , but still means that |T k+1| ≤ 22k+2

+ 22k
+ · · ·+ 221

+ 221 .

2.2.3 Search

A search for element x in the unified structure works by traversing each search
tree T k for k = 0, 1, 2, . . . , l, and for each search tree updating a pair of elements
{L,U}, where L ≤ x ≤ U . The pairs L and U are pointers to the elements closest
to x in S. Thus we can avoid searching in the same place in S more than once when
searching for x.

In each tree T k, we search for the elements Lk and Uk closest to x, for
k = 1, 2, 3, . . . , l, such that Lk ≤ x ≤ Uk. In S we search for x within the ranges
[L,L+(k+4) ·22k

] and [U− (k+4) ·22k
, U]. If x is found in the finger search tree,

then delete x from the search tree T k if x is present in this. To maintain the unified
searching bound, x is inserted into T 0. This can of course result in an overflow.

The data structure maintains the invariant that every element x in S is within rank
distance (k+ 4) · 22k of some element x′ in T 0 ∪T 1 ∪T 2 ∪ · · · ∪ T l. This invariant
guaranties than an element x is within rank distance of an element in a search tree
T i.

15

Master thesis Unified structure

2.2.4 Inserts and deletes

An insertion of element x in the unified structure is performed by searching
for x in T 0, T 1, . . . , T k and stopping when finding the predecessor x′ in T k. Then
x is inserted in both the search tree T 0 and the finger search tree S. The running
time is as we will see in Section 2.2.7 dominated by the search for the predecessor,
which is within the unified bound of the predecessor.

Deleting element x in the unified structure is simply a matter of finding x. If x is
present in the search tree T k, then delete it. The element x should also be deleted
from the finger search tree.

2.2.5 Potential in the unified structure

To analyse this data structure, we are using potential functions and to define this,
we need to introduce a construct j-graphs. A j-graph consists of all nodes in
T 0, T 1, . . . , T j . There is furthermore an edge between all pair of nodes, where
the rank-distance is less than 22j+1 . A j-component is a connected subset of a
j-graph. Let extent be the rank difference between smallest and largest element in
a j-component.

The overflow potential of the unified structure is then

• Overflow potential of an j-component with extent e is 4c2j(1 + e/22j+1
).

• The j-overflow potential of the entire structure is the sum of overflow
potential in each j-component.

This potential is chosen, because the overflow at a j-component from tree T j to
T j+1 will involve b1 + e/22j+1c elements, and each element will cost Θ(2j) to
move.

Furthermore the structure keeps some dead potential equal to 4c ·∑l
j=0 |Tj| or four

times the size of the search trees times a constant.

2.2.6 Analysis of overflow operation

We will show that the change in potential of an overflow operation will be sufficient
to pay for the actual work done in this operation. Merging the k trees will cost,

February 28, 2009 16

Adaptive search algorithms Master thesis

k∑
j=0

O

(
|Tj|+

j−1∑
h=0

|Th|
)

=
k∑

j=0

O

(
22j+1

+

j−1∑
h=0

22h

)

=
k∑

j=0

O
(

22j+1
)

= O
(

22k+1
)

= O (r + d+ p) ,

where r + d + p is the total number of elements in T 0, T 1, . . . , T k, T k+1. More
specific r is the elements still in T 0, T 1, . . . , T kT k+1 after an overflow operation,
p are elements inserted into T k+1 and finally d are elements, which have been
deleted from the search trees. Removing the old elements from the trees is done
in O(r + d) time, and inserting the p elements into T k+1 with size O(22k+2

) takes
O(p · 2k). So the actual time for overflow operation is O(r + d+ p2k).

The drop in dead potential is 4cd by construction. Adding the p elements to T k+1

does not change the j-overflow potential, for j ≤ k and the j-overflow potential
of j > k does not increase, because we have just deleted d elements. For each
tree j ≤ k we remove all elements and re-insert

∑j
h=0 22h elements into the j-

graph. This could potential result in separate j-components, which would increase
the j-overflow potential with

∑j
h=0 4c2j22h ≤ 6c2j22j . This results in an increase

of overflow potential for j ≤ k, which is at most
∑k

j=0 6c2j22j ≤ 7.5c2k22k . For
each k-component with extend e we will insert at most b1 + e/22k+1c elements into
Tk+1, thus the loss of 4cp2k potential in a k-overflow.

The amortised cost is the actual cost minus the increase in potential. The increase
in potential is

7.5c2k22k − 4cp2k − 4cd ≤ 7.5c2k22k − cp2k+1 − cd− 2c(p+ d) .

It holds that p+d ≥ |T k|−r ≥ 22k+1−∑k
j=0 22j and 7.5c2k22k ≤ 22k+1−∑k

j=0 22j ,
for k ≥ 3, hence the gain in potential is no more than −cp2k+1 − cd − c(p + d).
Because

p+ r ≥ r

(
22k+1 −

k∑
j=0

22j

)
≥

k∑
j=0

22j

,

for all k ≥ 0, the increase is at most

17

Master thesis Queaps

−cp2k+1 − cd− cr ≤ −c(p2k + d+ r) = −O(r + d+ p2k) ,

which is a negation of the actual cost, hence the amortised time for an overflow
operation is O(1).

2.2.7 Running time of dictionary operations

The running time of a search in the unified structure can be analysed as follows:
Finding x if the element is within rank distance (k + 4) · 22k of an element in
T 0 ∪ T 1 ∪ T 2 ∪ · · · ∪ T l is completed at the kth tree. The actual cost of searching
k trees is

∑k
j=0O(lg |T j|) =

∑k
j=0 2j = O(2k). The running time for inserting and

possible deleting from the search tree is O(1). We need the difference in potential
after completing a search operation to calculate the amortised running time of the
operation. As described in Section 2.2.5, we do not consider the potential change
of any overflow operation.

For each j-graph, where j ≤ k, the worst case is to form a new connected
component, which increases the potential with O(2j). This increases the total
potential with at most

∑k
j=oO(2j) = O(2k). Donate y to the element in tree T k,

from which the successfully finger search was initiated. We know that for j ≤ k,
x will appear in the same j-graph as y and that each of these will grow at most∑∞

j=k+1 4c2j · 1/22j+1
= O(1). Consequently the amortised running time for the

search operation is within the unified bound.

The running time is within the unified bound because it is the search for x that is
the dominating factor of the operation.

2.3 Queaps

In this section we are going to describe the queaps data structure, presented in
by J. Iacono et al. [IL02], which is a priority queue data structure that satisfy
the queueish property. The property states that removeMin cost is bounded by
O(lg qi(x)) i.e. the number elements that have been longer in the structure than
x.

In the queaps we have elements x1, x2, . . . , xn in the order they are inserted. These
are split around some k, the elements from x1, x2, . . . , xk are inserted as leaves in a
(2-4)-tree in the order they are inserted. The rest are represented in a linked list also
in the order they are inserted.

February 28, 2009 18

Adaptive search algorithms Master thesis

2,3,5,7

1 3 4 6 10
(a) Before split

2,3

1 3 4

7

6 10
(b) After split

Figure 2.3: Split operation on (2-4)-trees

Before going into the details surrounding the queaps structure, we are briefly
describing the (2-4)-trees, which are used in the queaps data structure.

2.3.1 (2-4)-tree

The (2-4)-trees are multiple directional search trees, which is a specialised version
of the (a,b)-trees described by S. Huddleston and K. Mehlhorn [HM82, p. 157-166].
It supports updates (delete, insert) and searches in worst case O(lg n), where n is
the number of elements in the tree. The tree also supports a sequence of insert
and updates in amortised O(1) time, which is explained below. The amortised
complexity is the reason that the queap structure is utilising this structure as part
of the main structure. In this section we will show the main ideas of the (2-4)-trees.

The structure consists of nodes and leaves, just like a normal binary search tree.
The difference is that each internal node contains between 2 and 4 children, both
inclusive. All elements inserted into the tree are placed at leaves, which all are at
the same level. When a node is overflowing respectively emptying, i.e. the size
is ≤ 2 or becoming to large, > 4, there is performed a join or split operation. These
operations only affects a constant number of nodes, hence their time complexity can
be bounded to O(1).

Splitting node v with 5 or more children, is done by dividing v’s children in two
approximately equal sized sets v1 and v2, where |v1| = d |v|

2
e and |v2| = b |v|

2
c. An

example could be dividing node v = k1, k2, k3, k4, k5 into nodes v1 = k1, k2, k3 and
v2 = k4, k5, see Figure (2.3a and 2.3b), where both nodes are within tolerance level.

Joining two nodes v1 and v2, where one consist of only a single child, is done by
merging v1 and v2 into v. A join operation could result in a node v becoming to
large, hence a split operation is needed. See figure (2.4a and 2.4b).

The height of (2-4)-trees T storing n elements are Θ(lg n), because a given
layer j contains between 2j ≤ |j| ≤ 4j elements. Therefore a search is in the
worst case taking O(lg n) time to complete, because we only touch one node per
level.

19

Master thesis Queaps

3,8

1 5 8

12

11
(a) Before join

3,8,10

1 5 8 11
(b) After join

Figure 2.4: Join operation on (2-4)-trees

Now that we have the height of T and we established that any join or split operation
takesO(1) time per level, we can argue that an amortised bound of a delete or insert
operation is at most O(1).

We can define a non negative potential function Φ(n), which is equal to the number
of nodes with 4 elements. We have two operations that effect our potential:

1. The potential is decreased with 1 for each split operation.

2. The potential is increased with 1 for each insert into a node with 3 elements.

Inserting an element x at node v containing 4 element, will overflow v, which can
cascade all the way to the top. If this happens, all internal nodes on the path p from
v to the root, in the worst case only contains 2 or 3 children after the overflow. We
have O(lg n) split operation if a split cascade all the way to the root. The total drop
in potential is O(log n). Before an leaf on this path overflow from leaf to root we
can insert at least

∑O(lg n)
j=0 2 = O(lg n) elements, before we have to rebuild p again,

which increases the potential with lg n.

This means that these O(lg n) inserts can pay for rebuilding the tree by adding a
constant amount of work to each insert operation, hence the amortised cost for an
insert is O(1). The argument for deleting an element is the same.

2.3.2 Queaps data structure

The elements in the data structure at time i, {x1, x2, . . . , xk−1, xk, xk+1, . . . , xn},
are ordered by insertion, hence element xi is the ith element inserted. These
elements are divided around some k into two sets, which is donated O and N . The
set O is containing the elements inserted before the (k+ 1)thelement and N are the
new elements inserted after the kth element. The elements are ordered in the same
way as they are inserted into the queaps.

All elements in the set O = {x−∞, x1, x2, . . . , xk−1, xk} are stored in a
(2-4)-tree T as leafs. Note that we are not using T as a search tree, but using it

February 28, 2009 20

Adaptive search algorithms Master thesis

for its amortised insert property. The special element x−∞ is a dummy leaf with an
minus infinite key, that always sits as the leftmost element in T , i.e the element that
has resided longest in T . All internal nodes v, except the ones on the path from the
root to the leftmost node x−∞, contains a pointer hv to the smallest element in the
sub-tree Tv rooted v. The nodes from the root down to the leftmost leaf contains a
pointer cv to smallest element in T /T v. This indicates that x−∞ has a pointer to the
smallest element in T . We also maintain an external pointer minO to x−∞.

All elements in the new set N = xk+1, . . . , xn are stored in a linked list L, these
elements are also store in the order they are inserted. We hold a pointer minL to the
minimum element in this list. This data structure is visualised on Figure 2.5.

Figure 2.5: Queaps data structure

This data structure maintains a potential; so we can analyse the amortised cost of
a heap operations. The potential function is Φ(Q) = c · |L|, where Q = {T ,L},
which is some constant c times the number of elements in N .

2.3.3 Inserts

Inserting x into the queaps is done by adding the element to the front of the linked
list L, and update the minimum pointer minL if necessary. This operation clearly
takes O(1) time and increases the potential by c.

21

Master thesis Queaps

2.3.4 Minimum

This operation do not change the data structure or the potential, but only returning a
pointer to the minimum element in the queaps. This can be done by comparing the
pointers minL and the minO. This operation is done in O(1), thus it is only making
a constant number of pointer operations.

2.3.5 Delete(x)

To delete an element x in the queaps, we first locate x. The search is started in T , if
x is not found in T then the search is continued to L. If x is located in L we insert
all elements from L into T and update all hv and cv pointers. If x is found in T we
can just delete x from T and update the affected hv and cv pointers.

The cost for this operation can be analysed by dividing the operation into two cases.

Case i) If x is located in L, all elements from the linked list, are inserted into T ,
which can be done at a cost a · |N | for some constant a. This is possible
because the (2-4)-tree supports insert and delete operations in amortised
constant time. When inserting into T we are updating pointers hv in the
tree T , for all nodes that are effected. This is going to cost at most a · |N |,
because this does not affect more nodes than we are inserting into T . This is
the same as charging each insert a little extra. Updating the pointers cv can be
done by traversing the path from the root to x∞ which also costs O(lg |O|).

The cost of this case is then 2a · |N | + O(lg |O|). We can conclude that all
elements in T has been inserted before x which gives q(x) > |O|. By setting
the potential c > 2 ·a, we have enough potential to pay for the drop of c · |N |,
which concludes that the total amortised running time is O(lg q(x)).

Case ii) The other case is where x is already in the T . We can delete x in amortised
constant time and then we need to update the pointers hv and cv on a path
from x to x∞. The highest node on that path r is on the leftmost path from
the root to x∞ and is k levels above the leaves. This means that the left
sub-tree of r donated rlchild contains 2k−1 elements, which have been inserted
before x, see Figure 2.6. This gives q(x) ≥ 2k−1. Hence the running time is
k = O(lg q(x)) which is the running time of the operation, since there is no
change of potential.

February 28, 2009 22

Adaptive search algorithms Master thesis

k-levels

root

xx−∞

Path from x

to r

r
rlchild

> |q(x)|

Figure 2.6: Path from x to x−∞

2.3.6 DeleteMin

This can be done by locating the minimum element x, hence the cost is O(1) and
then deleting x which costs O(lg q(x)). The dominant factor here is the deletion of
x, which therefore is the running time of the deleteMin operation.

23

Splay trees Master thesis

3 Splay trees

Fall is my favorite season in Los Angeles,
watching the birds change color and fall

from the trees.
David Letterman (1947 -)

The splay trees data structure, are described by D. Slaetor and R. Tarjan [ST85b].
Splay trees are self-adjusting data structures, which support sequences of dictionary
operations: searches, inserts, and deletes. These operations can be carried out
quicker in an amortised sense by splay trees, than in ordinary search trees such
as balanced binary search trees, red-black trees, (2-4)-trees, and their like, if the
access sequence is skew.

Splay trees are binary search trees, which uses a heuristic called splaying, which
moves accessed elements to the top of the tree by doing a sequence of rotations,
called splaying steps. These steps are described in details in Section 3.1. This
heuristic has a number of advantages as well as disadvantages. First of all, using
splay trees over a sequence of accesses, is never more than a constant factor slower
than optimal offline search tree, as described in Section 1.1.1. Secondly, as we will
see in Section 3.3 when analysing the algorithm, splay trees can perform better than
binary search trees in some cases like when the access sequences are skew. Thirdly
as we are going to described in Section 3.4, the splay tree is easy to implement and
consumes no space to maintain balance information. This makes the splay trees
data structure very space efficient compared to other self balanced search trees and
self-adjusting data structures.

The disadvantages are the potential long worst case access time for accessing a
single element, this makes splay trees unusable in a real time application1. When the
splay trees grow larger, rotation makes it very hard or even impossible to maintain
locality in the stored elements and therefore accesses will potential result in many
cache faults.

The data structure is very simple. It consists of elements, where each element
contains the search data and child/parent pointers (see Figure 3.6 on page 34).

1Application where we cannot wait for long access queries i.e. where worst case access time are
important.

Master thesis Splaying

p

v

a b

c

(a) before rotation

v

a p

b c
(b) after rotation

Figure 3.1: Zig step.

g

p

v

a b

c d

(a) before rotation

v

a

p

b g

c d
(b) after rotation

Figure 3.2: Zig-zig step.

3.1 Splaying

The splay trees data structure supports the following operations: search, insert,
delete, split and join. Each of these operations are described below. Before going
into details about each of the dictionary operations, a presentation of the splaying
steps are needed.

In splay trees, splaying is the heuristic used to move an element from its present
location to the root. This is done by using a combination of rotations called zig,
zig-zig or zig-zag.

In Figures (3.1-3.3) it is shown how each of the three rotation types effects the tree
around an accessed element v. All three operations can of course be mirrored, so

February 28, 2009 26

Splay trees Master thesis

g

p

a v

b c

d

(a) before rotation

v

p

a b

g

c d
(b) after rotation

Figure 3.3: Zig-zag step.

that we in total have six types of possible rotations.

A sequence of splaying steps invoked on the same element v, will bring it from its
present position to the root. Note that the zig step is only used when moving v the
last step to the root, otherwise we are preferringzig-zig or zig-zag steps. A sequence
of zig-zig on v steps half the length of the path from any node on search path to root.

It is important to note that a, b, c, and d is sub-trees and not just single elements.
These sub-trees are all unaffected by the rotation. Each splay operation maintains
the invariant that all elements in the left sub-tree of v has a smaller or equal key than
the key in v, i.e. keys are increasing when visited in inorder

3.2 Dictionary operations

In this section we will present the dictionary operations search, insert and delete
along with the help functions split and join. These help functions divide a splay tree
into two parts around a target node v or join two splay trees. Joining two splay trees
happens under the assumption that all keys in the left tree are smaller or equal to the
every key in the right tree.

search(v) Searching in a splay tree T , consists of a search part, where v is located
and a part where v is splayed to the root. Locating v in T is done like in a binary
search tree by moving downwards in T . Going left or right at element w, if kv > kw

or kv < kw respectively. When v is located, it is moved to the top of T , with a
series of splaying steps. If T does not hold a copy of v, then there are two possible

27

Master thesis Dictionary operations

solutions: 1) stop the search operation here or 2) splay one of the elements v− or v+

to the top2.

insert(x) An insert is done by locating key x in T . This results in an element v,
with key either equal to x, x−, or x+. This means that we can insert x as left or right
child of v according to the value of v. Afterwards, x is splayed to the root of T .

delete(v) Deleting is done by conducting a search for v. If v exists in T , v is
splayed to the top, and we perform a split_around(v), as described in the next
paragraph. This returns the two sub-trees3 T <v and T >v and the element v.
The element v is just deleted, and the two sub-trees are joined accordingly to the
join(T <v, T >v) operation.

(T <v, n, T >v) split_around(v) A split around v in T assumes v are root in T .
The left sub-tree of v is now assigned to T <v, while the right sub-tree is assigned
to T >v and v’s child pointers are set to nil. The triple (T <v, v, T >v) are now three
distinct splay trees, which are returned.

join(T <v, T >v) The join operations assumes that all elements in T <v are smaller
than elements in T >v, for some v. In T >v, we splay the smallest element
(respectively largest element in T <v) to the root. This results in T >v having the
smallest element T r (respectively the largest element in T <v) as root, and no left
(right) child. Joining is then a simple matter of attaching T <v as the left child
(T >v as right child) of T r, see Figure 3.4.

Tr

T<n T>n

Figure 3.4: Joining T <v to the root T r of T >v.

2 Let v− be the largest element, which is smaller than v. Equally let v+ be the smallest element
which is larger than v.

3Here T <v contains all elements smaller, respectively larger in T <v , than kv .

February 28, 2009 28

Splay trees Master thesis

3.3 Analysis

The interesting part of the analysis of the splay trees by D. Slaetor and R. Tarjan
are the Working set theorem (Theorem 3.2) presented below. This states an access
of element v is only using O(lg ti(v)) time amortised, where ti(v) is the number of
unique accesses at time i since element v was last accessed. The other interesting
part is the Balance Theorem (Theorem 3.3), which states that the amortised cost of
an access is only O(lg |T |). In this section we will present these two profs along
with analysis of the worst case access bound.

Amortised access cost In defining the potential of the splay tree, T , we give
each node v in T a fixed weight wv. Let s(v) be the sum of weights for each
node v′ residing in the sub-tree of v and we donate the rank r. The rank is defined
as r(v) = lg s(v).

We will as the main thing, in the Access Theorem below, show that when accessing
elements the potential in the splay tree increases, whenever performing a zig-zig
step.

Theorem 3.1. (Access Theorem) The amortised cost of splaying a tree T with root
t, at node v is at most 3(r(t)− r(v)) + 1 = O(lg(s(t))/ lg(s(v))).

Proof. If there is no rotation done, then the bound is trivial. If we suppose there are
at least one rotation, then let us consider any splaying step. Let s and s′, r and r′

donate the respective functions just before and after a splay step.

Let p be the parent of v, and g be the parent of p, if these nodes exists.

Case A) A zig step is done, then the amortised cost is:

Φ(i− 1)− Φ(i) = r′(v) + r′(p)− r(v)− r(p) Only v and p are rear-
ranged.

≤ 1 + r′(v)− r(v) r(p) ≤ r′(p), since p is
moved down in T .≤ 1 + 3(r′(v)− r(v)) r′(v) ≥ r(v), since v is
moved up in T .

Case B) A zig-zig step is done, then the amortised cost is then:

29

Master thesis Analysis

Φ(i− 1)− Φ(i) = 2 + r′(v) + r′(p) + r′(g)
−r(v)− r(p)− r(g) Only v, p, and g are

moved in T .
= 2 + r′(p) + r′(g)− r(v)− r(p) Since v is in g’s old place

in T after the splay step,
and the sub-trees have
same size, r′(v) = r(g).

≤ 2 + r′(v) + r′(g)− 2r(v) . g is now hanging under
v, hence r′(v) ≥ r′(g).
Before the splay step
p was located above v,
thus r(y) ≥ r(v).

The claim is then that:

2 + r′(v) + r′(g)− 2r(v) ≤ 3(r′(v)− r(v))

2 + r′(g) ≤ 2r′(v)− r(v)

2 ≤ 2r′(v)− r(v)− r′(g) .

To maximise the function lg x + lg y for x, y ≥ 0 and x + y ≤ 1 we can
look at the convexity of the log(x) function. We can conclude the function
is maximised where x = y = 1

2
, where it takes the value −2. From this it

follows that

r(v) + r′(g)− 2r′(v) = lg s(v) + lg s′(g)− 2 lg s′(v)

=
lg s(v)

lg s′(v)
+

lg s′(g)

lg s′(v)

≤ −2 ,

since s(v) + s′(g) ≤ s′(v), see Figure 3.5. Here we gain some potential, and
therefore concludes the amortised cost spent at Case B is < 3(r′(v)− r(v)).

Case C) The amortised cost of a zig-zag step is:

Φ(i− 1)− Φ(i) = 2 + r′(v) + r′(p) + r′(g)
−r(v) + r(p) + r(g) v, p and g are the only

nodes moved.≤ 2 + r′(p) + r′(g)− 2r(v) . r′(v) ≤ r(g).

In the same manner as in Case 2, it follows that:

2 + r′(p) + r′(g)− 2r(v) < 2(r(v)− r′(v)) ,

February 28, 2009 30

Splay trees Master thesis

g

p

n

a b

c

d

n’

a p’

b g’

c d

Figure 3.5: It is clear to see that s′(v) ≥ s′(g) + s(v)

which means:

2 + r′(p) + r′(g)− 2r(v) ≤ 2(r(v)− 2r′(v))

2 ≤ r′(p) + r′(g)− 2r′(v) ,

when s′(p) + s′(g) ≤ s′(v). It then holds that the amortised cost of zig-zag is
≤ 3(r′(v)− r(v)).

This theorem is concluded by summing all the splay steps together. The amortised
time for the sum of all the splay steps is clearly≤ 3(r′(v)− r(v)) = 3(r(t)− r(v)),
which concludes the proof.

�

Now that we established that splaying a node can be done in amortised time equal
to O(lg (s(T)/s(n))), it is time to establish the time for accessing a sequence of
elements. But before proving the Balance Theorem we are presenting and proving
the Working set theorem below.

3.3.1 Working set

The working set property, presented in Section 1.2.1, states that it is easier to access
an element, which has recently been accessed. The splay tree satisfy this property
over a sequence of accesses.

Theorem 3.2. (Working set theorem) For a series of m accesses to a splay tree of
size n, where ti(v) is the working set number at time i, where 1 ≤ i ≤ m. The the
total time for the m accesses is O(n lg n+m+

∑m
i=1(lg (ti(v) + 1))).

31

Master thesis Analysis

Proof. Start by assigning the following weights to all elements in the splay tree
1, 1

4
, 1

9
, 1

16
, . . . , 1

n2 . The weights are assigned in increasing order to the nodes, which
has most recently been accessed, such that the last accessed node has weight 1,
the next most recently accessed node weight is assigned 1

4
etc.. Whenever an access

occur, we redefine the weights in the following order: Given an access to element vj

during the jth access, the weight of vj is equal 1
k2 , where k is the working set number

of vj . After access j, assign weight 1 to vj and reassign weights to the elements
l′ = 1, 2, . . . , j − 1, such that the new weight is equal to 1

(kl+1)2
, for l ≤ j − 1.

This reassigning permutes the weights 1, 1
4
, 1

9
, 1

16
, ..., 1

n2 among the elements and
guaranties that each element weight is equal to 1

ti(v)+12 .

The sum of the set of weights W after an access is W =
∑n

k=1
1
k2 = O(1). Because

the element is splayed to the root after an access, the weight of the root node is
increased as result of an access. The sizes of the roots sub-trees are unchanged,
but the sizes of other nodes can decrease as a result of rotations done during the
splaying. The potential of the splay tree is decreasing because of the reassignment.
The amortised time for this reassignment is either zero or negative.

The amortised access time to element vi is O(lg (ti(v) + 1)). The drop of the
potential over the m length sequence is O(n lg n), because we pay O(lg n) for the
first n accesses.

All together this means that a sequence of m accesses to a n node splay tree costs,
the drop in potential plus m plus sum of access, which equals,

O

(
n lg n+m+

m∑
i=0

lg(ti(v) + 1)

)
.

This concludes the proof. �

3.3.2 Balance Theorem

Before turning to the Balance Theorem it is worth noticing that the weight of the
root in the splay tree T , if the weights are fixed is
w(T) =

∑n
i=1w(i). This means that decrease in potential over a sequence of length

m om a n-node splay tree, is at most
∑m

j=1 lg(W/w(j)).

Theorem 3.3. (Balance Theorem) Total access time for accessing m nodes on a
n-node splay tree is O((m+ n) lg (n)).

Proof. Start by assigning weights 1
n

to each node, then
w(T) = w(xroot) =

∑n
i=1w(i) = 1. For any given splay operation it holds

February 28, 2009 32

Splay trees Master thesis

that r(t) ≤ lg n, and r(v) ≥ 0. Applying the Access Theorem (3.1) we get the
amortised cost for an access is no more than,

3 lg n+ 1 = O (lg n) .

If we set the potential of the splay tree equal to total number of elements in the tree,
we can bound the cost of a sequence of accesses. We add the cost of a single splay
operation for each access plus the potential drop over the sequences, which is at
most O(n lg n). The final potential is by definition greater than zero. This all adds
up to

m(3 lg(n) + 1) +O (n lg(n)) = O (m lg(n) + n lg(n)) = O ((m+ n) lg(n)) ,

which concludes the proof. �

This means that a series of m accesses to elements in a splay tree T , can be done
just as fast, in an amortised sense, as other binary search trees.

Lastly we will show why splay trees are not on ideal data structure for real time
applications, because their worst case access time is much larger than normal search
trees.

Worst case access It is easy to see that inserting n sorted elements into a splay
tree in increasing (respectively decreasing) order results in a tree with height O(n).
This is because at each insert, the inserted node v is placed just below the root r, as
the right (respectively left) child. When splaying v to the root, the only necessary
step is a normal zig step, that place the old root r as the left (respectively right) child
of v.

When searching for the smallest (respectively largest) element in the splay tree, it
is necessary to follow the pointers from the root to the node vsmallest which is O(n)
pointers, because the height.

Inserts and deletes are bounded by the same bounds as above. Of course when
inserting an element, we can use the working set number of the elements parent.

33

Master thesis Implementation

3.4 Implementation

The splay trees implementation can be found on the URL:
http://www.cs.au.dk/~henrik/thesis/, all references are within this
directory.

As stated before, the splay trees are easily implemented. The actual implementation
can be found in /src/SplayTree/ and is used for the experiments in Chapter 6.
Compared with the description of the structure there are a couple of small
differences in the implementation. First we present a couple of general differences
between the implementation and the general description of the splay trees. Secondly
we are in brief going to describe the splay trees nodes, which contain the data
needed by the splay trees implementation.

3.4.1 The splay tree operations

The implemented data structure is only having a public interface for the insert,
delete and search operations. The join and split operation are implemented, but only
used as internal functions, used by the delete operation. Both the insert and search
functions are implemented using an iterative top-to-bottom search, succeeding by
possibly splaying of node v from its original position to the root.

The delete operation is implemented as a search operation followed by a split
operation, which works as described in Section 3.2. After v are splayed to the
root of T , v is deleted and both T <v and T >v are remaining as independent splay
trees. The delete operation is concluded by splaying the largest element from the
left sub-tree T <v and attaching T >v as the right child of T <v’s new root.

23 l_c r_c p

12 l_c r_c p 53 l_c r_c p

2 l_c r_c p 17 l_c r_c p

20 l_c r_c p

Figure 3.6: Pointers in splay tree implementation. The pointers r_c, l_c and p are
respectively for right or left child or parent.

February 28, 2009 34

http://www.cs.au.dk/~henrik/thesis/

Splay trees Master thesis

The splaying of a node v from its current position in a splay tree to the root, is done
iteratively, apposed to recursively. This means that searching also is iterative. A
iterative method normally has some advantages compared to a recursively approach.
The stack is growing much slower, but on the contrary the iterative method is
normally more difficult to implement. When splaying v, it is necessary for the
algorithm to know the neighbourhood around v, to choose the right splay rotation.
The information gathering can be done in a constant number of pointer look ups.
Each pointer look up, can of course result in a page fault4. Even though this
does not change the bound of the algorithm in the RAM model, it means a slower
running time in practise. Now v has the needed information about its’ parent and
grandparent and can determine which splay step to perform. The splaying is done
iteratively until v is the root of T .

The implementation is of course only using the zig step at the last step.

3.4.2 Splay nodes

For a splay node v in T to know about its surroundings, it is necessary to possess
parent pointers, when perform the splaying iteratively, to avoid storing a list of
visited nodes. This means that each node contains 3 pointers, one for each child
and one for the parent, see Figure 3.6. If the node is containing integers as data, this
means that each node is using three times 32 bits for pointers plus 32 bits for data
in memory5.

4Which forces the machine to retrieve data from main memory and fetch this data into CPU
cache.

5This depends on the machine architecture.

35

Probabilistic and deterministic skip lists Master thesis

4 Probabilistic and deterministic skip lists

Anyone who considers arithmetical
methods of producing random digits is,

of course, in a state of sin.
John von Neumann (1903-1957)

In [BDL08] P. Bose et al. introduce dynamic self adjusting skip lists, which
they have shown to have same complexities as splay trees [ST85b], described
in Chapter 3. We will present the dynamic self adjusting skip lists in details
in Chapter 5, before we are giving both the details concerning analysis and
implementation we will present some skip list structures. First we will introduce
the probabilistic skip lists structure as described by William Pugh [Pug90] in
Section 4.1, this was the first skip list structure described. Before we are presenting
biased skip lists used by dynamic self adjusting skip lists we are also going to
present a simpler deterministic skip list, developed by J. Munro et al. [MPS92]
in Section 4.2. The (a,b) biased skip lists are a fundamental data structure in
understanding the dynamic self adjusting skip lists, in Chapter 5 and is presented in
Section 4.3.

The skip lists where originally described as a probabilistic data structure, by
William Pugh [Pug90] since then, there have been developed a number of deter-
ministic skip lists structures as well.

4.1 Probabilistic skip lists

The main idea of the probabilistic skip list structures are that it is simpler to
implement and has an excepted search time, which is equal to that of normal search
structures, such as binary search trees, (a,b)-trees, red-black trees etc..

The skip list L consists of n sorted elements and an optional special header
element v−∞. We assign a probability p with L, p is a real number in the interval
[0, 1]. The height of each element in L is determined on the basis of p. When

Master thesis Probabilistic skip lists

inserting an element v into L a dice1 is rolled until it shows a number q > p. The
number of rolls where q ≤ p is equal to the height hv = h(v) of v. Each node w
has hw pointers. At each level i, where 0 < i ≤ hv, we place a pointer to the next
element w′, where hw′ ≥ i in L. The special header element is always the first
element in the list and has the same height as the highest element in L. The last
element at any given level j is nil terminated. An illustration of the skip lists can be
seen at Figure 4.1.

NIL

3 4 8 14 15 19 22 25 28 38 39 40 46 52v−∞

Figure 4.1: Probabilistic skip list, with forward pointers and nil terminated.

4.1.1 Dictionary operations in the structure

Searching for v in L is initiated from the top of v−∞. Then there are two possible
ways to navigate at each level. We go right if the next element w has a key kv > kw

or we move downwards one level if kv < kw. This guaranties that we find n if the
key is present in L, because all elements are placed in sorted order and we never
pass an element, which is greater than v.

Deleting is initiated by locating v, if v is present in L , it is found at some level j.
Then for each level 0 ≤ i ≤ j, we change the pointers between the succeeding and
preceding elements. The pointers are changed such that the element preceding v
now points at the element succeeding v at each level i. Deleting v is done when no
element points to v.

Insertion is done similar, first locating2 v−, then using a dice according to
Section 4.1 with probability p, choosing the height hv of the new element v. When
the height is found, v is inserted after v−. Every pointer at level i, where 0 ≤ i ≤ j,
are changed such that the element v− preceding v at level i now points to v and
v points to the element succeeding v− before inserting v, at level i.

1Special dice which rolls uniform distributed numbers in the
interval [0, 1].

2Introduced on Page 28.

February 28, 2009 38

Probabilistic and deterministic skip lists Master thesis

4.1.2 Time complexities of operations

The expected height h of L is the height of element v, where v = max(hw), for all
elements in L. Each element has a probability of pi of ending at the ith level. This
means that the probability Pi of level i having more than one element is Pi ≤ n · pi,
which again means that the expected height of L, for some constant c is c lg n with
probability at most 1/nc−1. So with high probability we can say that the expected
height of L is bounded by O(lg n).

The search time of L is the dominating factor of the all three dictionary operations
search, delete and insert. As stated before, we can only move down and right. The
expected number of steps we move down is the height of L, which is expected
O(lg n) level. So we need to bound the number of forward scans. We say that at
level i we examine e elements before going to level i − 1. The keys examined at
level i cannot be visited again at level i−1, thus we would already have visited them
at level i. The probability for an element v′ being visited at level i is p. This means
that the number of elements e encountered on a level i, is e − (1/2)e = 2p. For
p = 1/2 this is bounded 2 = O(1) elements. So the probabilistic cost of searching
for v in L is O(lg n). Inserting and deleting is bounded the same way, hence the
search for an element is the dominating factor of the execution time, namely the
same as the maximum expected number of levels, where we need to update pointers
when inserting and deleting.

Theorem 4.1. The probabilistic skip list with n elements, has expected height r =
O(lg n) with high probability.

Proof. The number of levels r = 1 + maxx∈L l(x), where levels l(x) are
random variables, distributed geometrically with parameter p = 1/2. We can
view the n elements as independently geometrically distributed random variables
X1, X2, X3, . . . , Xn. It is clearly seen that the probability Pr[Xi > t] ≤ (1 − p)t

and therefore,

Pr[max
i
Xi > t] ≤ n(1− p)t =

n

2t
,

size p = 1/2. Using t = c · lg n and r = 1 + maxiXi, we obtain the probability for
L having less than c · lg n elements,

Pr[r > c · lg n] ≤ 1

nc−1
,

for all c > 1, which concludes the proof. �

39

Master thesis Deterministic skip lists

It is of course an expected search time, the worst case is clearly O(n+ h). Though
this is highly unlikely and therefore not fair to compare probabilistic skip lists and
ordinary search trees by their worst case complexity.

4.2 Deterministic skip lists

A deterministic version of the probabilistic skip lists described above, is developed
by J. Munro et al. in [MPS92]. In the paper they introduces three different skip lists,
each are deterministic and support logarithmic access. The first version, which we
will present in this thesis, are using linear space and have O(lg2 n) updates cost.
The second list promises logarithmic updates at the cost of using more space, the
third version is improving on the space requirements, without compromising the
logarithmic access and updates bounds.

The structure of this deterministic 1-2 skip list L is much like the probabilistic
skip lists described in Section 4.1; We have an ordered set of n elements, each
element v has height h(v). We require that between any two consecutive elements,
on level i, there are at most 2 elements on level i− 1.

When searching for x in L we can guaranty that we moves at most 2 steps
horizontally, before going down one level. Therefore we halves the number of
nodes we potentially will look at every time we move down one level. This bounds
the access time to O(lg n) comparisons.

Inserting x into L means inserting x after x− at level 1. If there now are 3 elements
in a row at level 1 the height of the middle element is increased with 1. In the worst
case we need to rise an element on all levels in L. If implementing the horizontal
pointers as arrays, we need to copy pointers in and out of an array. This means
increasing the height of level h to h + 1 will change Θ(h) pointers. Therefore this
costs at most Θ(lg2 n) comparisons to insert an element. Deleting an element is
done analogous and having the same bound as inserts.

J. Munro et al. presents in [MPS92] an optimisation, where they bounds the updates
to Θ(lg n), this is done by increasing the height of nodes exponential, thereby
guarantying that we visit only one element at each level.

So now that we have seen some examples on deterministic and probabilistic skip
lists, we are ready to show the (a,b) biased skip lists.

February 28, 2009 40

Probabilistic and deterministic skip lists Master thesis

4.3 (a,b) biased skip lists

The biased skip lists presented by A. Bagchi et al. [BBG02, pages 31-41], is
a skip list structure. In this structure the authors are placing constraints on
how to place elements in this structure. All elements are given a weight and
they are placed according to this weight. If we associated high weights with a
high access probability, this will result in placing frequently accessed elements
close to the top. This will give a faster access time if the access probability is
right. The biased skip list is presented in both a deterministic and a randomised
version [BBG02, pages 44-47]. We are only going to present the deterministic skip
lists in this thesis.

The biased skip list L consist, like probabilistic skip lists, see Section 4.1, of
n sorted elements. Each element has a height hv and a forward pointer for each
level i < hv, to the succeeding element at the same level. Two elements v and v′

are called consecutive if hw < min(hv, hv′) for all w, where kv < kw < kv′ . A
plateau is the maximal number of consecutive elements with same height, which
are not interrupted by a higher element. Each element v in biased skip lists holds,
as described above, besides the key and forwards pointers also a weight wv, without
loss of generality we say that wv ≥ 1, for all nodes. The rank is defined as
rv = blogawvc. We can now define an (a,b) biased skip list. For integers a and b,
such that 1 ≤ a ≤ bb/2c, it should apply that for each element v, the height hv

should be hv ≥ rv. Furthermore the following invariants should also be satisfied
after each dictionary operation:

I1) At any given height i there is ≤ b consecutive elements at any place.

I2) For any element vi on level i there are > a elements of height i− 1 between
vi and any preceding or succeeding element on level i.

This means that the placements of elements in the biased skip list is structured
by these two invariants and means we can calculate the height of the list. In
this structure it is furthermore necessary to remove redundant pointers to use
constant space in the number of elements. So for all adjacent elements v and
v′, where there are no elements between v and v′, we remove pointers from v at
level 0 ≤ i ≤ min(hv, hv′)− 1.

4.3.1 Dictionary operations

The operations we are presenting in this thesis are search, insert and delete. We are
describing searching in (a,b) biased skip lists. With insert and delete we presents
the necessary details to restore the invariants after an update, given the invariants
are satisfied before.

41

Master thesis (a,b) biased skip lists

Searching for vx in an (a,b) biased skip listL, is done like in the probabilistic skip
list, described in Section 4.1. The search is initiated from the top left, and moves
either right or downwards, by comparing vx with the next element’s key y. In an
(a,b) biased skip list, we can deterministically determine the access time, because
we can calculate the height. When searching for vx in L, we can state by I1 that
we are not visiting anymore than b + 1 elements at each level i ≤ H(L), where
H(L) = max(hv), for all elements v in L, or the maximum height of any element
in L. The depth of an element v is donated dv = H(L)− hv.

Lemma 4.2. (Depth Lemma) The depth of any element v in L is O(loga(W/wv)).

Proof. It is given that the number of elements at any given rank, that can appear in
a higher level decreases geometrically by level. We define Ni = |{v : rv = i}| and
N ′i = |{v : rv ≤ i ∧ hv ≥ i}|. It holds that,

N ′i ≤
i∑

j=0

1

ai
Nj . (4.1)

For height 0, N ′0 ≤ N0 clearly holds. For j > 0, Invariant I2 states that,

N ′i ≤ Ni+1

⌊
1

a
N ′i

⌋
≤ Ni+1 +

1

a
N ′i ,

which means Equation (4.1) is correct. We now define Wi =
∑

rv≤iwv and states
that Wi ≥ aiN ′i . This is right by definition:

Wi ≥
i∑

j=0

ajNj ≥ ai

i∑
j=0

Nj . (4.2)

Donate R = max(rv), for all elements in L, then it is clear that any element,
with rank greater than R, must have been promoted to maintain the invariants.
Invariant I2 implies that H(L) ≤ R + logaN

′
R and thus the maximal depth for

an element x in L is,

dv ≤ H(L)− rv ≤ R + logaN
′
R − ri . (4.3)

February 28, 2009 42

Probabilistic and deterministic skip lists Master thesis

Equation (4.3) combined with (4.2) shows that logaN
′
R ≤ loga(W − R), hence

di ≤ loga(W − rv). Because loga(wv − 1) < rv ≤ logawv the Depth Lemma
holds. �

The cost for searching in biased skip lists for element v with weightwv and elements
v− or v+ can be bounded. To search for v, means finding the lowest element of the
three i.e. the one with the smallest weight. On each level we visit at most b elements
according to Invariant I1, therefore the search costs at most,

O

(
1 + b loga

W + wv

min(wv− , wv, wv+)

)
.

Inserting key vx into L, starts by locating both elements v− and v+. After this we
create a new node vx, with height hv. Element vx are inserted between v− and v+,
in the same manner as in probabilistic skip lists. Element vx which are inserted,
can now violate I2 by breaking up a ≤ vx < b consecutive elements on each
level i, where 0 ≤ i ≤ hv. The Invariant I2 can be corrected by demoting an
element w to the left (respectively right) of vx on levels hv− ≤ i ≤ hv+ . This
demoting of elements can then induce violating Invariant I1, thus there can now
be > b elements on levels 0 ≤ i ≤ hv. Demoting an element can combine two sets
of consecutive elements and result in a plateau of at least b+ 1 elements. Therefore
it is necessary to promote element z, where z is the b(b + 1)/2c’th element. This
promoting should be done at levels hv ≤ i, until I1 is restored on levels i ≤ hv.

We can now calculate the time complexity of an insert operation. Finding the
element v−, v+, and v can according to the Depth lemma 4.2 be done in time:

O

(
1 + b loga

W + wv

min(wv− , wv, wv+)

)
.

Restoring I2 is done for levels i, where min(hv− , hv+) ≤ hv and take O(b) work at
each level. Upholding Invariant I2 is done for each level > min(hv− , hv, hv+), and
on each level costing O(b), hence the running time for an insert is at most,

O

(
1 + b loga

W + wv

min(wv− , wv, wv+)

)
.

Deleting an element v in L starts as in the probabilistic skip list, described in 4.1,
by locating elements v−, v and v+, if v exists in L. In the case where v does
not exists in L, the operation stops here. Otherwise removing the element and
connecting v− and v+, for all levels i < min(h(v−), h(v+)). Removing v can result

43

Master thesis (a,b) biased skip lists

in a violation of Invariant I1, where two sets of consecutive elements are united,
this can happen on levels min(hv− , hv+) ≤ i ≤ h(v). On each level, we promote
an element y, which is the bk/2c’th element on the (b, 2b] plateau. Deleting v can
of course decrease length of the plateau on level i to less than a, Invariant I2. In
this case where we demoted the violating node y, to level i, it is done for levels
min(hv− , hv+) ≤ i ≤ h(v). Each demotion can result in a violation of I1, which
should be corrected in the same manner as described above.

The complexity for finding v, its neighbours v− and v+, removing v and relinking
takes time equal to:

O

(
1 + b loga

W + wv

min(wv− , wv, wv+)

)
.

Given min(hv− , hv+) ≤ hv, then performing the correction of I1 takes O(b) time
at each level, between min(hv− , hv+) and hv. Equally correcting I2 takes time
proportional to O(b) at levels from hv to H(L). This adds up to an execution time
equal to

O

(
1 + b loga

W + wv

min(wv− , wv, wv+)

)
.

This concludes that all operation on the (a,b) biased skip lists is bounded by
O(logW/wi), which is the wanted access time for biased search structures.

February 28, 2009 44

Dynamic self adjusting skip lists Master thesis

5 Dynamic self adjusting skip lists

That which is static and repetitive is
boring. That which is dynamic and

random is confusing. In between lies art.
John Locke (1632 - 1704)

The splay tree described in Chapter 3, has a lot of nice properties, one of
these is the dynamic optimality. This means that over a sequence of accesses
X = x1, x2, . . . , xm the splay trees are using only O(OPT (X)) time. Where
OPT (X) is the time used by an optimal offline algorithm. In other words accessing
a sequence X in the splay tree is bounded by O(

∑m
i=1 lg ti(x)), where ti(x) is

the number of distinct accesses since x was last accessed also called the working
set property and is described in Section 1.2.1. This means that the amortised
complexity for a single accesses are O(lg ti(x)).

In this chapter we give a complete description and analysis of the dynamic self
adjusting skip list data structure by Bagchi et al. [BCDI07]. The analysis is
amortised and shows that dynamic self adjusting skip lists also satisfy the working
set property and in an amortised time can access an element in O(b lg ti(v)).

In Chapter 6 we give all details concerning the conducted experiments compared to
the theoretical bounds of dynamic self adjusting skip lists and splay trees. Tough the
constant hidden in the Big-O notation is much greater than in splay trees as we shall
see in this section, we will compare actual running times of these two algorithms in
different scenarios.

5.1 Data structure

This data structure is a deterministic skip list structure L, with n elements. Each
element have a max height h = 2k+2 − 2, where k = 2 · dlg lg ne, so the height
of L is bounded logarithmic by O(lg n). The elements are furthermore placed in to
2k layers, the layers are named,

Master thesis Data structure

{l1, l′1, l2, l′2, . . . , lk, l′k} ,

height

skip list pointers

≤ 21 = 2

≤ 21 = 2

≤ 22 = 4

≤ 22 = 4

≤ 23 = 8

layer l1

layer l′1

layer l2

layer l′2

layer l3

layer li and l′i spans over at most 2i elements

Figure 5.1: Terminology for the dynamic self adjusting skip lists.

where layers li and l′i, each spans over the same maximum number of levels. Layers
li and l′i are spanning over 2i levels. This means elements with a height within the
range covered by li are associated with layer li. Each layer li and l′i may furthermore
not contain more elements than the 2i levels can support.

The layers are ordered in decreasing order, such that the smallest layers are placed
highest in L, such that l1 covers the highest 21 levels, l′1 the next 21 levels and
so forth. Elements are placed in l1 and the next in l′1 and so forth. The elements
placed in the highest layers, are the elements accessed most recently i.e. with lowest
working set number, since we move elements upwards to layer l1, when accessing
these. We will in Theorem 5.2 show that an element v at time i with working set
number ti(v), whereB2j−1

< ti(v) ≤ B2j in worst case reside no further down than
layer lj , v can of course also reside in a higher layer. This along with the access
time shows that dynamic self adjusting skip lists satisfy the working set property.

A layer is further divided, by the invariants, I1 and I2 given below, into blocks of
consecutive elements, each block contains between [a, b] elements, where a, b are
constants defined as a = bb/2c and b is given as input to the algorithm, either on
compile time or before run time.

We are going to maintain the following two invariants, which are also maintained
in the biased skip lists by Bagchi et al. [BBG02]:

I1) At a given layer i, there are no more than b consecutive elements with equal
height, after an delete or overflow.

February 28, 2009 46

Dynamic self adjusting skip lists Master thesis

I2) For each elements x on layer i there are at least a elements of layer i − 1
between x and any consecutive element on either side with the same layer i,
after an delete or overflow.

These invariants have some consequences, which are explained in Section 4.3 for
the structure of the dynamic self adjusting skip list and the movement of elements
in this data structure.

In this data structure elements are being moved up and down according to their
working set number and we will be keeping elements recently accessed high in the
skip list to speed up access times to these elements. These two invariants sets some
restraints to the way elements can be moved, when moving elements to layer l1.
An example is two elements placed next to each other, each accessed in order, then
these two nodes can not both be at the top layer without breaking I2.

Figure 5.2: Search in dynamic self adjusting skip list for element 89.

An example of the dynamic self adjusting skip lists before and after a search, which
result in a cascade of overflows, is seen in Figures 5.2 and 5.3.

5.1.1 Searching

Searching for key x in the dynamic self adjusting skip list L, is done as in an
ordinary skip list, we start from the top of the leftmost dummy element. We move
either rightward to element v if for key kv, x < kv holds, if instead x > kv we
traverse the current element one step, see Figure 5.2, where we search for 89. This

47

Master thesis Data structure

Figure 5.3: Moving 89 to top after search, results in overflow.

is done until either x is found in element vx or we stand at the lowest level between
two elements {v, w}, where kv < x and x < kw.

If an element vx is found on layer lb, we promote that element otherwise we can
choose to promote the nearest element1, in key space, of elements the {v−, v+}.
It is of course also possible to ignore these two elements, if vx does not exist.
The promotion is done by moving the element from layer lb to l1 if b > 1, see
Section 5.1.2. As a result L could overflow in layer l1 and cascade in lower layers,
which should be handled described in Section 5.1.5.

5.1.2 Move element to top

Moving element v from its current position at layer li to level l1 simply consist of
dividing blocks on every level around v.

5.1.3 Insertion

Insertion of key x is done by searching for v− in L. After v− we insert the new
element vx with height such that vx is associated with layer l1. This can also result
in an overflow, again see section 5.1.5 for details.

1Introduced on Page 28.

February 28, 2009 48

Dynamic self adjusting skip lists Master thesis

5.1.4 Deletion

To delete key x from the skip list, we do a normal search for x in L. If the key
is located in element vx, where l(vx) is the level vx is placed on, this element is
removed from the list. The pointers from the node vi are updated on levels i, where
i ≤ l(vx), such that v− points to v+ on each level. When no elements points to vx,
we can safely delete it from L.

After deleting an element, we need to make sure invariants are maintained. Both
invariants can be compromised after deletion. If we now have to many consecutive
elements, Invariant I1, we promote the middle element to break the consecutive
elements, as described in Section 4.3.1. If instead Invariant I2are violated we can
promote an element from a lower level, to increase the number of consecutive levels.

5.1.5 Overflow

An overflow in layer li occurs when the number of elements in layer li exceeds the
number of elements the 2i levels can support, which equals b2i elements. If an
overflow occurs after inserting an element into layer li, we need to move elements
from layers li and l′i into the lower and larger layers.

The overflow procedure is initiated by merging elements in layer l′i into layer li+1,
which includes decreasing the height of each elements in l′i with 2i, so they now are
associated with layer li+1.

Now that layer l′i is empty we only need to move elements from layer li into the
empty layer l′i. Just decreasing the height by 2i of each element in li, so they now
are associated with layer l′i.

See Figures 5.2 and 5.3 for example, where we after searching for element 89,
Figure 5.2 and moves element 89 into layer l1, this result in overflowing layer l1,
which after a cascade of overflows, where we merge layers, as described above
Section 5.1.5 and result in the dynamic self adjusting skip list shown in the second
figure.

This overflow will normally start as a result of an insert or search where the element
v is inserted in layer l1, thereby resulting in an overflow in layer l1 in L.

49

Master thesis Analysis

5.2 Analysis

Running times for the above data structures public interface such as search, insert
and delete are all analysed in this section. In this section we are assuming that the
size of L is always n. The constants b and a are given in advance and are defined in
Section 5.1.

5.2.1 Moving an element to the top

Moving element v from its position in layer lj to layer l1, means increasing v’s
height so it is associated with layer l1 instead of lj . At the same time we need to
split each block at level i around element v, where j > i ≥ 1. It is now fairly simple
to analyse the work needed for moving an element to the top of the list. The cost of
splitting a block around element v is in worst case equal to finding elementw, where
key kw is the first key where kw ≥ kv, in L and dividing the block into two new
blocks, which is equal at cost O(b2i). The worst case cost of moving an element
from its position at layer lj to layer l1 is therefore O(b

∑j
i=0 2i) = O(b2j), this can

result in a possibly overflow, which has to be paid by the access, see Section 5.2.3

5.2.2 Overflow

An overflow in layer li happens when the size of the layer exceeds b2i elements.
The procedure is described above in Section 5.1.5. The worst case time complexity
for merging two layers l′i and li+1 should be linear in the number of elements
in l′i. This is because each element v, when moved downwards, should use at most
b/h(v) of its potential to pay for each overflow operation, here h(v) is the number
over times element v can be involved in an overflow operation, i.e the number of
layers below element v. The time to lower elements in layer li or l′i are equal to
O(|li|) = O(|l′i|). This is also the worst case time for an overflow operation in layer
li, this can of course cascade into layers j > i. The worst case cost is O(n) if every
layer and thereby every element are affected.

5.2.3 Access time

To analyse the access time of the dynamic self adjusting skip lists we use potential
functions. We give each element in the list a potential Φ(L) =

∑
∀v∈L b ·h(v). Now

we can analyse the access time.

Lemma 5.1. Searching for an element v which are located on layer li in the dynamic
self adjusting skip list L costs O(b2i) in the worst case.

February 28, 2009 50

Dynamic self adjusting skip lists Master thesis

Proof. A search can be viewed as 2i sub searches in the layers l1, l′1, l2, l
′
2, . . . , li, l

′
i.

A search in layer lk, where k ≤ i only involves element associated with layer lk,
which corresponds to searching in a traditional skip list with 2k levels, The search
therefore costs O(b

∑i
k=0 2k) = O(b2i). This also holds when searching for an

element associated with layer l′i, because

O(b
i∑

k=0

(2k) + b2i) = O(b2i + b2i) = O(b2i) .

An access operation in dynamic self adjusting skip lists, is followed by elevating
the element from its position in layer li to layer l1. The work done for moving an
element to layer l1, is equal to update pointers on every layer from li to l1. In each
layer lk or l′k, we at most need to update 2k pointers. Therefore wee need to update
at most O(

∑i
k=0 2k) = O(2i) pointers.

The dominating factor is finding v. This sums to a worst case cost for accessing and
rising v at

O(2i) +O(b2i) = O(2i) ,

for each access. In the above analysis we need do not count the cost of overflows,
therefore we need the potential function defined above. �

When accessing a sequence of elements in a dynamic self adjusting skip lists the top
layer will eventually grow to big, which results in an overflow. In a long sequence
of accesses, cascades of overflows can occur. The cost of an access to an element
must incorporate the access cost. Therefore we assign a potential φ(v) = b ·h(v) as
mentioned above. Now each element v has enough potential to pay for maximum
h(v) overflow operations, where each overflow operation decreases the elements
potential by a constant b. This can be paid for by only adding a constant factor to
each access (insert or delete).

Theorem 5.2. Accessing a sequence of length m in the dynamic self adjusting skip
lists can be performed in O(

∑m
j=0 b · lg ti(v)) time.

Proof. We show that searching for an element with working set number ti(v), where
b2

k−1
< ti(v) ≤ b2

k is costing at most O(b · 2k). Overflowing an empty layer lk
needs at least b2k accesses, this means that an element v, originally associated with
layer l1 cannot be moved further down than layer lk after b2k accesses. Therefore
an access to an element v with working set number ti(v) is costing O(b2k), which
are the same as it costs to rise v from layer lk to layer ll. The cost of accessing m
elements is therefore

51

Master thesis Analysis

O

(
m∑

i=0

b · lg ti(v)

)
,

where ti(v) is the working set number for v at time i.

This proves the amortised access time for searches. �

5.2.4 Deletes and inserts

The amortised cost for searches is also valid for inserts, where searching and
possibles overflows are the dominating factors. We insert the element v at the
bottom layer after element v− and move it to the top from there, searching for v− at
the lowest layer costs in the worst caseO(b lg n). This also means that the amortised
time for insertions are O(b lg n), because we need to pay for the potential, which is
equal to the number of levels (respectively the height) namely O(b lg n). The worst
case is clearly O(n) because at any one insert we can overflow layer l1, which can
cascade into the lowest layer and then involves all n elements.

A delete operation also needs to locate the element v and remove pointers from all
elements v− with height h(v) ≥ i ≥ lg lg n. The delete operation therefore also
pays for removing pointers on hv levels, this adds up to

O (b lg ti(v) + b · hv) = O (b lg n) ,

because O(lg ti(v)) +O(hv) = O(lg n).

5.2.5 Space consumption

The dynamic self adjusting skip lists described above uses besides the space also
needed by the biased skip lists in Section 4.3, also memory for keeping track
of dlg lg ne layers.

The space needed for skip list structures and thereby the pointers between elements
are O(n), when removing adjacent pointers just as the biased skip list.

For keeping track of 2dlg lg ne layers, the dynamic self adjusting skip lists uses
space O(lg lg n). Layers li and l′i contains pointers to 2 · 2i elements. This adds up
to O(n), which means that the dynamic self adjusting skip lists are space efficient.

February 28, 2009 52

Dynamic self adjusting skip lists Master thesis

5.3 Implementation

In this section we describe the implementation we are using in Chapter 6, when
comparing the dynamic self adjusting skip lists with splay trees. Like in the
splay trees implementation the dynamic self adjusting skip lists implementation
can be found on the URL: http://www.cs.au.dk/~henrik/thesis/, all
references are with this directory.

The implementation of the dynamic self adjusting skip lists can be found in
/src/DSkipList/. The details explained in this section concerns deviations
from the above description of the data structure. We also explain implementation
details, which have been neglected above, cause they do not have any influence on
the analysis.

The main implementation is lying in DSkipList.cpp where the following
functions search_in(integer k), moveToTop(element v), overflow(layer la) and
mergeLayer(layer la) can be found. These are also described in details in the
following sections.

The main functionality of the dynamic self adjusting skip lists lies in these
functions.

5.3.1 search_in(integer k)

The main function of this method is to locate the element vk. This is done as
described in Section 5.1.1. The search starts at the top of the leftmost element,
which is always as high as the dynamic self adjusting skip lists. From here we
move right and down according to the next elements’ key at the given layer.

When searching for k, we also save the closest element v− on all layers a ≥ i ≥ 1,
so these are easily accessible later, when we move the element to the top.

5.3.2 moveToTop(element v)

Moving an element v from its placement at layer k to layer 1. Consists of three
things:

1. Moving v to the top layer and insert it into the top layer l1.

2. Inserting it into the skip list structure on level k ≥ i ≥ 1, so that v− for each
level i points to v and v points to v+.

53

http://www.cs.au.dk/~henrik/thesis/

Master thesis Implementation

3. Correcting invariants L1 and L2, by adjusting the neighbourhood around v
on layers a ≥ i ≥ 1.

Correction invariants are only done when it make sense, i.e. not when two
succeeding elements are lifted two l1.

When locating the element v we save each pointer as described in Section 5.3.1.
This means we in constant time for each level can update pointers from
levels k ≥ i ≥ 1 can update pointers around v. There are as described above
maximum O(loga n) level, so a moveToTop operation costs O(b · k).

5.3.3 overflow(layer li)

When moving elements to layer li, this can trigger an overflow, if layer li now
contains more than 2i elements. Detecting whether or not layer i is overflowing
is in this implementation done in constant time. This comes with a price
namely 2·dlg lg ne units of extra space consumption. We maintain the size of each
layer in a array, each time we either delete (respectively insert) into this layer we
decrease (respectively increase) the number of elements at that layer.

An overflow at layer li is otherwise done according to the description in
Section 5.1.5.

5.3.4 mergeLayer(layer li)

Merging layer li into l′i is done after we have emptied layer l′i. If l′i is empty, moving
li into l′i is empty and is done time O(|li|). The time comes from updating pointers
on layer li so they correspond the height of l′i. Before doing this, we make sure no
element on layer l1, l′1, . . . , li−1 are pointing to a element on layer li. The size of
layers l1, l′1, . . . , li−1 ≤ O(2i), therefore we have time to make sure no pointers at a
level above layer li points to a wrong element.

In the case where l′i is full we merge layer l′i into layers li+1 by making a sweep
over both layers in parallel. Every time we move an element from layers l′i into li+1,
we change the height of that element. This gives a time complexity corresponding
to O(|li|), since the maximum difference in size of these two layers are,

2 · |li| = 2 · |l′i| = O(|li+1|) .

These two cases each have an upper bound on the time complexity of O(|li|).

February 28, 2009 54

Dynamic self adjusting skip lists Master thesis

5.3.5 DBlock class

In this implementation the dynamic self adjusting skip list, we use a class called
DBlock. This class is used as a container class for the elements inserted into our
structure. Each DBlock contains no more than b elements.

The function of this container class is to make sure, that keeping invariants I1 and
I2 are easy. This of course comes with a price and in this case the price is the
consumption of extra space. Each DBlock maintains a list of size b+ c = O(b). All
functions of the DBlock has a complexity there are bounded by the constant b.

The implementation of the DBlock class can be found at
/src/DSkipList/DLayer.cpp and the header file in
/src/DSkipList/DLayer.hpp.

5.3.6 DSkipListNode class

Lastly we are describing the DSkipListNode class. This class is responsible for
containing the data and for keeping pointers to the next elements, furthermore it
holds a pointer to the DBlock where it is residing.

The size of a DSkipListNode is bounded by the height of the element v, which is
equal h(v). The implementation can be found at
/src/DSkipList/DSkipListNode.cpp and the header
/src/DSkipList/DSkipListNode.hpp.

mergeLayer DBlock cpp moveToTop DSkipListNode

55

Testing dynamic dictionaries Master thesis

6 Testing dynamic dictionaries

God does not care about our
mathematical difficulties. He integrates

empirically.
Albert Einstein (1879 - 1955)

In this chapter we presents the test setup and the results of the conducted tests. We
compare the splay trees, described in Chapter 3, against the dynamic self adjusting
skip lists, described in Chapter 5, in multiple scenarios. Section 6.1 describes the
test procedure as well as the different scenarios we are using and in Section 6.2
we are presenting both results of testing dynamic self adjusting skip lists and
splay trees alone and compared to each other.

Since we have performed many experiments, we present some result in Appendix A.
In Appendix B we describes the physical test environment and the software used for
these tests.

6.1 Test scenario

In this section we are presenting the empirical test scenarios, where we are going to
test splay trees against dynamic self adjusting skip lists.

We are in some of the scenarios below testing using random material. We are using
random numbers, which are put at disposal by www.random.org1, the numbers are
a collection truly random numbers collected from atmospheric noise. Furthermore
these numbers are uniformly distributed.

We are going to test these two implementations against each other, by using different
access sequences. These sequences have been mentioned throughout this thesis, as
sequences where adaptive algorithms should behaviour better than normal search
trees.

1http://www.random.org

http://www.random.org

Master thesis Test scenario

The Sequences we are testing are:

1, 2, 1, 2, 1, 2, . . . , 1, 2 (6.1)
1, 2, . . . , n, 1, 2, . . . , n, 1, 2, . . . (6.2)
1, n, 1, n, 1, n, (6.3)

Besides testing Sequences (6.1), (6.2), (6.3), we are also testing how dynamic self
adjusting skip lists and splay trees behaves at random accesses.

All test are conducted by first inserting n elements

1, 2, 3, . . . , n− 1, n . (6.4)

After this we start the m length search sequences. In the random cases, we are also
inserting the n numbers in a random order to get more balanced structures, which
behaves more like real use situations.

The inserts are in the random case succeeded by searching for the m elements in
uniformly distributed order. We have two different random access scenarios, 1) with
unique random numbers and 2) with repetitions of numbers in the start structure.

We also testing both algorithm with the unified sequence from Section 1.2.5. It
is not shown that either splay trees of dynamic self adjusting skip lists satisfy this
property, but we expect the dynamic finger and sequential access properties should
give splay trees an advantages over the dynamic self adjusting skip lists when
accessing Sequence (6.5)

1,
n

2
, 2,

n

2
+ 1, 3,

n

2
+ 2, 4, (6.5)

Now we have scenarios where we test accesses to elements with very low working
set numbers. These access sequences may not be very natural, therefore we will
also test access to elements with increasing large working set numbers. In these test
we insert the numbers from 1 to n and searching for m numbers with increasing
working set numbers x. We have chosen two different ways to pick out the number
we search for.

Search for the elements in the following ways:

1. {1, 2, 3, . . . , x− 1, x, 1, 2, 3, . . . , x− 1, x, 1, . . .}.

February 28, 2009 58

Testing dynamic dictionaries Master thesis

2. Pick a random number in the interval [1, 2x].

We chose to pick a single random number within a range twice as big as in the
sequential case, we are with probability Pr[X ≤ (x/2)] = 1/2, getting at number
with lower working set number than we wanted and Pr[X > (x/2)] = 1/2, getting
an element with larger working set number. In average we will pick a number with
working set number equal to 2x/2 = x.

By inserting elements in increasing order Sequence (6.4) we get a worst case
structure in both splay trees and the dynamic self adjusting skip lists, where
elements are places in long chains and access to the smallest elements is slow.

Every graph below is a result of an average of three runs, this should remove peaks,
which comes as result of other services or kernel processes getting CPU time.

Before presenting any comparisons between the two data structures. We presents
tests of dynamic self adjusting skip lists and splay trees. First we are showing that
the number of overflows or mergeLayer are linear in the number of accesses. We
are also testing different values of b, to observe under which conditions the dynamic
self adjusting skip lists acts best. These tests are presented in Section 6.2.2.

6.1.1 Expected results

As mentioned before the dynamic self adjusting skip lists, should be better at
keeping locality than splay trees. On the other hand we have a very simple splay tree
structure, which furthermore could be optimised in different ways, like for example
only splaying half the distance from a node v’s placement to the root. This would
better work because elements, which are accessed often slowly will ooze towards
the root, while elements, which are only accessed once will be faster by a factor two
if accessed again, but not slow down access times for elements, which we have seen
have a larger probability to get accessed soon. In this implementation of splay trees,
we have not optimised the structure in any such way. The simpler splay trees has
the same expected number of comparisons as dynamic self adjusting skip lists over
an sequence of length m namely,

O

(
m∑

i=0

lg ti(v)

)
.

The splay trees furthermore satisfies the dynamic finger and sequential access
properties, described in Section 1.2.4. This makes splay trees performed better
at such sequences as (6.2) and (6.5), where the next element always are close, in
key space, to an element which we have recently searched for.

59

Master thesis Results

In the Big-O notation the dynamic self adjusting skip lists are hiding a great
constant. The dynamic self adjusting skip lists are also using more memory than
splay trees, where both contains n elements, thus this is only a constant factor worse,
the time used to allocate this memory is part of the constant that is hidden in the
Big-O notation. Another example where the constant not noticeable, because of the
Big-O notation, are when merging two layers. When merging these two layers, we
are sweeping the layer three times to keep the invariants, described in Section 5.1,
this is also hidden in the Big-O notation.

When increasing the working set number gradually, we expect that, when accessing
increasing numbers, the splay trees is faster than dynamic self adjusting skip lists,
because of the dynamic finger property. When accessing elements with a expected
working set number equal to x randomly, splay trees, do not gain from the dynamic
finger or sequential properties. This means that the difference we see in access
time, is only due differences in preserving locality and constant factors hidden in the
Big-O notation. When accessing the numbers in random order, the only difference
between the two algorithms are the hidden constant in the Big-O notation and the
locality preserving advantages by the dynamic self adjusting skip lists.

From this discussion our expectations are that splay trees are just as good or better
by a constant factor than dynamic self adjusting skip lists, this is also what we are
going to see in the next section, where we present the results.

6.2 Results

In this section we are describing the results of the empirical tests when comparing
the dynamic self adjusting skip lists and splay trees. In the graphs shown in this
section and Appendix A, we are using DSL as acronym for dynamic self adjusting
skip lists.

6.2.1 Correctness of dynamic self adjusting skip lists implemen-
tation

Before presenting the results of the actual test, we will argument that the dynamic
self adjusting skip lists and the splay tree are implemented correct.

As we will see in the Figure 6.1 the number of merges is what we will expect,
namely linear in the number of accesses. So the heavy operation, merging of two
levels, li and li+1, is executed the correct number of times, within a constant factor.

February 28, 2009 60

Testing dynamic dictionaries Master thesis

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 0 5e+06 1e+07 1.5e+07 2e+07

#m
er

ge
s

#searches

Comparing number of merges with number of searces. Size of structure=402816

Random searches
{1,n,1,n,...,1,n} searches

{1,2,...,1,2,3,...,n} searches

Figure 6.1: Comparing number of merges in stucutures of size 402816. The access
sequence is random.

The time needed to merge two layers, is linear in the number of elements in layer li.
We make tree sweeps over this layer when merging layer li into li+1. The execution
time for this operation is always O(|li|).

Searching for an element is conducted like in any other skip list structure and is
fairly simple. Our structures has height bounded by O(lg n) levels, so searching
compares at most O(b lg n) elements, this is the same bounds as for splay
trees and as seen in Theorem 5.2 accesses can pay for overflows. Inserting or
deleting an element v is done by removing v and changing the pointers on both
elements (v− and v+) on either site of v on every level. This is constant amount of
work on each level. Again at most O(b lg n) pointers.

Furthermore we have conducted a number of tests on dynamic self adjusting skip
lists, to make sure each operation is returning the expected result.

We have run the following automated test scenarios, where we insert 5000 random
numbers from the interval [0, 225], searched for every element twice in random
order, followed by a removal of all 5000 elements. An error in this scenario is
when a search or delete operation did not return true, consequently when we did
not find the expected element in the structure. This test was conducted 10.000 with
different sequences of inserts, searches, and deletes without errors before proclaim
that the structure was without errors.

Besides these automated tests for correctness, we have made it possible to visualise

61

Master thesis Results

smaller instances of a dynamic self adjusting skip lists and splay trees. This
functionality have been used mainly to debug the data structures, but also to validate
correctness of pointers in dynamic self adjusting skip lists and splay trees.

6.2.2 Testing the dynamic self adjusting skip list

We are here testing two things, first we are testing how many merges we are
making as a function of the number of accesses, seen in Figure 6.1. We see
number of merges as function of number of access in different scenarios like
Sequences (6.1) to (6.3) and random accesses. We would expect a constant number
of merges per access, for sequences of size m. This result in Figure 6.1 are as we
would expect.

When comparing Sequence (6.2) and random access sequence, we see that the
number of merges in the random case is greater, than when accessing the numbers
in increasing order. This is because we are making a greater number of smaller
merges in the top layers when accessing the numbers randomly, because we as
described in the previous section, more often accesses elements with low working
set number. When accessing the numbers in increasing order, we are moving the
bottom element to the top, thereby merging all levels from levels l1 ≥ i > lmax in
one merge, because all levels are filled, due to the worst case insert sequence. After
this cascade of overflows, we only see small merges for a long time. This makes
searching slower, because all nodes are on the lower levels, which can be observed
in Figure 6.3.

Now that we have shown that the implementation is merging the correct number of
times, we tests different values of b. The reason for testing this, is to determine what
values of b, we should use when testing dynamic self adjusting skip lists against
splay trees in Section 6.2.3.

The intuition says we will see a difference, between the different values of b. When
changing b we will allow more elements on any level i, between two consecutive
elements on level i + 1. When using larger b we can end up comparing more
elements at each level.

So from the above discussion and result on Figure 6.2, we choose to use smaller
b’s namely 2 and 4, when testing against splay trees, cause we in this way uses less
memory and thereby hopefully gets more accurate tests.

6.2.3 Comparing self adjusting search trees

First we are going to look at some of the sequences we have talked about earlier
namely Sequences (6.1) and (6.3).

February 28, 2009 62

Testing dynamic dictionaries Master thesis

 0.0078

 0.008

 0.0082

 0.0084

 0.0086

 0.0088

 0.009

 0.0092

 0.0094

 0.0096

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06

tim
e[

m
s]

/#
se

ar
ch

es

#searches

Comparing DSL of size=167840. Access sequences is random

b=2
b=4
b=8

b=16

Figure 6.2: Testing different values for b.

6.2.4 Low working set numbers

There is not much to say about the results of accessing elements with low working
set number, as seen in Figures 6.3 and 6.4 as well as in
Figures A.3 to A.8 in Appendix A. We expect in both data structures few
comparisons, because both the elements we look for are close to the top after we
have accessed both elements once, furthermore in the dynamic self adjusting skip
lists we only see a constant number of merges, see Figure 6.1. The structures is
approximately 3−15 times faster per access, as in the random case, see Figure 6.13.

6.2.5 Increasing working set numbers

Accessing elements with increasing working set number is shown on Figures 6.5 and 6.6
and also in the appendix in Figures A.9 to A.11.

These tests are conducted as described above by inserting all elements and
afterwards searching for elements in increasing order. For example searching for
elements with working set number 4096 the access sequence will look like in
sequence:

{1, 2, 3, . . . , 4096, 1, 2, 3, . . . , 4096, 1, 2, 3 . . .} .

63

Master thesis Results

 0.0002

 0.00025

 0.0003

 0.00035

 0.0004

 0.00045

 0.0005

 0.00055

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

tim
e[

m
s]

/#
se

ar
ch

es

#searches

Comparing {1, n, 1, n .., 1, n} accesses between search structures of size=151056

DSL B=2
Splay tree

Figure 6.3: Searching for {1, 151056, 1, 151056, 1, 1, 151056, . . . , 151056} in
structures containing elements {1, 2, 3, . . . , 151056}.

 0.0002

 0.00025

 0.0003

 0.00035

 0.0004

 0.00045

 0.0005

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

tim
e[

m
s]

/#
se

ar
ch

es

#searches

Comparing {1,2,1,2,1,2,...} accesses between search structures of size=151056

DSL B=2
Splay tree

Figure 6.4: Searching for {1, 2, 1, 2, 1, 2, . . . , 1, 2} in structures containing elements
{1, 2, 3, . . . , 151056}.

Here we forces the working set number within a constant x, for exampled 4096, for
each access, because we access x unique elements before again accessing the same
element.

February 28, 2009 64

Testing dynamic dictionaries Master thesis

The result of these tests, where we gradually increases the working set number,
we are searching for, are that for very low number of accesses the dynamic
self adjusting skip lists are faster than splay trees. This is because of the
first O(n lg n) drop in potential by the splay tree, when accessing a m length
sequence. This drop is becoming less and less dominating the more accesses
we search for. The faster splay trees are caused mostly by the sequential access
property, which effects the execution time when the first x elements are found, and
thereby making searching faster.

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000 220000

tim
e[

m
s]

/#
se

ar
ch

es

#searches

Searching for elements with working set number =4096

DSL
splay tree

Figure 6.5: Searching for {1, 2, 3, . . . , 4096, 1, 2, 3, . . . , 4096, . . .} in structures.

When searching for larger working set numbers in random order, as it is the case in
Figure 6.7, we see that the dynamic self adjusting skip lists and
the splay tree have almost equal execution times. When accessing elements in a
random order the sequential access property in the splay tree does not make accesses
faster. Therefore the locality preserving in the dynamic self adjusting skip lists are
equalising the execution time, which are seen in the almost equal access times.

6.2.6 Worst case access times

The worst case sequence for dynamic self adjusting skip lists is Sequence (6.2),
where we at each access will go all the way to the bottom of the list to find the next
elements. We are therefore seeing the longest access times. Empirical tests can be
found on Figure 6.8 and in the appendix in Figures A.14 and A.15. The splay trees
has a theoretical better bound for this sequence, which is equal to O(m), because of
the sequential access property.

65

Master thesis Results

 5e-05

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

 0.00035

 0.0004

 0.00045

 0.0005

 0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06 1.8e+06 2e+06

tim
e[

m
s]

/#
se

ar
ch

es

#searches

Searching for elements with working set number =73728

DSL
splay tree

Figure 6.6: Searching for {1, 2, 3, . . . , 73728, 1, 2, 3, . . . , 73728, . . .} in stuctures.

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0 50000 100000 150000 200000 250000 300000 350000

tim
e[

m
s]

/#
se

ar
ch

es

#searches

Searching for elements with working set number =40960

Splay tree
DSL

Figure 6.7: Searching for random elements within a working set number 40960.

In this sequence type the splay trees are starting with a long chain of elements, so
when accessing the first element in Sequence (6.2) we find it at the bottom. When
accessing the smallest element and splaying the element to the root, by a sequence
of zig-zig steps, this halves the height of the tree as described in Section 3.1. This

February 28, 2009 66

Testing dynamic dictionaries Master thesis

indicates that accessing elements from here on out, is done a constant factor faster
than dynamic self adjusting skip lists, which are not in the same way halving the
next elements depth. Therefore we see a great difference between the splay trees
and the dynamic self adjusting skip lists in this access sequence.

The dynamic self adjusting skip lists structure has an access time O(
∑m

i=0 lg ti(v)),
which in this case is equal to O(m · n) cause ti(v) = n, for each access. Therefore
we see a more expensive average search costs, than for example in Figure 6.3.

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

 0.0018

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07 3.5e+07 4e+07 4.5e+07

tim
e[

m
s]

/#
se

ar
ch

es

#searches

Comparing {1,2,3,...,n,1,2,3,...,n,1,2,...} accesses between search structures of size=151056

DSL B=2
DSL B=4

Splay tree

Figure 6.8: Searching for {1, 2, 3, . . . , 151056, 1, 2, . . . , 151056} in structures
containing elements {1, 2, 3, . . . , 151056}.

6.2.7 Unified access sequences

Non of the two structures are satisfying the unified access property, described in
Section 1.2.5. We see in both Figures 6.9 and 6.10 and also in the appendix
on Figures A.16 and A.17, that splay tress are paying for the O(n lg n) drop
in potential, which are distinct at lower number of access, but gain the overall
advantages because of the dynamic finger search property.

The drop in potential is more expensive when increasing the size of the structures, a
gradual comparison can be seen by comparing all four test, with increasing structure
size. This can is seen in Figure 6.11.

67

Master thesis Results

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

 0.0018

 0.002

 0 50000 100000 150000 200000 250000 300000 350000 400000

tim
e[

m
s]

/#
se

ar
ch

es

#searches

Searching for {1,n/2,2,n/2+1,3,n/2+2,...,n,1,...}. Structure of size 16784

DSL
splay tree

Figure 6.9: Searching for {1, 16784/2, 2, 16784/2 + 1, . . . , 16784/2 −
1, 16784, 1, . . .} in structures containing elements {1, 2, 3, . . . , 16784}.

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0 50000 100000 150000 200000 250000 300000 350000 400000

tim
e[

m
s]

/#
se

ar
ch

es

#searches

Searching for {1,n/2,2,n/2+1,3,n/2+2,...,n/2-1,n,1,...}. Structure of size 134272

DSL
splay tree

Figure 6.10: Searching for {1, 134272/2, 2, 134272/2 + 1, 3, 134272/2 +
2, . . . , 134272/2 − 1, 134272, 1, . . .} in structures containing elements
{1, 2, 3, . . . , 134272}.

February 28, 2009 68

Testing dynamic dictionaries Master thesis

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0 20000 40000 60000 80000 100000 120000 140000

tim
e[

m
s]

/s
tr

uc
tu

re
 s

iz
e

struture size

Searching for {1,n/2,2,n/2+1,3,n/2+2,...,n,1,...}.

splay tree size =4392
splay tree size =167840
splay tree size =386032

Figure 6.11: Variation of structure size, when searching for {1, n/2, 2, n/2 +
1, 3, n/2 + 2, . . . , n/2− 1, n, 1, . . .}.

6.2.8 Random accesses

The last two access sequences are the obvious ones, where we search for m random
numbers in a structure containing n elements. In Figure 6.12 the n elements are
unique and in Figure 6.13 there can be repetitions of elements.

When accessing random elements, we expect that the average depth by which we
find elements is O(1). This indicates that accessing elements should be linear,
because over a sequence of elements the average working set number is constant
at about n/2, because of the probability explained above. This is seen because we
in for example Figures 6.13 and 6.12 access twice as many elements as in Figure 6.8,
where ti(v) = n.

This is clearly seen in the figures, again it is clear that dynamic self adjusting skip
lists is a constant factor slower than the splay trees, which corresponds to the other
tests we have been running.

69

Master thesis Results

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06 1.8e+06 2e+06

tim
e[

m
s]

/#
se

ar
ch

es

#searches

Searching for random numbers in search structures of size=151056 unique elements

DSL B=2
DSL B=4

Splay tree

Figure 6.12: Searching for random numbers in stucutures containing 151056
elements unique elements.

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06 1.8e+06 2e+06

tim
e[

m
s]

/#
se

ar
ch

es

#searches

Searching for random numbers in search structures of size=151056 elements

DSL B=2
DSL B=4

Splay tree

Figure 6.13: Searching for random numbers in stucutures containing 151056
elements.

February 28, 2009 70

The I/O-model Master thesis

7 The I/O-model

The sciences do not try to explain, they
hardly even try to interpret, they mainly

make models.
Johann Von Neumann (1903 - 1957)

Before we present internal and external B-trees in Chapter 8 and I/O effective self
adjusting B-trees
in Chapter 10, we will in this chapter presenting the I/O-model. We will here also
describe how the analysis differs in from the RAM model and the I/O-model, when
analysing an I/O algorithm.

The I/O-model, presented by A. Aggarwal et al. [AV88], consists of a two
layered system, with a much slower “infinite” disk, D and faster main memory M,
see Figure 7.1. The I/O-model models the vast difference in transferring speed
between the main memory and the hard disk, which is found in modern computers.
Transferring data from D to M is only possible in chunks of B units of consecutive
data, note that M can only hold |M |/B data chunks at any time. The way to bound
an operations complexity in an algorithm, in the I/O-model is different from the
RAM-model. We do not count the number of comparisons like in the RAM-model,
but instead counts the number of block transfers back and forth, between disk and
main memory.

7.1 Analysing in the I/O-model

Analysing an external algorithm are in the I/O-model, as mentioned above, different
from the RAM-model. When analysing an I/O algorithm all work done internally
in main memory and processor are considered free. The only work we count, when
analysing an external algorithm, is the number of memory transfers back and forth,
between the two levels.

Master thesis Analysing in the I/O-model

MP D

B

B

|M |
B

free transfer

block transfers

Figure 7.1: In the I/O-model it is only possible to transfer B consecutive elements
from the “infinite” disk to the main memory and vice versa. The main memory can
contain |M |/B subsequent blocks. P is here the processor.

7.1.1 Mergesort

As an example we introduces and analysis the mergesort algorithm also presented
in [AV88, p. 1123] paper, which is an I/O algorithm that sorts N unsorted elements
in the optimal sorting bound in the I/O-model,

sortexternal(N) = O

(
N

B
log M

B

N

B

)
.

We are in this thesis not proving the lower bound of sorting in the I/O-model, but
simply describing and analysing the mergesort algorithm.

The mergesort algorithm starts by dividing the N input elements into
O(N/M) chunks, each of size M . In internal memory we sort each of these
chunks by an internal algorithm like for example Quicksort [GTG01]. After sorting
the O(N/M) chunks we merge O(M/B) blocks at a time until only one sorted
chunk of size N is left.

An analysis of the external mergesort could progress like this; Dividing input data
into the O(N/M) blocks are done in scan time, namely O(N/B) I/O’s. Sorting
the chunks happens internally in memory and is therefore free. We can do this as
we split the input data, so the cost is embedded in the above scan. Repeatedly
merging the Θ(M/B) blocks, can be done O(log(M/B)(N/M)) phases, each
costingO(N/B) I/O’s, which adds up toO((N/B) log(M/B)(N/B)). This is clearly
seen in Figure 7.2. Writing the sorted data back to disk costs O(N/B) I/O’s. All
this adds up to;

February 28, 2009 72

The I/O-model Master thesis

sortexternal(N) = O

(
N

B

)
I/O′s+O

(
N

B
log M

B

N

B

)
I/O′s+O

(
N

B

)
I/O′s

= O

(
2 · N

B
+
N

B
log M

B

N

B

)
I/O′s

= O

(
N

B
log M

B

N

B

)
I/O′s ,

here dominating factor is the merging. This means that the complexity of sorting
using the mergesort algorithm is O(N

B
log M

B

N
B

) I/O’s in the I/O-model.

. . .

. . .

. . .

.

.

.

.
.
.
..

N
M

N
M

N
M

N
M

N
M

N
M

N N

N
M /(M

B)2

. . .

N
M /M

B

N
M /M

B

N
M /M

B

.
.
.

Θ(N/M) Θ
(

N
M /M

B

)
Θ
(

N
M /(M

B)2
)

1

M
B

M
B

M
B

M
B

Figure 7.2: Mergesort algorithm visualised. Merge O(N/M) sorted chunks in
O
(
(N/B) log(M/B)(N/B)

)
merges.

In the above analysis it is clearly seen how an analysis of an external algorithm goes
and how work done in internal memory is free.

7.2 Cache oblivious memory mode

When designing algorithms we normally call algorithms designed for the
I/O-model cache aware, because these algorithms can be optimised for the specific
computer based on parameter given on compile or run time. Another memory model
namely the cache oblivious model was introduced by M. Frigo et al. [FLPR99] in

73

Master thesis Cache oblivious memory mode

1999. A processor can in this model only directly fetch data residing in the closest
cache. We define cache-hits as processor request to data which already resides in
cache, and cache-faults as request to data which are not already in cache.

The I/O-model only models a two layered system without cache, but only mem-
ory and disk, whereas the cache oblivious model is a multi-layered system
with r caches, named 1, 2, 3, . . . , r. The performance of a cache oblivious
model algorithm is measured by its work complexity like in the RAM-model and
also by the number of cache-misses

Historically good performance can obtained in the I/O-model, but the disadvantages
are that external algorithms should be tuned for the machine they are executed on.
Algorithm designed for cache oblivious model are normally divide and conquer
algorithms, which works good on all machines.

We are here not giving any examples on cache oblivious model algorithms, since
this is not the focus of this thesis.

February 28, 2009 74

B-trees Master thesis

8 B-trees

Memory feeds imagination.
Amy Tan (1952 -)

Before we start describing the dynamic I/O effecient B-trees in Chapter 10, which
is deduced from the dynamic skip list, described in Chapter 5, we will describe a
general method to transform skip lists to B-trees and back again in Chapter 9. This
method was first described in [MPS92] by J. Munro et al. and later in [DJ07] by
Brian C. Dean and Zachary H. Jones.

Before going into this dualism between B-trees and skip lists, we are introducing
the internal and external B-trees structure. This structure is almost equal in both the
internal and external memory model, the major difference is the analysis, we present
the two analysis’ in different sections; Internal B-trees are described in Section 8.2
and
external B-trees in Section 8.3. The differences in the data structure itself is pointed
out, when we described the B-trees, throughout Section 8.1.

8.1 Internal and external B-trees

The B-trees are introduced in 1972 by R. Bayer and E. McCreight [BM72] and
promise efficient search, even on large collections such as files.

B-trees with order k has five invariants it must satisfy;

1) Every node has at most k children.

2) Every node except for the root has at least a = k/2 nodes.

3) The root has at least 2 children, unless it is a leaf.

4) All leaves reside at the same level.

5) A node with i children contains i− 1 keys.

Master thesis Internal and external B-trees

An example of a B-tree is shown in Figure 8.1. In this thesis we only consider
B-trees where k ≥ 5. In the case where k = 4 we have (2-4)-trees as described
in Section 2.3.1. R. Bayer and E. McCreight [BM72] only considered trees,
where k was odd.

.

.

.

1
2
4

8
9

15
27
30
31

32
38
40
41

32

5

57

77

108

140

67

222

254

289

327

174

399

354

451
455
473
479

490
502
508
523

533
534
560
564
568

569
601

529

450

568

603

625
638
642
658

688
690
703
708

720

725
736
746
750

615

668

480

Figure 8.1: A B-tree with k = 6, which means each node has at least a = 6/2 = 3
children and maximum 6 children.

B-trees consist of nodes each containing i = [(k/2) − 1, k − 1] keys and
i + 1 children. These are arranged such that keys are placed in increasing order

February 28, 2009 76

B-trees Master thesis

v1 ≤ v2 ≤ . . . ≤ vi. The pointers p1, p2, . . . , pi+1 are arranged such that pi is placed
between keys vi−1 and vi. In the I/O-model each node are normally a file on disk
and k = B, which is the block size.

8.1.1 Dictionary operations

When searching for value x in B-tree T of size n, we start at the root and in
each node finding the first key ki, at position i, where x < ki. We then follow
pointer pi. The search terminates when we reach a leaf l and either find x or
determine that x exists l and therefore in T . Searching for x in a node v can be
done linear, but if k becomes large this is not feasible in practise and searching in
a node should instead be executed with a search scheme like for example binary
searching, which is bounded by at most O(lg k) comparisons.

Inserting key x into T is done by first locating leaf l, which should contain x. In
leaf l we find index i, where ki < x ≤ ki+1 and insert x between these two keys.
After inserting x into leaf l, the size of l can exceed size k and therefore create an
overflow.

An overflow operation occurs when node v exceed size k and is solved by
dividing v into two new nodes v′ and v′′. Node v are divided around some
key i = d(k + 1)/2e. The nodes v′ and v′′ are inserted into parent pv instead
of v. Each overflow operation can potentially cascade in pv, this should be
handled recursively in T . If root r is split, we insert a new root q instead
of r. This increases the height of T . In the I/O-model, dividing a node normally
consists of writing two new files v′ and v′′ to disk. It is obvious that the total number
of overflows in a single insert cannot exceed the height of T , which is O(logk n),
because we only split nodes on path from v to r.

Deleting key x in T is initiated by locating leaf l, which contain x. If x exists we
delete x from l. Now l is possibly smaller than k/2 keys, which means we should
handle underflows.

In this case we should merge it with the succeeding or preceding leaf w into a new
leaf q. The total size of these two nodes can exceed size k since,

|q| = |v|+ |w| ≥ k

2
− 1 +

k

2
+ 1 ≥ k ,

where |w| are bigger than k/2. Therefore we may split q in two nodes. This
guaranties that each node are smaller than k. If dividing is not necessary, the size
of parent of v is decreased by one.

77

Master thesis Internal analysis

Underflow in v can therefore cascade in the parent, in this case we recursively
handle an underflow in each node from v to r.

This coarse description of B-trees gives an overview of the data structure, but leaves
out how to optimise the data structure. Therefore we will present some obvious
ideas to optimise the general B-trees structure.

8.1.2 Optimising B-trees structures

When implementing B-trees in practise there are some optimisation possibilities,
not introduced above.

The first obvious optimisation is to store more than just a search key in the internal
nodes. Actually we could store the keys in internals node, instead of placing these
into a special key leaf. This would save space in an actual implementation, though
only a constant amount.

In internal B-trees as well as in external, changing Invariant 2 [Knu98, page 488],
such that a node cannot contain less than (2k)/3 keys, will give better access times,
but slower inserts, because we will end up demanding more attention when inserting
or deleting. Likewise we can let a node contain less than k/2 elements to make it
split less often.

For external B-trees it is expensive with a root containing only 2 pointers, this is
expensive because we need to read the root into memory at each access. Therefore
we should keep the root node in memory at all time and give it more children. In
the analysis in Section 8.3 this does not result in a tighter bound, but works better
in practise. In internal and external B-trees we should always try to keep as many
top level nodes in main memory or in the level one or two cache, to make accesses
to these nodes faster.

8.2 Internal analysis

The analysis differs on key points in the internal and external memory model,
therefore are we describing these analysis in two different sections. We are going
to start with the internal analysis in this section. B-trees are promising fast accesses
because we only touch few internal nodes, even on large collections. For example
with n = 1.999.998 and k = 199 we only need to touch 3 nodes before hitting
a leaf. Furthermore the analysis does not depend on amortisation, which makes
B-trees ideal for real time applications.

February 28, 2009 78

B-trees Master thesis

We start the analysis by determining the height of a B-tree T with n keys and a
branching factor k. All keys are placed in leafs. Each node vi has [k/2 − 1, k − 1]
keys (respectively [k/2, k] children). The number of keys on levels 0, 1, 2, 3 . . . is at
least

2, 2

⌈
k

2

⌉
, 2 ·

⌈
k + 1

2

2⌉
, . . .

The (n+ 1)th key in tree T of size n appears on level l, hence

n+ 1 ≥ 2

⌈
k

2

⌉l−1

.

This means that the number of levels h = h(T) is given as;

h(T) ≤ 1 + logd k+1
2
e

(
n+ 1

2

)
(8.1)

= O(logk n) (8.2)
= O(log n) . (8.3)

Accessing a leaf is therefore equal to accessing O(lg n) internal nodes. In each
node find the right child or key. If using binary searching at each internal node, this
equals maximum O(lg k) comparisons. The dominating factor is the height of the
tree and therefore an access cost bounded by,

O(lg k · lg n) = O(lg n) ,

comparisons.

An overflow (respectively underflow) operation can cascade on the path from a
leaf to the root, which in worst case is equal to O(log n) overflows (respectively
underflows). An overflow operation, divides a node into two new nodes, this costs
at most 2k = O(k). The same is valid for underflow operations, where we are
merging two nodes and maybe dividing one node of size k < l < 2k, this costs no
more than 2k+2k = 4·k = O(k). This means a sequence of overflows (respectively
underflows) costs at most O(k lg n).

Adding all this together means that a deletion or insertion composes searching plus
possibly succeeded by sequences of overflows respectively underflows. The bound
for delete or insert operations is therefore:

79

Master thesis External analysis

O (lg k · logk n) + 2 ·O (k logk n) ≤ 3 ·O (k lg n)

= O (k lg n) .

This concludes the analysis internal B-trees in the RAM-model. The analysis is
worst case, which makes B-trees ideal for usages in real time applications, where
there is a demand of no single time consuming operations.

8.3 External analysis

The analysis in the I/O-model differs from the internal analysis, presented above.
The analysis in I/O-models are different from the analysis in RAM-models, this has
been described in Chapter 7.

The height argument given above in Equation (8.2) is the same for external B-trees.
Let B be the size of a block, then each node contains at most B keys. As described
in Chapter 7, we can transfer B consecutive keys back and forth, between disk
and main memory. This implies that transferring a single node from disk to main
memory costs a single I/O operation.

To search in external B-tree T of size n, we need to fetch O(logB n) nodes from
disk. Searching for key x in a node v, is done in internal memory and is therefore
free. The total cost for searching is therefore bounded by O(logB n) I/O transfers.

Merging and splitting two nodes residing on disk, corresponds to doing a constant
number of reads and writes from disk. In the case where we split a node in two,
each newly created node contains approximately B/2 keys. Moving two nodes
into main memory costs two I/O’s. Merging the two nodes can be done in internal
memory1. Writing the new node back cost one I/O and finally changing the pointers
in the parent corresponds to another two I/O’s. The total cost is five I/O’s and the
expensive part is therefore cascading. The total cost is therefore:

h(T) · 5 I/O′s = O(logB n) · 5 I/O′s = O(logB n) I/O′s .

Equally an underflow takes a constant number of I/O’s. To read the two nodes
into main memory costs two I/O’s. Merging and splitting is done in main memory,
writing one or two nodes cost at most two I/O’s. Changing the parents pointers
costs another two I/O. This bounds an underflow to

1We here assumes that B2 < |M |.

February 28, 2009 80

B-trees Master thesis

h(T) · 6 I/O′s = O(logB n) I/O′s · 6 I/O′s = O(logB n) I/O′s .

This means that the number of I/O’s for updates (insert and delete) in the I/O-model
are equal to:

2 ·O(logB n) = O(logB n) .

As in the internal analysis, we have shown that searches and updates are bounded
logarithmic in the number of keys in the B-tree just before the operation.

All three operations are worst case, which makes the B-tree data structure ideal
for real time applications. In practise the external B-tree is furthermore superior to
the RAM version, when the space consumed by the input data exceeds the space
available in main memory. This property makes this data structure more attractive
when data size is growing as we see in a many real life scenarios like physics
experiments etc..

81

Translation between skip lists and B-trees Master thesis

9 Translation between skip lists and B-trees

Now that we in Chapter 8 have introduced the B-trees data structure, which is
fundamental data structure in many external algorithms and also in dynamic I/O
effecient B-trees, which we introduce in Chapter 10. As the last thing before we
present this structure we are presenting a method to translate skip lists to B-trees,
this method was introduced by B. Dean and Z. Jones [DJ07]. The paper introduces
a dualism between the two data structures and method to translated back and forth
between these structures.

The general idea is that each level of a skip lists is translated into a level of
nodes in B-trees. Thereby the height of the skip lists is also the height of the
final B-trees. In the skip list all elements ni, where xi ≤ ni ≤ yi, lies between
elements xi and yi on level i = min(h(x), h(y)), are placed in B-trees as children
to the node min(h(x), h(y))

As an example we translate the skip list on Figure 4.1 [p. 38] to a B-tree, using the
method described below. But before we presents the concrete example we explains
the translation scheme.

As mentioned above, the translation from skip list L to B-tree T starts by creating
a n−∞ element, this is the root of T . The child of n−∞ is a element containing
all elements from the highest level itop in L. Now recursively divide the existing
elements on level i − 1, between any two elements x and y on level i, where
0 ≤ i ≤ itop. This is implemented by taking all elements from level i − 1, which
lies between two elements on level i and make these into a tree node ni−1. Now we
need to make a pointer from node ni, between the keys x and y, to node ni−1.

Beside placing the nodes in the hierarchy described above we attach a weight to
each edge in T . The weight on the edge from n−∞ to the next node is equal the
height of L and is the only edge having a positive weight. All other edges have a
weight, which is equal to the difference in levels between the elements in L and is
always negative.

An translation from the skip list visualised in Figure 4.1 [p. 38] to a B-tree can be
seen at Figure 9.1.

The height of this newly created B-tree is most the same height as the original skip

Master thesis

25

8

3 4 14 19

15 22

28 52

38

39 40 46

6

−2

−1

−2 −2

−1

−2

−2

−1

n−∞

Figure 9.1: A translation from the skip list Figure 4.1 [p. 38] to a B-tree T .

list plus one. As seen in Figure 9.1 and 4.1, this is an upper bound on the height.
The expected height of the probabilistic skip list in Section 4.1 is both bounded by
O(lg n). In general the height of a B-tree T generated from a skip listL is maximum
h(L) + 1.

Inserting key x into T is done almost as in an ordinary B-trees, see Section 8.1.
When inserting x we find, by going downwards in T , the right leaf v, where x is
inserted. As an example we insert 27 into T , which are showed in Figure 9.1. We
insert 27 as leaf with 28 as parent. The node should have a total weight on the path
from the root to v, which is equal to wv = h(T) +

∑
iwi − 1, for all i on path

from root to v. In our concrete case this equals 6 + (−2)− 1 = −3.

So node 27 get weight on the edge from 27 to 28, which equals−3. To determine v’s
final placement in T we roll a dice1, just as in we would when inserting into a prob-
abilistic skip list, see Section 4.1. As long as this dice returns a number smaller or
equal to p, we subtracts one from the total weight of edge. When inserting 27 we roll
our special dice until it rolls a number greater than 1/2. Here we move v upwards
in T , rearranging the nodes on the path from the root to v. The concrete example
results for example in two positive rolls, before the dice returns a number greater
than p = 1/2. So we move the element 27 up two levels, which means we add 2 to
the weight and therefore the edge between 28 and 27 equals −1.

Deleting an element x from T , is done by removing the key from the node v and
merging two nodes below if v is an internal node. If x is the only key in v we delete
node v and merge the two children w1 and w2 into node w. The pointer from v’s
parent to v is changed so it points to w and we subtracts 1 from the weight on this
edge. This corresponds to removing an higher element between to lower sets of
consecutive elements in skip lists.

In the concrete example both of these operations is bounded in the height O(lg n).
Searching costs at mostO(lg n), the same as in the skip list described in Section 4.1.

1A dice which rolls a uniform distributed number in the interval [0, 1].

February 28, 2009 84

Translation between skip lists and B-trees Master thesis

Promoting an element is expected O(lg n) positives rolls, by the same argument as
in Section 4.1, each step can be done at cost O(1).

In general the height of generated B-trees are equal the height of skip lists used.

85

Dynamic I/O efficient B-trees Master thesis

10 Dynamic I/O efficient B-trees

Collecting data is only the first step
toward wisdom, but sharing data is the

first step toward community.
Henry Louis Gates Jr (1950 -)

The dynamic I/O effecient B-trees data structures is described by
M. Bŏdoiu et al. in [BCDI07], is a dynamic I/O effective data structure, which
is adaptive, like the splay tress, described in Chapter 3 and dynamic self adjusting
skip lists, described in Chapter 5. We are in this chapter going to describe the
data structure, where all details concerning the data structure and the analysis will
be presented and to some extent also details which deals with implementing it.
In Section 10.2 we are going through the analysis, where we are presenting the
working set property for this I/O algorithm.

Before going into the analysis of this data structure we will in Section 10.1 described
how the operation on the dynamic self adjusting skip lists works.

10.1 Data structure

In this section we will describe what the dynamic I/O effecient B-trees data structure
looks like and how operations are performed. We will also present some of
the implementation details whenever these are not following directly from the
description.

We recall from Section 8.3 that in the I/O effective B-trees data structures we
define B, where B is equal the block size. Now we can define the two
constants we are going to use in the dynamic I/O effecient B-tree namely b = B
and a = dB/2e. The B-trees structure, described in Section 8.1, keeps every
dictionary key in the leaves, however we are in here storing keys in the internal
nodes, as suggested in Section 8.1.2.

Master thesis Data structure

Furthermore we maintain the following invariants:

1) Every node has at most B children.

2) Every node vi except for the root has at least a nodes after an overflow or
delete operation, which involves vi.

3) All leaves reside at the same level.

4) A node with k + 1 children contains k keys.

The dynamic I/O effecient B-trees therefore keeps between a and B keys in each
internal node. A node with k keys is having k + 1 children and of course a pointer
to each of these. We have loosened Invariant 2) compared to the general B-trees in
Section 8.1, so that node v can contain less than a keys, until an overflow or delete
operation involving node v is performed. This means that T can contain nodes,
which have fewer than a nodes.

54 106 143 201

23 28 44

45 48 5233 34 41

62 72 83 97

55 57 61 64 70 71

18

15

Figure 10.1: Dynamic I/O effective B-tree. Only necessary pointers are shown.

An illustration of a dynamic I/O effecient B-trees can be found in Figure 10.1, where
the constant b = B = 6 and a = 6/2 = 3.

10.1.1 Searching

Searching for key x in a dynamic I/O effecient B-tree T , is done like in ordinary
B-trees, moving down into a nodes ith child, if the keys ki < x < ki+1. If we reach
a leaf and the key x does not exist in this then the search stops, because then x does
not exist in T .

If we find x in a node or leaf, we need to promote x to the root r. We are going to
describe this operation in Section 10.1.4

February 28, 2009 88

Dynamic I/O efficient B-trees Master thesis

10.1.2 Insertions

When inserting a key x in T we need to insert this into root node r, so
that x afterwards is easily accessible. Inserting x into root node r is easy, but
requires splitting children nodes, such that searching in T is still possible. The
value x divides each node on a path from r to a leaf l in two around the value x.
This means that in worst case we need h(T) splits, which is bounded by O(logB n)
I/O’s.

54 106 143 201

45 48 5233 34 41

62 72 83 97

55 57 61 64 70 71

18

25

23 28 44

15

Figure 10.2: Dynamic I/O effective B-tree after inserting key 25. Only necessary
pointers are shown.

As an example we have inserted 25 into the dynamic I/O effecient B-tree, shown in
Figure 10.1, the resulting tree is shown in Figure 10.2. Here we can see that some
of the nodes contains fewer than a keys after an insertion.

Inserting a key into r can of course also result in r becoming larger than B, which
is handled by an overflow operation, see Section 10.1.5 for description.

10.1.3 Deletions

Deleting a key x can only be executed if x is present in the structure. So we start by
searching for x. If x is in a leaf l, two things can happen:

1. The size of l becomes smaller than a, in this case we merge l with a
succeeding or preceding leaf.

2. The size of l is still containing between a and B keys and deletion stops here.

Otherwise x is located in an internal node v, we first remove the key
from v and then merge the children along the path from v to some leaf. All nodes
merged, can of course now exceed the size b, in which case they should be slitted
again to maintain Invariant 1).

89

Master thesis Data structure

106 143 201

45 48 5233 34 41

62 72 83 97

55 57 61 64 70 71

18

25

23 28 44

15

Figure 10.3: Dynamic I/O effective B-tree after deleting key 54. Only necessary
pointers are shown.

The result of a delete operation is shown in Figure 10.3, where we have removed
key 54 in the dynamic I/O effecient B-tree.

10.1.4 Promote

Promoting a key from its original position at node v to root node r in T , is what
makes this algorithm adaptive and satisfying the working set property, described in
Section 1.2.1. Promotion is simply done as a deletion of x from v, here we assume
that we already have a pointer to x, so we do not need to locate x first. After this we
insert x back into T as described in Section 10.1.1. This means that a promotion
can result in a overflow, if the size of r exceeds B keys after inserting x.

10.1.5 Overflow

The expensive operation in the dynamic I/O effecient B-trees is the overflow
operation. The idea with this operation is to move keys with a high working set
number1 downwards in T . The higher working set number, the “older” a key is.

If a node v is exceeding size B we need to let some of the keys seep downwards
in to the children. We choose to move the dB/2e oldest keys downwards into the
children. Moving a single key x down from node v to w, consist of deleting x from
v and merging w and it predecessor (successor respectively). No we can insert x
into w, which can result in w becoming to large, here we need to split w to maintain
Invariant 1.

The overflow operation moves the dB/2e oldest keys in v downwards in T . An
overflow operation in node v can of course cascade into lower nodes, in which case
this operation is becoming expensive in the worst case, the trick to make accesses

1A key with a high working set number, has not been accessed recently.

February 28, 2009 90

Dynamic I/O efficient B-trees Master thesis

pay a part of this expensive operation, as we shall see in Section 10.2.5, when
analysing this operation.

10.2 Analysis

In this section we are going to present an analysis of the dynamic I/O effecient B-
tree T , with n keys. Here we will weight the amortised analysis of accessing a
sequence X = {x1, x2, . . . , xm} highest, but also include amortised analysis where
it makes sense.

To analyse the dynamic I/O effecient B-trees, it is necessary to use potential
functions, since we have at least one operation, namely overflow, described in
Section 10.1.5, which can cascade and in worst case use very much time equal
to O(n). So let the height of an key x, donated h(x), be the number of nodes
we need to visit when searching for x in T , this means that the depth of x equals
d(x) = h(T)− h(x). Then we can define the potential function

Φ(T) =
n∑

i=0

c · d(xi) ,

for some constant c, if x is placed in r, then d(x) = h(T). This means that each
keys potential, can decrease a constant c for each overflow operation. Therefore it
cannot cost more than a constant c when moving x downwards one level in T .

The height of a dynamic I/O effecient B-tree T can be bounded to the size of
T . The constants a and B are defined above. On each level i we have at
least O(i · ai) keys. This gives an upper bound on the number of levels O(logB n),
as we have seen in previous analysis’.

But before going into further details, about how to pay for the overflow operations
and showing the working set analysis, we are going to calculate what each operation
on T of size n costs.

10.2.1 Search

Locating a key x in T , is like searching in a normal external B-tree and the
complexity is the same, namely O(logB n) I/O’s. When we know where x is in
T , we need to promote this key to the root, which can result in an overflow. It is
shown in Sections 10.2.4 and 10.2.5, that we can charge extra O(logB n) I/O’s to

91

Master thesis Analysis

the search cost to pay for these operations. The total amortised cost is therefore
bounded by O(logB n) I/O’s.

This is an amortised analysis, which assume that x is in a leaf, we are in
Section 10.2.6 showing that if we are accessing a sequence X of size m, then the
cost is bounded by the working set property, described in Section 1.2.1, because
keys not always resides in a leaf.

10.2.2 Insert

When inserting a key x in T , we recall that we insert x in the root r and split nodes
around the key x from r on a single path to a leaf.

We have bounded the height of T , so the work needed on each level are
splitting a node vx around x, where |vx| is maximum B keys. This means we
do O(1) I/O’s on each level. This means we have an upper bound on the number of
I/O’s for an insertion in T , namely,

c · logB n = O(logB n) ,

where c is some unspecified constant, which mainly depends on the implementation.
An insert can, as described above, result in an overflow, this cost are incorporated
into this cost. Each overflow could potential move x down one level, so to
incorporate this cost, we charge extra O(logB n) I/O’s to each insert, to pay for
the c · h(T) = c · d(x) potential needed by x.

10.2.3 Deletion

Locating x in T costs, as shown in Section 10.2.1, at mostO(logB n) I/O’s. Deleting
a key, means merging two and possibly splitting two nodes at each level below
x. The maximum number of nodes we need to read from disk and write back is
therefore,

O ((2 I/O′s+ 2 I/O′s) · h(x)) ≤ O (4 I/O′s · logB n) = O (logB n) I/O′s .

Then we can conclude that deleting key x is bounded by O(logB n) I/O’s.

February 28, 2009 92

Dynamic I/O efficient B-trees Master thesis

10.2.4 Promote

Suppose we have found key x in a node vx in T . Then we need to delete x. This
costs according to Section 10.2.3 at most O(logB n) I/O’s to merge and split nodes
below vx. Inserting key x afterwards in r cost according to Section 10.2.2 also
O(logB n) I/O’s.

Now we only need to charge x for the increase in potential when moving x up into
r, which is equal to:

c · (h(T)− h(x)) ≤ c · h(T) = O(logB n) .

So promoting a key x cost at most O(logB n) I/O’s.

10.2.5 Overflow

When a node in T exceeds the size B, we need to move keys downwards in T .
When moving key x one level down, from node v to w, we already know, we do not
have to divide nodes further down, because this is already done. Removing x from
v can result in v becoming to small, in which case we should merge v with one of
its neighbours. This cost at most 2 I/O′s = O(1) I/O′s. Inserting x into w can result
in an overflow in w, which can trigger a cascade of overflow operations.

The drop in potential corresponds to O(1) for each level, key x is moved
downwards. Therefore paying for an overflow operation can be done by adding
a constant O(1) I/O’s to each access operation.

10.2.6 Working set analysis

In this section we will use the above result to show that a sequence ofm accesses on
a dynamic I/O effecient B-tree T of size n is bounded by the working set property.

Theorem 10.1. On a sequence X of m accesses, where X = {x1, x2, x3, . . . , xm},
the working set property bounds the number of I/O’s used to:

O

(
m∑

i=0

logb ti(xi)

)
,

where ti(xi) is the working set number for x at the ith access.

93

Master thesis Analysis

Proof. Accessing a key on level j costs at most O(j) I/O’s, because we
visit j nodes. Visiting a node costs O(1) I/O’s.

To fill all nodes in an empty level j in T , needs at leastBj accesses. When accessing
an key x with working set number ti(x), where Bj−1 < ti(x) ≤ Bj , the search cost
for this key is less than O(j) I/O’s, which is equal to x residing in a node at level j.

This means the number of I/O’s we should use to find x on level j is,

O(logbB
j) = O(j) = O(logB ti(x)) I/O′s .

Over a m length sequence these access costs

O

(
m∑

i=0

logb ti(x)

)
I/O′s ,

which concludes the proof.

�

This concludes the working set analysis of the dynamic I/O effecient B-tree.

February 28, 2009 94

Future work Master thesis

11 Future work

Prediction is very difficult, especially
about the future.

Niels Bohr (1885 - 1962)

We have in this thesis covered the working set property in internal memory, with
empirical tests as well as description and analysis of both splay trees and dynamic
self adjusting skip lists.

We have in the external memory model also described and analysed the dynamic
I/O effecient B-trees structure. We need to implement this structure to test it against
internal memory algorithms below and around the memory level. Testing it above
the memory level with for example external B-trees would also be interesting, to
see how much of a speed up, we gain when dynamically optimise for skew access
sequences.

Conclusion Master thesis

12 Conclusion

Finally, in conclusion, let me say just
this.

Peter Sellers (1925 - 1980)

We have in this thesis covered different adaptive data structure designed for faster
accesses to skew access sequences. In particular have we described and test
dynamic self adjusting skip lists and splay trees. We have shown that both these
data structures have an equal amortised logarithmic bound for accessing elements
by their working set number. The implementation and conducted tests shows that
splay trees performs faster on sequences, where splay trees gains an advantages
from either the sequential access property or the dynamic finger property. But when
testing the two structures by a purely working set sequence we see an equal access
time.

We have lastly shown how to transform the dynamic self adjusting skip lists into
an external data structure dynamic I/O effecient B-trees, which only uses an
logarithmic number of I/O’s for accessing element according to their working set
number.

BIBLIOGRAPHY Master thesis

Bibliography

[AV88] Alok Aggarwal and Jeffrey S. Vitter. The input/output complexity of
sorting and related problems. Commun. ACM, 31(9):1116–1127, 1988.

[BBG02] Amitabha Bagchi, Adam L. Buchsbaum, and Michael T. Goodrich.
Biased skip lists. In ISAAC ’02: Proceedings of the 13th International
Symposium on Algorithms and Computation, pages 31–43,44–48.
Springer-Verlag, London, UK, 2002.

[BCDI07] Mihai Bŏdoiu, Richard Cole, Erik D. Demaine, and John Iacono. A
unified access bound on comparison-based dynamic dictionaries. Theor.
Comput. Sci., 382(2):86–96, 2007.

[BDL08] Prosenjit Bose, Karim Douïeb, and Stefan Langerman. Dynamic
optimality for skip lists and B-trees. In SODA ’08: Proceedings of
the nineteenth annual ACM-SIAM symposium on Discrete algorithms,
pages 1106–1114. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2008.

[BM72] Rudolf Bayer and Edward M. McCreight. Organization and
maintenance of large ordered indexes. Acta Informatica, 1(2):173–189,
1972.

[BST85] Samuel W. Bent, Daniel D. Sleator, and Robert E. Tarjan. Biased search
trees. SIAM J. Comput., 14(3):545–568, 1985.

[BT78] Mark R. Brown and Robert E. Tarjan. Design and analysis of a data
structure for representing sorted lists. Technical report, Stanford, CA,
USA, 1978.

[Col00] Richard Cole. On the dynamic finger conjecture for splay trees. part ii:
The proof. SIAM J. Comput., 30(1):44–85, 2000.

[DJ07] Brian C. Dean and Zachary H. Jones. Exploring the duality between
skip lists and binary search trees. In ACM-SE 45: Proceedings of the
45th annual southeast regional conference, pages 395–399. ACM, New
York, NY, USA, 2007.

[FLPR99] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar
Ramachandran. Cache-oblivious algorithms. In FOCS ’99: Proceedings

Master thesis BIBLIOGRAPHY

of the 40th Annual Symposium on Foundations of Computer Science,
pages 285–397. IEEE Computer Society, Washington, DC, USA, 1999.

[GTG01] Michael T. Goodrich, Roberto Tamassia, and Michael Goodrich.
Algorithm Design: Foundations, Analysis, and Internet Examples.
Wiley, September 2001. 235-240 pp.

[HM82] Scott Huddleston and Kurt Mehlhorn. A new data structure for
representing sorted lists. Acta Informatica, 17(2):157–184, 1982.

[Hoc97] Dorit S. Hochbaum. Approximation Algorithms for NP-hard Problems,
chapter 13, pages 521–564. PWS Publishing Company, first edition,
1997.

[IL02] John Iacono and Stefan Langerman. Queaps. In ISAAC ’02:
Proceedings of the 13th International Symposium on Algorithms and
Computation, pages 211–218. Springer-Verlag, London, UK, 2002.

[Knu98] Donald E. Knuth. Art of Computer Programming, Volume 3: Sorting
and Searching. Addison-Wesley Professional, second edition, April
1998. 409-417, 482-491 pp.

[MPS92] J. Ian Munro, Thomas Papadakis, and Robert Sedgewick. Deterministic
skip lists. In SODA ’92: Proceedings of the third annual ACM-
SIAM symposium on Discrete algorithms, pages 367–375. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 1992.

[Pug90] William Pugh. Skip lists: a probabilistic alternative to balanced trees.
Commun. ACM, 33(6):668–676, 1990.

[ST85a] Daniel D. Sleator and Robert E. Tarjan. Amortized efficiency of list
update and paging rules. Commun. ACM, 28(2):202–208, 1985.

[ST85b] Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary
search trees. J. ACM, 32(3):652–686, 1985.

[Tar85a] Robert E. Tarjan. Amortized computational complexity. SIAM, 6(2):
306–318, 1985.

[Tar85b] Robert E. Tarjan. Sequential access in splay trees takes linear time.
Combinatorica, 5(4):367–378, 1985.

[TG98] Andrew S. Tanenbaum and James R. Goodman. Structured Computer
Organization. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1998.
16-19 pp.

Note. Bold faced page numbering means these pages have been read carefully.

February 28, 2009 100

Test result Master thesis

A Test result

Below are all the graphs from the empirical tests, conducted in Chapter 6. The data
used for these results can be found on the URL:
http://www.cs.au.dk/~henrik/thesis/test/.

A.1 Comparing dynamic self adjusting skip list(continued)

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 50000 100000 150000 200000

#m
er

ge
s

#searches

Comparing number of merges with number of searces. Size of structure=4196

{1,n,1,n,...,1,n} searches
{1,2,...,1,2,3,...,n} searches

Figure A.1: Comparing number of
merges in stucutures of size 4196.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0 200000 400000 600000 800000 1e+06

#m
er

ge
s

#searches

Comparing number of merges with number of searces. Size of structure=25176

{1,n,1,n,...,1,n} searches
{1,2,...,1,2,3,...,n} searches

Figure A.2: Comparing number of
merges in stucutures of size 25176.

http://www.cs.au.dk/~henrik/thesis/test/

Master thesisComparing self adjusting search trees (continued)

A.2 Comparing self adjusting search trees (contin-
ued)

A.2.1 Sequences {1, n, 1, n, 1, n, . . . , 1, n}

 0.00015

 0.0002

 0.00025

 0.0003

 0.00035

 0.0004

 0.00045

 0.0005

 0.00055

 200000 400000 600000 800000 1e+06

tim
e[

m
s]

/#
se

ar
ch

es

#searches

Comparing {1, n, 1, n .., 1, n} accesses between search structures of size

DSL B=2
Splay tree

Figure A.3: Searching for
{1, 4196, 1, 4196, 1, 4196, . . . , 4196}
in stucutures containing elements
{1, 2, 3, . . . , 4196}.

 0.0002

 0.00025

 0.0003

 0.00035

 0.0004

 0.00045

 0.0005

 0.00055

 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06

tim
e[

m
s]

/#
se

ar
ch

es

#searches

Comparing {1, n, 1, n .., 1, n} accesses between search structures of size=16784

DSL B=2
Splay tree

Figure A.4: Searching for
{1, 16784, 1, 16784, 1, 16784, . . . , 16784}
in stucutures containing elements
{1, 2, 3, . . . , 16784}.

 0.0002

 0.00025

 0.0003

 0.00035

 0.0004

 0.00045

 0.0005

 0.00055

 1e+07 2e+07 3e+07 4e+07 5e+07

tim
e[

m
s]

/#
se

ar
ch

es

#searches

Comparing {1, n, 1, n .., 1, n} accesses between search structures of size=402816

DSL B=2
Splay tree

Figure A.5: Searching for
{1, 402816, 1, 402816, 1, 402816, . . . , 402816}
in stucutures containing elements
{1, 2, 3, . . . , 402816}.

February 28, 2009 102

Test result Master thesis

A.2.2 Sequences {1, 2, 1, 2, . . . , 1, 2}

 0.0002

 0.00025

 0.0003

 0.00035

 0.0004

 0.00045

 0.0005

 200000 400000 600000 800000 1e+06

tim
e[

m
s]

/#
se

ar
ch

es

#searches

Comparing {1,2,1,2,1,2,...} accesses between search structures of size=4196

DSL B=2
Splay tree

Figure A.6: Searching for
{1, 2, 1, 2, 1, 2, . . . , 1, 2} in
stucutures containing elements
{1, 2, 3, . . . , 4196}.

 0.0002

 0.00025

 0.0003

 0.00035

 0.0004

 0.00045

 0.0005

 1e+06 2e+06 3e+06 4e+06 5e+06

tim
e[

m
s]

/#
se

ar
ch

es

#searches

Comparing {1,2,1,2,1,2,...} accesses between search structures of size=25176

DSL B=2
Splay tree

Figure A.7: Searching for
{1, 2, 1, 2, 1, 2, . . . , 1, 2} in
stucutures containing elements
{1, 2, 3, . . . , 25176}.

 0.0002

 0.00025

 0.0003

 0.00035

 0.0004

 0.00045

 0.0005

 0.00055

 0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07 8e+07

tim
e[

m
s]

/#
se

ar
ch

es

#searches

Comparing {1,2,1,2,1,2,...} accesses between search structures of size=402816

DSL B=2
Splay tree

Figure A.8: Searching for
{1, 2, 1, 2, 1, 2, . . . , 2} in
stucutures containing elements
{1, 2, 3, . . . , 402816}.

103

Master thesisComparing self adjusting search trees (continued)

A.2.3 Increasing working set numbers

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

 0.0018

 2e+06

tim
e[

m
s]

/#
se

ar
ch

es

#searches

Searching for elements with working set number =16384

DSL
splay tree

Figure A.9: Searching for
{1, 2, 3, . . . , 16384, 1, . . .} in
stuctures.

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

 0.0011

 0.0012

 200000 400000 600000 800000 1e+06

tim
e[

m
s]

/#
se

ar
ch

es

#searches

Searching for elements with working set number =32768

DSL
splay tree

Figure A.10: Searching for
{1, 2, 3, . . . , 32768, 1, . . .} in
stuctures.

 5e-05

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

 0.00035

 0.0004

 0.00045

 0.0005

 0.00055

 0.0006

 0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

tim
e[

m
s]

/#
se

ar
ch

es

#searches

Searching for elements with working set number =57344

DSL
splay tree

Figure A.11: Searching for
{1, 2, 3, 57344, 1, . . .} in stuctures.

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0 50000 100000 150000 200000 250000 300000 350000

tim
e[

m
s]

/#
se

ar
ch

es

#searches

Searching for elements with working set number =57344

Splay tree
DSL

Figure A.12: Searching for random
elements within a working set num-
ber 57344.

February 28, 2009 104

Test result Master thesis

 0.0002

 0.00025

 0.0003

 0.00035

 0.0004

 0.00045

 0.0005

 0.00055

 0.0006

 0 50000 100000 150000 200000 250000 300000 350000

tim
e[

m
s]

/#
se

ar
ch

es

#searches

Searching for elements with working set number =73728

Splay tree
DSL

Figure A.13: Searching for random
elements within a working set number
73728.

A.2.4 Sequences {1, 2, 3, . . . , n, 1, 2 . . .}

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

 0.0011

 0.0012

 0.0013

 0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06

tim
e[

m
s]

/#
se

ar
ch

es

#searches

Comparing {1,2,3,...,n,1,2,3,...,n,1,2,...} accesses between search structures of size=4196

DSL B=2
DSL B=4

Splay tree

Figure A.14: Searching for
{1, 2, 3, . . . , 4196, 1, 2, . . . , 4196}
in stucutures containing elements
{1, 2, 3, . . . , 4196}.

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06

tim
e[

m
s]

/#
se

ar
ch

es

#searches

Comparing {1,2,3,...,n,1,2,3,...,n,1,2,...} accesses between search structures of size=25176

DSL B=2
DSL B=4

Splay tree

Figure A.15: Searching for
{1, 2, 3, . . . , 25176, 1, 2, . . . , 25176}
in stucutures containing elements
{1, 2, 3, . . . , 25176}.

105

Master thesisComparing self adjusting search trees (continued)

A.2.5 Unified access sequences

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

 0.0018

 0.002

 0.0022

 0.0024

 0 50000 100000 150000 200000 250000 300000 350000 400000

tim
e[

m
s]

/#
se

ar
ch

es

#searches

Searching for {1,n/2,2,n/2+1,3,n/2+2,...,n,1,...}. Structure of size 50352

DSL
splay tree

Figure A.16: Searching for
{1, 50352/2, 2, 50352/2 +
1, 3, 50352/2 + 2, . . . , 50352/2 −
1, 50352, 1, . . .} in stucutures
containing elements
{1, 2, 3, . . . , 50352}.

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

 0.0018

 0.002

 0.0022

 0.0024

 0 50000 100000 150000 200000 250000 300000 350000 400000

tim
e[

m
s]

/#
se

ar
ch

es

#searches

Searching for {1,n/2,2,n/2+1,3,n/2+2,...,n,1,...}. Structure of size 83920

DSL
splay tree

Figure A.17: Searching for
{1, 83920/2, 2, 83920/2 +
1, 3, 83920/2 + 2, . . . , 83920/2 −
1, 83920, 1, . . .} in stucutures
containing elements
{1, 2, 3, . . . , 83920}.

February 28, 2009 106

Test environment Master thesis

B Test environment

B.1 Equipment

The test described in this chapter, is conducted on a dual core Intel(R) Xeon(TM)
CPU 3.00GHz computer with 2 MB cache. Furthermore this computer has been
supplied with 2 GB DDR2 RAM.

$ cat /proc/cpuinfo
processor : 0
vendor_id : GenuineIntel
cpu family : 15
model : 4
model name : Intel(R) Xeon(TM) CPU 3.00GHz
stepping : 3
cpu MHz : 3000.284
cache size : 2048 KB
physical id : 0
siblings : 2
core id : 0
cpu cores : 1
fdiv_bug : no
hlt_bug : no
f00f_bug : no
coma_bug : no
fpu : yes
fpu_exception : yes
cpuid level : 5
wp : yes
flags : fpu vme de pse tsc msr pae mce cx8

apic sep mtrr pge mca cmov pat pse36
clflush dts acpi mmx fxsr sse sse2 ss ht
tm pbe nx lm constant_tsc pebs bts sync_rdtsc
pni monitor ds_cpl cid cx16 xtpr

bogomips : 6004.61
clflush size : 64

Master thesis Equipment

processor : 1
vendor_id : GenuineIntel
cpu family : 15
model : 4
model name : Intel(R) Xeon(TM) CPU 3.00GHz
stepping : 3
cpu MHz : 3000.284
cache size : 2048 KB
physical id : 0
siblings : 2
core id : 0
cpu cores : 1
fdiv_bug : no
hlt_bug : no
f00f_bug : no
coma_bug : no
fpu : yes
fpu_exception : yes
cpuid level : 5
wp : yes
flags : fpu vme de pse tsc msr pae mce cx8

apic sep mtrr pge mca cmov pat pse36
clflush dts acpi mmx fxsr sse sse2 ss
ht tm pbe nx lm constant_tsc pebs bts
sync_rdtsc pni monitor ds_cpl cid
cx16 xtpr

bogomips : 6000.26
clflush size : 64

$ free
total used free shared buffers

Mem: 1035908 855388 180520 0 3520
-/+ buffers/cache: 62576 973332
Swap: 2650684 8640 2642044

The operating system installed on the test machine is a the linux distribution Debian
Sid. This distribution is installed with:

$ uname -a
Linux camel15 2.6.24-perfctr #1

SMP Mon Sep 8 21:53:20 CEST 2008 i686 GNU/Linux

All test is performed without a running X-server and a minimum of services.

February 28, 2009 108

Test environment Master thesis

We have used GCC’s C++ compiler to compile the source code:

$ gcc -v
Using built-in specs.
Target: i486-linux-gnu
Configured with: ../src/configure -v

--with-pkgversion=’Debian 4.3.2-1’
--with-bugurl=file:///usr/share/doc/gcc-4.3/README.Bugs

--enable-languages=c,c++,fortran,objc,obj-c++
--prefix=/usr
--enable-shared
--with-system-zlib
--libexecdir=/usr/lib
--without-included-gettext
--enable-threads=posix
--enable-nls
--with-gxx-include-dir=/usr/include/c++/4.3
--program-suffix=-4.3
--enable-clocale=gnu
--enable-libstdcxx-debug
--enable-objc-gc
--enable-mpfr
--enable-targets=all
--enable-cld
--enable-checking=release
--build=i486-linux-gnu
--host=i486-linux-gnu
--target=i486-linux-gnu

Thread model: posix
gcc version 4.3.2 (Debian 4.3.2-1)

The compile options given to GCC when compiling for testing are:

g++ -o DSkipList/DSkipList.o -c -O2 -Wall -DTEST=true
testSuite.cpp

B.2 To compile and run

To compile and run the code presented in this thesis following thing are needed.

• GCC C++ compiler

109

Master thesis To compile and run

• SCons

• gprof

To build the source suite follow the following procedure:

1. $ cd /src

2. Choose between profiling/test mode.

(a) $ scons debug=2 - to build profiling files.

(b) $ scons debug=3 - to build test files.

When the code is build, it should be simple to start a test, testing all sequences
mentioned in Chapter 6, just execute:

$./runTest.sh

To test a single structure with a given set of parameters run on of the following
commands:

$./DSkipList/dSkipList_{test,profiling}
$./SplayTree/splaytree_{test,profiling}

The commands should be run with the requested set of parameters and the structure
should of course be build before doing this step.

February 28, 2009 110

	Abstract
	Resume
	Acknowledgements
	Table of Contents
	Introduction
	Comparing algorithms
	Analysing algorithms
	Algorithmic properties

	Adaptive search algorithms
	Move to front heuristic
	Unified structure
	Queaps

	Splay trees
	Splaying
	Dictionary operations
	Analysis
	Implementation

	Probabilistic and deterministic skip lists
	Probabilistic skip lists
	Deterministic skip lists
	(a,b) biased skip lists

	Dynamic self adjusting skip lists
	Data structure
	Analysis
	Implementation

	Testing dynamic dictionaries
	Test scenario
	Results

	The I/O-model
	Analysing in the I/O-model
	Cache oblivious memory mode

	B-trees
	Internal and external B-trees
	Internal analysis
	External analysis

	Translation between skip lists and B-trees
	Dynamic I/O efficient B-trees
	Data structure
	Analysis

	Future work
	Conclusion
	Bibliography
	Test result
	Comparing dynamic self adjusting skip list(continued)
	Comparing self adjusting search trees (continued)

	Test environment
	Equipment
	To compile and run

