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Abstract

Geometric Cover is a large family of NP-complete special cases of the broader Set Cover problem.
Unlike the general problem, Geometric Cover involves objects that exist in a geometric setting,
consequently implying that they are all restricted to obeying some inherent structure. The
archetypal example is Line Cover, also known as Point-Line Cover, where a set of points in
a geometric space are to be covered by placing a restricted number of lines. We present new
FPT algorithms for the sub-family Curve Cover (which includes Line Cover), as well as for
Hyperplane Cover restricted to R3 (i.e. Plane Cover), with improved time complexity compared
to the previous best results. Our improvements are derived from a more careful treatment of
the geometric properties of the covering objects than before, and invoking incidence bounds
from pure geometry.

An orientation of an un-directed graph is a directed version of it, i.e. where every un-directed
edge in the original graph has been replaced by a directed edge, incident on the same two vertices,
in either direction. Graph orientations with low out-degree are desirable as the foundation of
data structures with many applications. If the un-directed graph is dynamic (can be altered
by some outside actor), some orientations may need to be reversed in order to maintain the
low out-degree. We present a new algorithm that is simpler than earlier work, yet matches or
outperforms the efficiency of these results with very few exceptions.

Counter games are a type of abstract game played over a set of counters holding values,
and these values may be moved between counters according to some set of rules. Typically
they are played between two players: the adversary who tries to concentrate the greatest value
possible in a single counter, and the benevolent player who tries to prevent the adversary from
doing so. These counter games are sometimes used as a behind-the-scenes tool for proving the
efficiency of an algorithm, i.e. proving that the adversary is unable concentrate more than some
specific value in a counter, also proves that the algorithm cannot perform worse than this value.
We develop a new counter game with only one player (the adversary), and use it to prove the
efficiency of the graph orientation algorithm.
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Resumé

Geometrisk Dækning er en stor familie af NP-fuldstændige specialtilfælde af det mere generelle
Mængdedækningsproblem. I modsætning til det generelle problem involverer Geometrisk Dækn-
ing objekter der findes i en geometrisk ramme, hvilket medfører at de alle har en bestemt
struktur. Det ærketypiske eksempel er Linjedækning, også kendt som Punkt-linje-dækning,
hvor en mængde punkter i et geometrisk rum skal dækkes ved at placere et begrænset antal
linjer. Vi præsenterer en ny FPT-algoritme for underfamilien Kurvedækning (som inkluderer
Linjedækning) samt Hyperplandækning begrænset til R3 (dvs. Plandækning), med forbedret
tidskompleksitet sammenlignet med de tidligere bedste resultater. Vores forbedringer skyldes
en mere omhyggelig behandling af de geometriske egenskaber af dækobjekterne end førhen samt
en anvendelse af incidensgrænser fra ren geometri.

En orientering af en uorienteret graf er en orienteret udgave af den, dvs. hvor hver uorienteret
kant i den oprindelige graf er erstattet af en orienteret kant mellem de samme to kanter i en af
de to mulige retninger. Graforienteringer med lav udgrad er ønskelige da de danner fundament
for datastrukturer med mange anvendelser. Hvis den uorienterede graf er dynamisk (dvs. kan
ændres af en udenforstående aktør), kan det være at man er nødt til at vende orienteringen af
visse kanter for at bibeholde den lave udgrad. Vi præsenterer en ny algoritme der er simplere
end tidligere resultater, men som opnår eller forbedrer effektiviteten af disse resultater med
ganske få undtagelser.

Tællespil er en type af abstrakte spil som spilles hen over en mængde tællere der har værdier,
og disse værdier kan flyttes mellem tællere i henhold til nogle regler. Typisk spilles de mellem
to spillere: modstanderen, der forsøger at koncentrere den højest mulige værdi i én tæller, og
den godhjertede spiller, som forsøger at forhindre modstanderen i at gøre sådan. Disse tællespil
bruges nogle gange under overfladen som et værktøj til at bevise effektiviteten af en algoritme,
dvs. hvis man kan bevise at modstanderen ikke er i stand til at koncentrere højere end en bestemt
værdi i en tæller, har man også bevist at algoritmen ikke kan have en dårligere præstation end
denne værdi. Vi udvikler et nyt tællespil med kun én spiller (modstanderen) og bruger det til
at bevise effektiviteten af graforienteringsproblemet.
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Preface

This thesis is in two parts. Part 1 starts with giving an over-arching introduction to the
field of theoretical computer science and the relevant branches of mathematics, as well as why
computer science is important in a broader perspective. Published research papers are given as-
is in part 2. It features two papers; the first is Applications of incidence bounds in point covering
problems [1] by Peyman Afshani, Edvin Berglin, Ingo van Duijn and Jesper Sindahl Nielsen,
published in the 32rd International Symposium on Computational Geometry (SoCG 2016).
The second is A simple greedy algorithm for dynamic graph orientation [3] by Edvin Berglin
and Gerth Stølting Brodal, published in the 28th International Symposium on Algorithms and
Computation (ISAAC 2017). Part 2 also presents some additional original research.

In general, part 2 is very technical and mathematically heavy in nature, and might be a
difficult read for those not familiar with mathematical research. The latter half of Part 1 instead
presents the results in a more reader friendly manner and is intended to be better suited for
readers who wish to know our findings and “what they mean”, without necessarily understanding
how those conclusions were made. Part 1 therefore makes very light use of mathematical
notation and arguments, so as to be accessible to readers without higher mathematical training.
It will sometimes make statements that may not be perfectly accurate in order to better paint the
overall picture. It features a comprehensive discussion on practical implications of our results,
using real-world examples and comparisons to other research, which is something that tends to
be skimmed over in research publications.
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Chapter 1

Introduction

1.1 Layman’s introduction to TCS

In theoretical computer science (TCS), we study the fundamental abilities and limitations of
computers. Although one might be quick to parse the name TCS as a theoretical science about
computers, it is perhaps more accurate to read it as the science of theoretical computers. I.e.,
the term computer should not be understood only as a physical device powered by electricity,
but as any entity which can carry out calculations. It is generally of no concern whether this
entity can only be built using not-yet-available technology, or even if it breaks the laws of
physics and can thus never exist as anything more than an idea. Whatever the case, we develop
a model of a computer with basic operations that should capture the entity’s capabilities, and
then draw mathematical conclusions about what that model can and cannot do. Two things
should be pointed out: firstly, the computer (model) is abstract in the sense that it exists only
“on paper” and does not require any physicality to it. Secondly, and conversely, the model is
concrete in the sense that its set of basic operations must be very specific and detailed; if they
are not, we cannot draw any accurate conclusions thereof.

For purposes of this thesis, TCS can be considered in very rough terms to have three
layers1, comprising computability theory at the top, then computational complexity theory,
and algorithms and data structures at the bottom. Computability theory investigates which
problems can be solved at all; it was proven in the 1930s [38] that there are some problems
which, despite appearing fairly innocuous at first sight, cannot be correctly solved by any
imaginable computer. These discoveries largely coincided with the so-called foundational crisis
of mathematics and surprised many contemporary researchers, even to the point of outright
disbelief.

Beyond telling us whether a problem can be solved or not, it seems a natural question to
ask how efficiently it can be done. This is the point of inquiry of computational complexity
theory, wherein we measure any type of resource consumption by a computer as it performs its
task. The two most common type of resources that get considered are time – when we ask a
computer to perform some computation, how long must we wait before we get the answer? –
respectively space – how much disk space (or similar) does the computer require to answer the
question, without running the risk of crashing?

But in addition to these classical dimensions of efficiency, one may in principle consider any
sort of abstract cost, and one such example features prominently in Chapter 4. However, we
are crucially not interested in measuring this resource consumption in absolute terms. In effect,
it is of little interest for a theorist to measure the time in actual seconds; such numbers are

1Let us stress that this view is narrow and incomplete, and purposely neglects to account for a large host of
fields that fall within (or intersect with) TCS.
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immediately deprecated as soon as a team of engineers puts their latest creation on the market.
Instead we measure the growth of the consumption as the computer solves a larger problem
of the same ‘type’. In other words if a computer takes, say, a minute to answer a question on
a specific set of data (input), how long will it need to answer the same question on another
input that is twice as large? In many cases we can hope to get the answer after two minutes or
close thereto. Except under very specific circumstances, this is the best we can hope for. But
computational complexity theory tells us that, depending on which sort of question was asked,
a more accurate estimate of the time it takes to answer this second question might be in the
hundreds of millions of years or worse. Since an average person may be disinclined to wait for
that long, it is prudent to be able to anticipate which type of questions will exhibit this rather
severe slowdown. Computational complexity theory is precisely the attempt to order problems
into broad categories, according to how quickly their resource consumption grows as functions
of the input size.

The most famous unresolved question within computational complexity theory is called the
P vs. NP problem, where P and NP are two such categories. We give a more thorough description
later in this thesis, but the informal gist of it can be stated as: does there exist a problem such
that a computer can quickly verify a claimed solution, but still needs an impractically long time
to solve the same question on its own? Coincidentally, we know the existence of very many
computational problems (important in the sciences and, curiously, some situations in everyday
life) that seem to exactly fit this description: it is easy to verify purported solutions, but so
far they have resisted all attempts at quickly finding these solutions. The P vs. NP problem
is a strong contender for the position as the most important open problem in the entirety of
mathematics for this reason.

Growth of the computational resource costs is usually described using Big-Oh notation,
O(f(n)), to essentially say that as the input size grows to n, the cost does not grow past the
value of the function f(n). This way we say that the growth is polynomial if f(n) ≤ nc for
some constant c, exponential if f(n) ≤ cn, and so on. The aforementioned P is exactly the
class of all problems with polynomial-growth time cost. This is where algorithms and data
structures enter the picture: while computational complexity theory might say that a problem
requires exponential time, there is still a dramatic difference between solving it in O(2n) time
compared to, say, O(1.2n) time. Similarly, there will be a very noticeable improvement between
solving a problem in O

(
n2) time compared to O

(
n4), even for inputs of relatively modest size.

Algorithms are therefore developed to solve any specific problem faster than was possible before,
or equivalently, to be able to solve a significantly larger problem within the same time limit.
The time gains that can be made from an improved algorithm are often far more significant than
what can be expected from using a faster computer. We use data structures to store and query
data in a way that is efficient for the application, so their purpose can be said to be two-fold:
they both enable an algorithm to work even faster, and organize the data to be readily available
for larger programs that respond to external events (i.e. programs that listen for further inputs
after they begin running, contrary to our usual assumption that the entire input is available at
the start).

To return to the earlier example of the waiting time that shot up to a hundred million years,
if that computer was executing a O(2n) time algorithm and we replaced it with a O(1.2n)
algorithm, the larger input would instead only require a little under 3 days – on the exact same
computer hardware. Of course it depends on the application whether this is an acceptable
waiting time or not; it can be acceptable to wait 3 days when calculating the most energy-
efficient way of launching a new space probe to the distant parts of the solar system, but
likely not when calling to order a taxi and the company has to decide which of their unoccupied
vehicles is closest-by. In either case, the situation is no longer as grossly unmanageable as before,
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and at this stage it might be worthwhile to look into finding other improvements such as a more
powerful computer, a higher-skilled programmer or a better-optimized compiler. Consequently,
and somewhat in spite of the statements made in the opening paragraphs, algorithmists will
often have a practical outlook on their work; they want their designs running on real computers,
effectivizing real software and improving the user experience of real people.

1.2 Combinatorics and geometry
Combinatorics is one of the main branches in mathematics and concerns discrete structures and
their manipulations. Its conceptual prominence notwithstanding, discrete is a word difficult
to succinctly define, and is perhaps easiest understood as the opposite of continuous. The
two can be exemplified by the integers and real numbers, respectively, where one can speak
of any integer having “closest neighbours” but real numbers having no such concept. In fact,
sandwiched between any two real numbers are infinitely many other real numbers, so there
necessarily cannot be a ‘closest’ or ‘next’ number. Where real numbers transition ‘smoothly’
and without break, there is a marked ‘gap’ between any two integers. Combinatorics can then
be said to study the different combinations and arrangements of these structures.

It could be thought to encompass all of computer science, since computers are fundamentally
working on discrete data (strings of bits) and in discrete states (separated by clock cycles). But
conversely, given enough working memory a computer may itself describe the states of discrete
systems

One of the most basic objects in combinatorics is the graph. Unfortunately this word suffers
from describing two very different mathematical concepts and most people grow up learning the
other one. For the purposes of this thesis, a graph is not a visual representation of a function
or its ‘curve’. A graph is a collection of objects which can somehow relate to each other –
we refer to the objects as vertices and their relations as edges. At the risk of alienating non-
contemporary readers, the author has found success explaining the concept in his personal life
by referring to ‘the Facebook graph’, where vertices represent people (or more accurately, user
accounts) and ‘relating’ to each other in this graph represents the state of being friends. Note
that a Facebook user account does not have a particular shape, nor really a physical position –
it might, however, be said to have a relative position, measured against other accounts but not
any fixed reference point.

Shapes and positions are instead the focus of geometry, an essentially different branch of
mathematics (but with some significant intersection with combinatorics) and one that enjoys
a long and distinguished history dating several thousand years. Well-known examples are the
Pythagorean theorem in right-angled triangles and various numerical approximations of the
circle constant π.

Computational geometry is a cousin field to general geometry, and unsurprisingly deals with
how to make computations within geometric settings. It is the heart of every form of computer
graphics and virtual world building so, at the very least, it is of central importance to much
of the modern entertainment industry. But its significance is greater than that: its algorithms
also govern robotic motion, computer vision and efficient layout of components on integrated
circuits (“microchips”).

1.3 NP and coping with hardness
Theorists distinguish between natural and artificial computational problems; natural roughly
means that ‘someone else’ (who is not a theoretical computer science) wants to be able to solve
the problem, for whatever reason. An artificial problem is instead a computational problem
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that likely has no particular value or applicability outside TCS, but which may provide insights
into the field itself and enable further research.

In the youth of computer science, with the advent of rigorous and fine-grained analysis of
algorithms, it was noted with some frustration that a large and diverse set of computational
problems seemed to intrinsically require much more time to solve than others. These ‘much
harder’ problems included many natural problems that were important to other sciences. It is a
common colloquial expression to say that something “grows exponentially” or is “exponentially
larger”, with no precise meaning except that it is or grows to be very big. For mathematicians,
exponential growth has a very precise meaning (and indeed does grow very fast), and what
was noted was that all algorithmic attempts for these certain problems exhibited exponentially
growing running time.

In the early 1970s came a partial explanation when it was shown that these problems reduce
to each other – if any one of them has an algorithm that is significantly faster than exponential,
then all of them do. Furthermore it was shown that one of these problems (called SAT) was
expressive enough that it could capture any polynomial-time algorithm running on a so-called
non-deterministic Turing machine, a type of computer model which possesses a far greater set of
abilities than a ‘classical’ computer does. In other words, even though we cannot physically build
a non-deterministic computer, we can simulate its execution of any polynomial-time algorithm
by instead solving SAT. This set of problems solvable with polynomial-time algorithms on a
non-deterministic Turing machine is what we call NP – where N is for non-deterministic and P
is for polynomial. SAT and the other reducible problems are called NP-complete.

Taken together these two results mean that if one could solve SAT, or any other of the
NP-complete problems, with a polynomial-time algorithm on a classical computer, then the
extra powers of non-determinism amount to no benefit at all; the classical computer would be
equally powerful to the non-deterministic one. Most researchers agree that this state of affairs
appears to be unlikely, so the answer to whether we can find significantly faster algorithms to
NP-complete problems seems to be a somewhat disappointing “probably not”.

But these natural problems nevertheless need to be solved in reasonable time. This has led
to the development of several different techniques for circumventing the inherent hardness, or
‘intractability’, of NP-complete problems. The most basic one is to employ heuristics, which
simply are rules and ideas that “seem to work most of the time” but without any sort of
guarantee. In a situation where it is not imperative to find the exact solution, and if we in
fact accept the possibility of getting an answer that is outright wrong, then we can often use
heuristics to construct a very fast algorithm indeed. Two immediate successor techniques are
approximation and randomization. Approximation algorithms do not guarantee finding the
optimal solution, but do guarantee a result whose ‘quality’ is not much worse than the optimal
one – even without explicitly knowing the quality of that solution. Randomized algorithms
instead use probability theory to guarantee a certain success chance of finding the correct
solution, but with the caveat that the computation may instead fail, even spectacularly, and
give any garbage answer. These two paradigms readily combine with each other: randomized
approximation algorithms will, with at least some probability, produce an answer of not-too-bad
quality.

Another, markedly different, approach is that of parameterized algorithms. Here we off-load
the intractability of the general problem onto some parameter of the input, rather than its
size. The idea springs from the observation that even though a problem might be intractable
in general, it can have many special instances that are considerably more easy to solve. In
fortuitous cases, we can create a family of varying ‘degree of specialness’ (the parameter) by
which these instances can be categorized, where more special instances get progressively easier
to solve. Probably the most common parameter is the maximum size of the desired solution,
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since small solutions – if they exist – should be easier to detect. However, the parameter does
not have to be explicitly provided, it can instead be a known structural property of the input,
which can then be exploited by the algorithm. We say that the problem is fixed-parameter
tractable, i.e. the problem is no longer intractable and can be solved efficiently when when all
inputs have fixed, small-enough parameters. The class of fixed-parameter tractable problems is
appropriately called FPT. It should be noted that the existence of parameterized algorithm does
not change the fact that the problem was intractable in general; hence there must necessarily
exist inputs where the structural parameter is large or where solutions only exists for large
explicit parameters.

An important concept to parameterized algorithms is that of kernels. They can be considered
to be the ‘hard core’ that remains after stripping away the easy or ‘soft’ parts around them.
This is an evocative analogy to the anatomy of common edible fruit (where the inside seed is
often called a kernel), but in our case the soft parts are to be understood as the parts of an
input that do not contribute to it being difficult to solve – the hard core is the part that is
computationally difficult to solve. To qualify as a kernel in this sense, the hard part of the
instance must have bounded size measured against the parameter. So for any parameterized
problem, one will first try to find a kernel in reasonable time, before trying any slower algorithm
on the now hopefully smaller input. Much more can be said about kernels, but this is enough
to follow the arguments in the next chapter.
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Chapter 2

Results in perspective

2.1 Geometric Covers

The branch of geometry known as incidence geometry studies points of intersection between
different types of geometric objects. The field has roots at least as far back as the 19th century,
and has a long string of developments since. Most relevant for this thesis is the notion of
incidence bounds: given sets of geometric objects with no fixed positions, what is the maximum
number of incidences (intersections) that can be achieved by freely placing these objects in any
arrangement? For our purposes, we are only interested in incidence bounds between two sets
where the first set contains points and the other is a set of objects that share a ‘type’ out of many
possibilities: lines, circles, hyperplanes, parabolas, etc. Incidence bounds for these objects are
well studied, but for all theoretical developments within incidence geometry and the practical
importance of the greater field of computational geometry, incidence bounds have struggled to
find algorithmic use.

Geometric Cover is a large sub-family of the well-known Set Cover problem. The division
between Set Cover and Geometric Cover does well to illustrate how geometric objects are more

Figure 2.1: An arrangement of 22 points and 6 lines, generating 22 incidences (blue circles).
More incidences are possible, for example by placing the orange line elsewhere, but the maximum
possible is considerably less than 22× 6.
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Figure 2.2: Points can be covered by different geometric objects. This small set of points
requires 3 lines but only 2 circles to cover.

constrained. Say you are given a set of n elements and your task is to cover these with some
type of covering objects. In Set Cover, these objects come from a pool of size 2n, because any
set is constructed by freely picking and choosing among the n elements. In Line Cover – the
simplest case of Geometric Cover – the covering objects are much more restricted. We will only
place lines that cover at least two points; let take two points p1 and p2 and say that the line `
covers them. Suppose now that there is a third point p3 covered by `. Then we immediately
know that there is no line that cover p1 and p2 but not p3 (likewise, no line covers p1, p3 but
not p2, nor p2, p3 but not p1). This is a very nice property to have, and one that is completely
absent for Set Cover. It helps explain why Geometric Cover has FPT algorithms and Set Cover
does not, and similarly why one probably cannot design approximation algorithms to Set Cover
that are as good as those that already exist for Geometric Cover.

There have been a handful previous papers with algorithmic improvements to Line Cover
and other related Geometric Cover problems. The greatest improvement in terms of running
time is due to [39], which improved the Line Cover from O

(
(k/2.2)2k

)
to O

(
(k/1.35)k

)
– the

halving of the exponent from 2k to k has a tremendous impact. But curiously, even though the
most glaring difference between Geometric Cover and Set Cover is the previously mentioned fact
that geometric objects are far more constrained than combinatorial ones, previous research have
neglected to really capitalize on this. The improvement due to [39] derive their improvement
largely through a more careful treatment of the combinatorial properties of the problem. In the
paper Applications of incidence bounds in point covering problems (Chapter 3), we show how
to use incidence bounds as a new angle of attack against these problems. This leads to a new
set of algorithms which all have a better theoretic bound on their running time than previously
known work, although the theoretical improvement is not huge and they will probably not be
faster in practice. However, it represents one of the first algorithmic applications of incidence
bounds in general.

Intuition behind the algorithms

We give a brief intuition for how incidence bounds are employed in our algorithms, exemplified
with the easily understood problem Line Cover. This problem has a well-known kernel of k2

points, where k is the “budget” of lines we are allowed to place. Unfortunately for us, it has
been proven that no better kernel than this exists.

Consider that in any arrangement of n points and m lines, the number of incidences where
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(a point lies on a line) is bounded by a function f(n,m). Now, suppose instead that we are
interested only in lines that intersect with ‘many’ of the n points. Then each such line generates
many incidences, but still the total number of incidences is bounded by f(n,m). Hence one can
necessarily only place a few such lines, regardless of how the points are positioned.

Now take the Line Cover problem. Suppose the task is to cover ‘very many’ points, using
‘few’ lines. Then intuitively, it is not possible to cover these many points with few lines, if each
individual line covers only a few points. So at least some line must cover many points. The
incidence bounds promise us that there are only a low number of ways of placing lines that
cover many points. In other words, there is a small set of ‘candidates’ from which we can pick
our necessary line – we don’t know which of these lines is the correct one (and possibly we
should pick more than one of them), but there are at least only a few ways to try it. Computer
scientists call this branching: identifying a number of possible partial solutions (a line is a partial
solution if the whole solution is made up of several lines), and systematically trying each of them
in order. Each choice then leads to a different set of new possible choices, and whenever the
algorithm makes the wrong choice it will typically not be discovered until after making several
more choices. This is why the algorithm must be able to go back and “change its mind” from a
previous decision it made, eventually exhausting all possible choices until the right one is found.

So the algorithm first tries to pick the correct line which covers many points – as stated
the algorithm is deciding between only a few possible options. Furthermore, whichever line is
picked, it covers (and removes!) many points, and each branch contains a significantly smaller
sub-problem of all the points that have yet to be covered. We say that the algorithm is making
good progress, as it is getting rid of a high number of points with comparatively low effort. Now
the algorithm is faced with a new choice between candidates that cover “many but somewhat
fewer” points, and then continuing that process between candidates that cover progressively
fewer points.

Unfortunately, as we look for candidates with fewer and fewer points, the incidence bounds
simultaneously get worse: there are very many ways of placing a line that covers only a handful
of points, so consequently there are very many partial solutions to inspect. And since these
lines cover a handful of points, each decision makes very little progress. The incidence bounds
become so weak that continuing this process to solve the entirety of the input is too slow.
Fortunately we can, at any time we wish, switch to a different algorithm if that appears better
suited to solve the remaining sub-problem. And, equally fortunately, there is another algorithm
whose running time is not sensitive to incidence bounds, but is instead highly sensitive the
the number of points. This algorithm would be too slow, by a dramatic margin, to use on the
original input – even after getting the k2 point kernel. Things work out well, as it out that there
is a ‘sweet spot’ – the moment that the incidence bounds become too weak for the branching
algorithm, is exactly the same moment that there are few enough remaining points to run the
second algorithm. See Figure 2.3 for an illustration of how these algorithms relate to each other.

Going further

Our family of Geometric Cover algorithms come with only a small theoretic improvement in
running time for the best studied problems – O

(
(k/ log k)k

)
instead of O

(
(k/1.35)k

)
for Line

Cover – and will probably not be more efficient in practice without using additional tricks. But
it demonstrates a whole new area of applicability of incidence geometry, and it motivates a
new direction of research within incidence geometry. One main reason we cannot improve our
algorithm further is that there are no stronger incidence bounds we can use – the currently
existing bounds are tight when making no assumptions on the structure of the objects. But
the worst-case instances for number of incidences are in fact not worst-case instances for our
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Figure 2.3: Highly simplified illustration of efficiency between the two algorithms. The ’total
efficiency’ corresponds to the lowest point on the curve. Switching algorithms when their curves
cross, we narrowly avoid dipping down to the “large sad face” symbolizing no improvement.

algorithms. This is because these problems have kernels, where if “enough” points exist that
can all be covered by a single curve, then we know for a fact that this curve must be in the
solution, and we can immediately remove the points. This contrasts starkly with how worst-case
instances for incidence bounds are constructed, which all involve placing very many points on
the same curve. Clearly, the instances that generate the most incidences, are not the instances
which are the hardest to solve.

The current bounds are very general in that they assume that both the points and the
lines can be placed freely to create the maximum number of incidences. But clearly in the
computational problem the points are already placed – it would be trivially easy to cover all
the points with a single line if we were allowed to decide their positions. Furthermore there
are arrangements that generate many incidences but are not harder for the algorithm to deal
with, due to the kernel. Therefore the general bounds on the number of possible incidences
over-estimate the number of guesses that the algorithm has to make. With specialized bounds
which take these facts into account, it should be possible to demonstrate that our algorithms are
in fact even faster than our current proofs show. Hence our work invites research into refined
incidence bounds for kernelized instances. See Figure 2.4 for a simplified illustration of how
such a specialized bound could improve our algorithm.

In fact, our algorithm for Plane Cover employs such a specialized bound. The tight bound
for general instances is too weak to be usable with our algorithmic approach. The special bound
is adapted to situations that are similar to our kernel, but not exactly the same. Hence we have
some hope that the algorithm can be further improved somewhat. Additionally, this specialized
bound only applies to R3, but the idea behind the algorithm can extend to higher dimensions
if provided usable bounds.

The Curve Cover algorithms readily adapts to improved bounds: their pseudocode require
only minor changes and if improved bounds become a common occurrence then the pseudocode
can be made to adapt automatically. The current analysis for the time complexity is quite
non-trivial but modifying it for new bounds should mostly be an exercise of plugging in the
adjusted numbers where relevant; not something done in a minute, but perhaps in a day.

So to summarize, our work is the first to employ deeper facts about geometry to attack the
Geometric Cover family of problems, and simultaneously one of the first to demonstrate how
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Figure 2.4: Speculative illustration of how specialized incidence bounds may improve the effi-
ciency of the branching algorithm (from blue to orange), without modifying the algorithm itself.
The new intersection point with the red curve is farther away from the “large sad face” level.

incidence bounds can be useful for algorithmic purposes. We also offer an invitation into a new
direction of studying incidence bounds which would lead to further algorithmic improvements
in a fairly straight-forward manner.

2.2 Dynamic graph orientation
Some graphs are very big. The example of the Facebook graph demonstrates this in a partic-
ularly forceful way. A few months before this writing, it was announced that Facebook had
crossed the milestone of 2 billion user accounts [41]. It is also a very well-connected graph, as
it was announced in 2016 [6] that the graph had an average degree of separation of less than 5:
if you pick any two Facebook users in the world, then the number of steps needed to connect
these two users through a chain of “friend of a friend of a friend. . .” is at most four, so that
the fifth step reaches the destination. There can, of course, be other such chains that are much
longer, and likewise it can be hard to tell chain to go through to ensure not more than five
steps.

But despite its vast size and connectedness, the Facebook graph has low degree, i.e. every
user has a relatively low number of friends. Data from 2013 [40] suggests that the median
number of friends is 342, with a small but not insignificant fraction of users having more than
1,000 friends and very few indeed having more than 2,000. In graph theory this is known as
a graph being sparse: by a large margin, most edges (friendships) that could exist in fact do
not. Although Facebook does not allow a user to have more than 5,000 friends (and therefore
remains relatively sparse even if every user maxes out his or her list of friends), a graph could
still be said to be sparse even with vertices of very high degree as long as these vertices are
very rare. So to make the example work for the below discussion, let us assume that there are
a handful of Facebook users with extremely many friends, say a few million at least.

Efficient storage

The most obvious and simple way to store a graph in a computer is to use a square matrix of
ones and zeros: a ’one’ in the position on row x and in column y means that the users with
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account numbers x and y are friends, while a ’zero’ means they are not. But given the great
size of the Facebook graph, the square of that number is so immense that there is simply no
computer that is large enough to even come close to storing this matrix. But since we know that
the graph is sparse, we know that almost all the matrix entries would be zero, so we are being
very (very) wasteful in this storage model. A different idea would be that each account stores
a list of their own friends. This is space efficient, in that we do not store any large amounts of
unimportant zeroes, but we run into a different problem: those few but very popular users have
lists that contain millions of other users. So if we want to ask a question of the type “are these
two users friends?”, which was very easy to do in the matrix, we now find ourselves forced to
look trough a very long list. We could try to be clever and look in the list belonging to the ‘less
popular’ user among the two, but this approach does not help when trying to find out if two
very popular users are friends with each other.

Furthermore, the graph is not static: new friendships are established probably every second,
as well as removed. Whichever storage model (‘data structure’) we decide on, it must be able
to handle not just questions (‘queries’) but also changes (‘updates’). As the above discussion
suggests, we need to look to more clever data structures to have a chance of handling these
demands. Fortunately, storage of graphs is a problem that has enjoyed a tremendous amount of
research, including the narrower area of storing dynamic and sparse graphs. It should be noted
that there are several independent ways of measuring the sparsity of a graph. One such way
is called arboricity and in the paper A simple greedy algorithm for dynamic graph orientation
(Chapter 4), we make a number of improvements to the state-of-the-art algorithms whose main
approach is arboricity.

It should be stressed that arboricity is not always the correct sparsity measure for every type
of graph and there are many other approaches that ‘make sense’ for this very basic problem.
However, it can be difficult to compare the efficiency between two algorithms with different
basic approaches; it almost needs to be done on a case-by-case basis with a specific graph at
hand.

Our algorithm

The principal idea of our paper is to say that one vertex ‘owns’ the edge (one user owns the
friendship), and including it in only that list. Furthermore, as a general rule but (crucially) not
an absolute rule, the edge is owned by the vertex with lower degree (less popular user), and
when the graph structure changes sufficiently, it may be necessary to reassign ownership to the
other vertex. Note how this works out even for an edge between two vertices that both have
very high degree: even though we need to store the edge between them somewhere, both of their
lists will still be short since most of their other neighbours have lower degree. This idea is called
orienting the graph, and is far from novel but has been utilized by several authors in previous
research. The crux of the issue is that can be difficult to decide “on the fly” which vertex should
own the edge, and when to reassign edges to avoid having to reassign many at the same time.
It has been proven that guaranteeing the shortest possible lists requires many simultaneous
reassignments, which is precisely the reason why the general is not an absolute rule. Relaxing
the length requirements allows for fewer reassignments, although the exact relationship between
the two quantities is still very much unknown. The various existing algorithms are therefore
essentially different ways of making these reassignment decisions quickly, and to guarantee lists
of acceptable length rather than shortest possible length.

The modus operandi of our new algorithm in Chapter 4 is particularly simple: it takes an
edge from the vertex that owns the most edges, and reverses the ownership of this edge. Then
repeat this process a set number of times, without making any decisions on a deeper level. The
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majority of the paper is dedicated to proving that this simple method actually works and is
competitive to previous algorithms which operate in a more complicated way.

The new algorithm in comes with a few significant strengths and improvements over previous
work. First of all, our algorithm performs at least equally well as previous worst-case algorithms
for almost all values of arboricity – there is only a very small range of arboricity values where our
algorithm cannot match earlier work, and the difference is tiny. Conversely, there a much larger
range of arboricity where our algorithm performs better. It should be noted that the existing
amortized algorithms have better performance measured as an average over several updates.
But critically, they have no good mechanisms for controlling when the reassignments happen,
which means they are not “smoothed out” and can instead happen all at once. This results in
the computer system temporarily locking up to deal with the high amount of reassignments,
oftentimes for long enough to be noticed by the user, but without any reason obvious to them.

Secondly, the algorithm is trivial to implement in any normal programming language, be-
cause it does not require any complicated data structures under the hood, and it makes all its
decisions almost “without even looking”, i.e. without any form of contemplation about whether
a particular decision might be good or not. This is known as being greedy in computer science
lingo. Thirdly, it adapts to future research in a very interesting manner, because it can be
seen as an approximation algorithm that does not perform much worse than any other algo-
rithm. Hence, if some very clever algorithm is discovered in the future with a better length-to-
reassignment balance, then our algorithm automatically performs better than what is currently
known to do.

Finally, the algorithm comes with worst-case bounds and enables the programmer to pick
his favorite from a wide range of balances between list lengths and reassignments, which was
previously only possible using algorithms with amortized bounds. Previous worst-case algo-
rithms instead offer only a “one size fits all” balance which may not perfectly suit every type
of application. Perhaps most notably, it is the first result that can perform only a constant
number of reassignments per update, i.e. the number of reassignments does not depend on the
size of the graph.

Counter games

Games have a much different meaning in mathematics than in the common vocabulary, in that
it does not attribute any form of entertainment (or educational, informational, etc.) value to
the playing of the game. Instead, it merely describes a system with a set of rules, in which
players with conflicting goals make actions – sometimes alternatingly, sometimes not – that
obey the rules and which influence the shared game state. Game theory is a large field which
studies how players should act in order to best reach their goals, with the knowledge that any
action may have negative consequences for other players and their goals; these other players
may then choose to retaliate. Game theory has exceptionally many and important applications
in fields ranging from finance to evolutionary biology.

Games are also frequently used within computer science – again, we do not mean computer
games – as tools for proving statements on certain processes. First one shows that some game
is expressive enough to model the changing state of some other system, i.e. if the state of the
system changes in a particular way, then the rules of the game also allow the players to replicate
that change in their own setting. The rules may at the same time offer additional powers to the
adversary, so that his ability to manipulate the game state exceed what is necessary in order
to model the system state. Then one proves that, even with these extra powers, the adversary
is still unable to force his way to a game state that is “too bad” due to being counter-acted by
the benevolent player.

15



Counter games are one particular type of such game. It is played on a number of counters
that hold values, and these values may be moved around between counters. For illustration,
think of the counters as boxes that each hold a certain amount of an unspecified substance,
and that this substance can be taken from one box and put into another. The adversary’s goal
is to concentrate as much as possible of the substance in any single box, and the benevolent
player instead tries to make sure that every box stays relatively empty. Both players take turn
in performing moves according to some rules, and these rules are not necessarily the same for
both players.

In Chapter 4 we design a new counter game with only a single player, the adversary. In place
of the missing opposite player are stricter rules restrictions on the moves that the adversary
can perform. He cannot take from a box unless it contains almost as much as the box that
contains the most. Furthermore he can only take a bounded amount of ‘substance’ per move,
which means he cannot empty any box except when all boxes contain very little. As soon as the
content of any box grows large enough, all boxes with significantly less content become locked
and their contents are no longer redistributable. The ‘largest difference’ between the maximum
fill of any box, and the fill level for legally removing content from another box, is called the
resolution.

This counter game is essential to proving the out-degree guarantee for our dynamic orienta-
tion algorithm in Chapter 4, and we believe it can be used separately in further research too. In
Chapter 5 we give a lossy extension to this counter game, in which the adversarial player must
follows the same rules as above, and the added hurdle that he incurs a multiplicative loss with
every move. In other words, every time he removes content from one box, he can redistribute
only some fraction of that content to other boxes - the remaining moved content is lost, “sifts
through his hands”, and cannot be recovered.

Maximal matching

The astute reader may have detected an incongruence of words: we began Chapter 2 by de-
scribing the graph orientation work as a venture in data structures, and continued with an
exposition on the need for efficient graph data structures in applications such as Facebook, but
then switched to speaking of the result as an algorithm. In truth, the division between algo-
rithms and data structures are not always clear-cut. Algorithms rely on using data structures
to be efficient, but algorithms can also be used as a building block to power more complex data
structures. So to put a formal label on our work, it is probably most accurately described as
an algorithm which is intended as a building block to be used under the hood of various data
structures.

Our work purposely leaves many implementation details unspecified, to give the programmer
maximal control to balance not just list length against number of reassignments, but also the
time it takes to update and query the structure. This way, the algorithm readily combines with
standard paradigms for building data structures, such as self-balancing binary search trees, but
also with more complex constructions. It really depends on the given context, in which the
orientation is to be used, which implementation is preferable.

One very prominent example is called maximum matching. This is a famous problem within
computer science, and often taught to novice computer science students as part of their basic
curriculum. Here our Facebook example breaks away from any sort of realistic scenario, but
suppose for illustration’s sake that we wish to pair up every Facebook user in the world and
force them to hold hands, i.e. to match them. It is not allowed to hold the hand of more than
one other person, and two users will only agree to hold hands if they are friends, which means it
might not be possible to guarantee that every user is paired with someone else. Still, we want to
ensure that as many users as possible are paired (maximum matching) under these stipulations.
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This task seems absurd, but the underlying principle of pairing up vertices that share an
edge, and updating the matching every time the graph changes, is a basic computational problem
which is used as a data structure inside a host of algorithms for more complex problems. In
teaching, typically only the static case is considered, where the graph cannot change. But
suppose again that the graph can see insertions and deletions of edges at any time, and that
these updates cannot be predicted in advance. The task is now to quickly modify the existing
pair assignments to still ensure the maximum number of users are still paired. The dynamic
matching problem itself has seen a resurgence in research interest in the most recent couple
of years, in no small part due to the discovery [31] that one can maintain an approximate
maximum matching by using any efficient solution for the dynamic graph orientation problem.
As we present new efficient orientation algorithms, we can also implicitly improve the efficiency
of existing maximum matching approximation algorithms.
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Chapter 3

Applications of incidence bounds in
point covering problems

Peyman Afshani, Edvin Berglin, Ingo van Duijn, Jesper Sindahl Nielsen

In the Line Cover problem a set of n points is given and the task is to cover the points
using either the minimum number of lines or at most k lines. In Curve Cover, a generalization
of Line Cover, the task is to cover the points using curves with d degrees of freedom. Another
generalization is the Hyperplane Cover problem where points in d-dimensional space are to be
covered by hyperplanes. All these problems have kernels of polynomial size, where the parameter
is the minimum number of lines, curves, or hyperplanes needed.

First we give a non-parameterized algorithm for both problems in O∗(2n) (where the O∗(·)
notation hides polynomial factors of n) time and polynomial space, beating a previous exponential-
space result. Combining this with incidence bounds similar to the famous Szemerédi-Trotter
bound, we present a Curve Cover algorithm with running time O∗

(
(Ck/ log k)(d−1)k

)
, where C

is some constant. Our result improves the previous best times O∗
(
(k/1.35)k

)
for Line Cover

(where d = 2), O∗
(
kdk
)
for general Curve Cover, as well as a few other bounds for covering

points by parabolas or conics. We also present an algorithm for Hyperplane Cover in R3 with
running time O∗

(
(Ck2/ log1/5k)k

)
, improving on the previous time of O∗

(
(k2/1.3)k

)
.
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3.1 Introduction

In the Line Cover problem a set of points in R2 is given and the task is to cover them using either
the minimum number of lines, or at most k lines where k is given as a parameter in the input.
It is related to Minimum Bend Euclidean TSP and has been studied in connection with facility
location problems [15, 30]. The Line Cover problem is one of the few low-dimensional geometric
problems that are known to be NP-complete [30]. Furthermore Line Cover is APX-hard, i.e.,
it is NP-hard to approximate within factor (1 + ε) for arbitrarily small ε [26]. Although NP-
hard, Line Cover is fixed-parameter tractable when parameterized by its solution size k so any
solution that is “not too large” can be found quickly.

One generalization of the Line Cover problem is the Hyperplane Cover problem, where the
task is to use the minimum number of hyperplanes to cover points in d-dimensional space. An-
other generalization is to cover points with algebraic curves, e.g. circles, ellipses, parabolas, or
bounded degree polynomials. These can be categorized as covering points in an arbitrary dimen-
sion space using algebraic curves with d degrees of freedom and at most s pairwise intersections.
We call this problem Curve Cover. The first parameterized algorithm that was presented for
Line Cover runs in time O∗

(
k2k
)
[27].1 This algorithm generalizes to generic settings, such as

Curve Cover and Hyperplane Cover, obtaining the running time O∗
(
kdk
)
where d is the degree

of the freedom of the curves or the dimension of the space for hyperplane cover.
The first improvement to the aforementioned generic algorithm reduced the running time

to O∗
(
(k/2.2)dk

)
for the Line Cover problem [17]. The best algorithm for the Hyperplane

Cover problem, including Line Cover, runs in O∗
(
k(d−1)k/1.3k

)
time [39]. A non-parameterized

solution to Line Cover using dynamic programming has been proposed with both time and
space O∗(2n) [9], which is time efficient when the number of points is O(k log k). Algorithms
for parabola cover and conic cover appear in [37], running in time O∗

(
(k/1.38)(d−1)k

)
and

O∗
(
(k/1.15)(d−1)k

)
respectively.

Incidence Bounds. Given an arrangement of n points and m lines, an incidence is a point-line
pair where the point lies on the line. Szemerédi and Trotter gave an asymptotic (tight) upper
bound of O

(
(nm)2/3 + n+m

)
on the number of incidences in their seminal paper [36]. This

has inspired a long list of similar upper bounds for incidences between points and several types
of varieties in different spaces, e.g. [13, 16, 32, 35].

Our Results. We give a non-parameterized algorithm solving the decision versions of both
Curve Cover and Hyperplane Cover in O∗(2n) time and polynomial space. Furthermore we
present parameterized algorithms for Curve Cover and Plane Cover (Hyperplane Cover in R3).
These solve Curve Cover in timeO∗

(
(Ck/ log k)(d−1)k

)
and Plane Cover in timeO∗

(
(Ck2/ log1/5k)k

)
,

both using polynomial space. The main idea is to use Szemerédi-Trotter-type incidence bounds
and using the aforementioned O∗(2n) algorithm as a base case. We make heavy use of (spe-
cialized) incidence bounds and our running time is very sensitive to the maximum number of
possible incidences between points and curves or hyperplanes. In general, utilization of inci-
dence bounds for constructing algorithms is rare (see e.g. [19, 20]) and to our knowledge we are
the first to do so for this type of covering problem. It is generally believed that point sets that
create large number of incidences must have some “algebraic sub-structure” (see e.g. [18]) but
curiously, the situation is not fully understood even in two dimensions. So, it might be possible
to get better specialized incidence bounds for us in the context of covering points. Thus, we
hope that this work can give further motivation to study specialized incidence bounds.

1Throughout the paper we use the O∗(·) notation to hide polynomial factors of a superpolynomial function.
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3.2 Preliminaries

Definitions

We begin by briefly explaining the concept of fixed-parameter tractability before formally stating
the Curve Cover and Hyperplane Cover problems.

Definition 3.1. A problem is said to be fixed-parameter tractable if there is a parameter k to
an instance I, such that I can be decided by an algorithm in time O(f(k)poly(|I|)) for some
computable function f .

The function f is allowed to be any computable function, but for NP-complete problems can
be expected to be at least single exponential. The name refers to the fact that these algorithms
run in polynomial time when k is (bounded by) a constant. Within the scope of this paper I
will typically be a set of points and k is always a solution budget: the maximum allowed size
of any solution of covering objects, but not necessarily the size of the optimal such solution.

Let P be a set of n points in any dimension, and d, s be non-negative integers.

Definition 3.2. A set of algebraic curves C are called (d, s)-curves if (i) any pair of curves
from C intersect in at most s points and (ii) for any d points there are at most s curves in C
through them. The parameter d is the degrees of freedom and s is the multiplicity-type.

The set C could be an infinite set corresponding to a family of curves, and it is often
defined implicitly. We assume two geometric predicates: First, we assume that given two curves
c1, c2 ∈ C , we can find their intersecting points in polynomial time. Second, we assume that
given any set of up to s+ 1 points, in polynomial time, we can find a curve that passes through
the points or decide that no such curve exists. These two predicates are satisfied in the real
RAM model of computation for many families of algebraic curves and can be approximated
reasonably well in practice.

We say that a curve covers a point, or that a point is covered by a curve, if the point lies
on the curve. A set of curves H ⊂ C covers a set of points P if every point in P is covered by
a curve in H, furthermore, H is a k-cover if |H| ≤ k.

Definition 3.3 (Curve Cover Problem). Given a family of (d, s)-curves C , a set of points P ,
and an integer k, does there exist a subset of C that is a k-cover of P?

Now let P be a set of points in Rd. A hyperplane covers a point if the point lies on the
hyperplane. A set H of hyperplanes covers a set of points if every point is covered by some
hyperplane; H is a k-cover if |H| ≤ k. In Rd, a j-flat is a j-dimensional affine subset of the
space, e.g., 0-flats are points, 1-flats are lines and (d− 1)-flats are called hyperplanes.

Definition 3.4 (Hyperplane Cover Problem). Given an integer k and a set P of points in Rd,
does there exist a set of hyperplanes that is a k-cover of P?

For d = 3 we call the problem Plane Cover. To make our parameterized Plane Cover
algorithm work, we need to introduce a third generalization: a version of Hyperplane Cover
where the input contains any type of flats. A hyperplane covers a j-flat for j ≤ d− 2 if the flat
lies on the hyperplane; further notation follows naturally from the above.

Definition 3.5 (Any-flat Hyperplane Cover Problem). For k ∈ N and a tuple P = 〈P0, . . . , Pd−2〉,
where Pi is a set of i-flats in Rd, does there exist a set of hyperplanes that is a k-cover of P?
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We stress that our non-parameterized algorithm in Section 3.3 solves Any-flat Hyperplane
Cover while the parameterized algorithm in Section 3.5 solves Plane Cover. Line Cover is a
special case of both Curve Cover and Hyperplane Cover. Since Line Cover is known to be both
NP-hard [30] and APX-hard [26], the same applies to its three generalizations as well.

Kernels

Central to parameterized complexity theory is the concept of polynomial kernels. A parameter-
ized problem has a polynomial kernel if an instance 〈P, k〉 in polynomial time can be reduced
to an instance 〈P ′, k′〉 where |P ′| and k′ are bounded by polynomial functions of k and 〈P, k〉
is a yes-instance if and only if 〈P ′, k′〉 is a yes-instance. Problems with polynomial kernels
are immediately fixed-parameter tractable; simply run a brute force algorithm on the reduced
instance.

Lemma 3.6. For a family C of (d, s)-curves, Curve Cover has a size sk2 kernel where no curve
in C covers more than sk points.

Proof. Suppose some curve c ∈ C covers at least sk + 1 points in P . These points cannot be
covered by k other curves c1, . . . , ck as the pairwise intersection of ci with c contains at most s
points. Therefore every k-cover must include c; remove the points that it covers and decrement
k. We can repeat that for every curve that covers sk + 1 points, until every curve in C covers
at most sk of the remaining points. Thus, if the number of remaining points is more than sk2,
the instance has no k-cover and can be immediately rejected. Otherwise, we are left with an
instance of sk2 points.

For Any-flat Hyperplane Cover a size kd kernel is presented in [27]. It uses a grouping oper-
ation, removing points and replacing them with higher dimension flats, which is not acceptable
for a Hyperplane Cover input. We present an alternative, slightly weaker hyperplane kernel
containing only points; in R3 it contains at most k3 + k2 points.

Lemma 3.7. Hyperplane Cover in Rd, d ≥ 2, has a size k2(
∑d−2
i=0 k

i) = O
(
kd
)
kernel where for

j ≤ d− 2 any j-flat covers at most
∑j
i=0 k

i = O
(
kj
)
points and any hyperplane covers at most

k
∑d−2
i=0 = O

(
kd−2

)
points.

Proof. This kernel boils down to creating a maximum intersection s =
∑d−2
i=0 k

i between two
hyperplanes. Then we have a kernel of size sk2 where no hyperplane covers more than sk points,
in exactly the same way as Lemma 3.6. For a point set P in Rd, call a t-flat heavy if it covers
at least

∑t
i=0 k

t points in P . P is t-ready if every heavy t-flat covers exactly
∑t
i=0 k

t points.
When P is (d − 2)-ready, we have the desired intersection bound s and are done. Clearly any
point set is 0-ready, so we only need to show how to modify a t-ready point set into one that is
equivalent and (t+ 1)-ready.

Let P be t-ready and suppose it contains a heavy (t + 1)-flat f . Since by assumption
two (t + 1)-flats intersect in at most

∑t
i=0 ki points, any hyperplane cover of P must have a

hyperplane covering f . This property is maintained by removing arbitrary points R on f so
that f covers exactly

∑t+1
i=0 ki points. Consider that some of the points R were on another heavy

flat f1, which as a consequence is no longer heavy. This could mean that P \ R has a cover
where P did not, and must be rectified. We do this by re-adding enough points to f1 so that
it too covers exactly

∑t+1
i=0 ki. Put these new points in general position on f1 to avoid creating

new heavy (t+ 1)-flats or increasing the number of points on any heavy t-flat. Once all heavy
(t+ 1)-flats are reduced to

∑t+1
i=0 ki points in this manner, the new point set is (t+ 1)-ready and

a yes-instance if and only if P is.

24



Our algorithms will use both properties of the kernels. Kratsch et al. [25] showed that these
kernels are essentially tight under standard assumptions in computational complexity.

Theorem 3.8 (Kratsch et al. [25]). Line Cover has no kernel of size O
(
k2−ε) unless coNP ⊆

NP/poly.

Incidence bounds

Consider the Line Cover problem. Obviously, if the input of n points are in general position,
then we need n/2 lines to cover them. Thus, if k � n

2 , we expect the points to contain “some
structure” if they are to be covered by k lines. Such “structures” are very relevant to the study
of incidences. For a set P of points and a set L of lines, the classical Szemerédi-Trotter [36]
theorem gives an upper bound on the number of point-line incidences, I(L,P ), in R2.

Theorem 3.9 (Szemerédi and Trotter [36]). For a set P of n points and a set L of m lines in
the plane, let I(L,P ) = | {(p, `) | p ∈ P ∩ `, ` ∈ L} |. Then I(L,P ) = O

(
(nm)2/3 + n+m

)
.

The linear terms in the theorem arise from the cases when there are very few lines compared
to points (or vice versa). In the setting of Line Cover these cases are not interesting since they
are easy to solve. The remaining term is therefore the interesting one. Since it it large, it implies
there are many ways of placing a line such that it covers many points; this demonstrates the
importance of incidence bounds for covering problems. We introduce specific incidence bounds
for curves and hyperplanes in their relevant sections.

3.3 Inclusion-exclusion algorithm
This section outlines an algorithm Inclusion-Exclusion that for both problems decides the
size of the minimum cover, or the existence of a k-cover, of a point set P in O∗(2n) time and
polynomial space. Our algorithm improves over the one from [9] for Line Cover which finds
the cardinality of the smallest cover of P with the same time bound but exponential space.
The technique is an adaptation of the one presented in [7]; their paper immediately gives either
O∗(3n)-time polynomial-space or O∗(2n)-time O∗(2n)-space algorithms for our problems. We
give full details of the technique for completeness; to do so, we require the intersection version
of the inclusion-exclusion principle.

Theorem 3.10 (Folklore). Let A1, . . . , An be a number of subsets of a universe U . Using the
notation that A = U \A and

⋂
i∈∅Ai = U , we have:∣∣∣∣∣ ⋂

i∈{1,...,n}
Ai

∣∣∣∣∣ =
∑

X⊆{1,...,n}
(−1)|X|

∣∣∣∣∣ ⋂
i∈X

Ai

∣∣∣∣∣.
Curve Cover

Let P be the input set of points and C be the family of (d, s)-curves under consideration.
Although we are creating a non-parameterized algorithm, we nevertheless assume that we have
access to the solution parameter k. This assumption will be removed later. We say a set Q is
a coverable set in P (or is coverable in P ) if Q ⊆ P and Q has a 1-cover.

Let a tuple (in P ) be a k-tuple 〈Q1, . . . , Qk〉 such that ∀i : Qi is coverable in P . Note that
there is no restriction on pairwise intersection between two coverable sets in a tuple. Define U
as the set of all tuples. For p ∈ P , let Ap = {〈Q1, . . . , Qk〉 | p ∈

⋃
iQi} ⊆ U be the set of all

tuples where at least one coverable set contains p.
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Lemma 3.11. P has a k-cover if and only if
∣∣∣⋂p∈P Ap∣∣∣ ≥ 1.

Proof. Take a tuple in
⋂
p∈P Ap. For each coverable set Q in the tuple, place a curve that covers

Q. Since the tuple was in the intersection, every point is in some coverable set, so every point
is covered by a placed curve. Hence we have a k-cover.

Take a k-cover C and from each curve c ∈ C construct a coverable set of the points covered
by c. Form a tuple out of these sets and observe that the tuple is in the intersection

⋂
p∈P Ap,

hence its cardinality is at least 1.

Note that several tuples may correspond to the same k-cover, so this technique cannot be
used for the counting version of the problem. Theorem 3.10 and Lemma 3.11 reduce the problem
of deciding the existence of k-covers to computing a quantity

∣∣∣⋂i∈X Ai∣∣∣. The key observation is
that Ap is the set of tuples where no coverable set contains p and

⋂
i∈X Ai is the set of tuples that

contain no point in X, i.e. the set of tuples in P \X. The remainder of this section shows how to
compute the size of this set in polynomial time. Let c(X) = |{Q | Q ⊆ X,Q is coverable in X}|
be the number of coverable sets in a point set X. A tuple in P \X is k coverable sets drawn from
a size c(P \ X) pool (with replacement), hence there are c(P \ X)k such tuples. To compute
c(X) we introduce the notion of representatives. Let π be an arbitrary ordering of P . The
representative R = {r1, . . . , ri} of a coverable set Q is the min(|Q|, s + 1) first points in Q
as determined by the order π. Note that for any coverable set Q, it holds that R ⊆ Q. Let
q(X,π,R) be the number of coverable sets that have the representative R.

Lemma 3.12. q(X,π,R) can be computed in O(|X|) time and O(log |X|) space.

Proof. If R is not a valid representative, q(X,π,R) = 0. If |R| ≤ s, q(X,π,R) = 1. If |R| = s+1,
let U be the union of every coverable set with representative R, and X ′ = U \R. The number
of subsets of X ′ is the number of coverable sets with representative R, i.e. q(X,π,R) = 2|X′|.
For any p ∈ P with π(p) > π(ri), p ∈ X ′ if and only if there is a curve c ∈ C such that c
covers {r1, . . . , ri, p}. Since i ≤ s + 1 the time complexity is O(|X|). The space complexity is
logarithmic since we need only maintain |X ′| rather than X ′.

Lemma 3.13. c(X) can be computed in O
(
|X|s+2) time and O(|X|) space.

Proof. Fix an ordering π. As every coverable set in X has exactly one representative under π,
we get that c(X) =

∑
R q(X,π,R). There there are only O

(( |X|
s+1
))

= O
(
|X|s+1) choices of R

for which q(X,π,R) > 0, and by Lemma 3.12 each term of the sum is computable in O(|X|)
time and logarithmic space. The space complexity is therefore dominated by the space to store
π which is linear.

Theorem 3.14. There exists a k-cover of curves from C for P if and only if∣∣∣∣∣∣
⋂
p∈P

Ap

∣∣∣∣∣∣ =
∑
X⊆P

(−1)|X|
∣∣∣∣∣∣
⋂
p∈X

Ap

∣∣∣∣∣∣ =
∑
X⊆P

(−1)|X|c(P \X)k ≥ 1.

This comparison can be performed in O
(
2nns+2) time and O(nk) bits of space.

Proof. Since c(P \X)k ≤ 2nk for any X it can be stored in nk bits. The absolute value of the
partial sum can be kept smaller than 2nk by choosing an appropriate next X. The rest follows
from Theorem 3.10, Lemma 3.11 and Lemma 3.13.
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Finally, we remove the assumption that we have the parameter k. Any input requires at
most n curves. Since k is only used to compute c(X)k we can try k = 1, 2, . . . , n and return the
first k with a positive sum. This increases the time by an O(n) factor. Alternatively, we can
run n simultaneous sums, since the parameter k is only accessed when computing c(X)k. This
increases the space by factor O(n) and the time by a lower-order additive term.

Any-flat Hyperplane Cover

Here we treat all flats in the instance 〈P0, . . . , Pd−2〉 as atomic objects and P as a union
⋃d−2
i=0 Pi.

This algorithm is very similar to that of Section 3.3, so we only describe their differences. A
set of flats Q ⊆ P is a coverable set in P if there exists a hyperplane that covers every p ∈ Q.
The representative of ∅ is ∅, and the representative of a non-empty coverable set Q is a set
R = {r1, . . . , ri}. Let r1 be the first flat in Q and for j ≥ 2, rj is defined if the affine hull of
{r1, . . . , rj−1} has lower dimension than the affine hull of Q. If so, let rj be the first flat in Q
that is not covered by the affine hull of {r1, . . . , rj−1}.

Lemma 3.15. q(X,π,R) can be computed in O(|X|) time and O(log |X|) space.

Proof. If R is not a valid representative, q(X,π,R) = 0. Otherwise, let U be the union all
coverable sets with the representative R, and X ′ = U \ S. For every p ∈ X \ R, let j be the
highest index such that π(rj) < π(p). Then p ∈ X ′ if and only if p is on the affine hull of
{r1, . . . , rj}.

There are O
((n
d

))
representatives R with q(X,π,R) > 0 so the following two results hold;

their proofs are analogous to Lemma 3.13 and Theorem 3.14.

Lemma 3.16. c(X) may be computed in O
(
|X|d+1

)
time and O(|X|) space.

Theorem 3.17. There exists a hyperplane k-cover for P if and only if∣∣∣∣∣∣
⋂
p∈P

Ap

∣∣∣∣∣∣ =
∑
X⊆P

(−1)|X|
∣∣∣∣∣∣
⋂
p∈X

Ap

∣∣∣∣∣∣ =
∑
X⊆P

(−1)|X|c(P \X)k ≥ 1.

This comparison may be performed in O
(
2nnd+1

)
time and O(nk) bits of space.

3.4 Curve Cover
Recall that we are considering (d, s)-curves, where d and s are constants. Since we have a
kernel of up to sk2 points, Inclusion-Exclusion used on its own runs in time O∗

(
2sk2

)
which

is too slow to give an improvement. We improve this by first using a technique that reduces
the number of points in the input, and then using Inclusion-Exclusion. To describe this
technique and the intuition behind it, we first provide a framework based on the following
theorem by Pach and Sharir.

Theorem 3.18 (Pach and Sharir [32]). Let P be a set of n points and L a set of m (d, s)-curves
in the plane. The number of point-curve incidences between P and L is

I(P,L) = O
(
nd/(2d−1)m(2d−2)/(2d−1) + n+m

)
Note that the above holds for curves in arbitrary dimension. This can be seen by projecting

the points and curves onto a random plane, which will keep the projection of distinct points,
and prevent the curves from projecting to overlapping curves.
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Definition 3.19. Let a candidate be any curve in C that covers at least 1 point in P . Define
its richness with respect to P as the number of points it covers. A candidate is γ-rich if its
richness is at least γ, and γ-poor if its richness is at most γ.

Recall that from the kernelization in Lemma 3.6, it follows that every candidate is sk-poor.
The following gives a bound on the number of γ-rich candidates.

Lemma 3.20. Let P be a set of n points in some finite dimension space Rx. The number of
γ-rich candidates in P is O

(
nd

γ2d−1 + n
γ

)
Proof. If m curves pass through γ or more points, this generates at least mγ incidences. By
Theorem 3.18 we get

mγ = O
(
nd/(2d−1)m(2d−2)/(2d−1) + n+m

)
.

We deal with the three terms in the O(·) separately. If mγ = O
(
nd/(2d−1)m(2d−2)/(2d−1)

)
, the

expression simplifies to m = O
(
ndγ−(2d−2)

)
. If mγ = O(n) we have that m = O(n/γ). If

mγ = O(m) then γ is a constant. Since at most s curves pass through the same d points, m is
bounded by the total number of distinct curves s

(n
d

)
= O

(
nd
)
. Therefore, this case is covered

by the first term, giving the total bound m = O
(

nd

γ2d−1 + n
γ

)
.

Intuition for algorithm. We exploit the following observation: given a k-cover C, some
curves in C might be significantly richer than others. The main idea of our technique is to try
to select (i.e. branch on) these rich curves first. Since they cover “many” points, removing these
decreases the ratio |P |/k and calling Inclusion-Exclusion eventually becomes viable. The
idea to branch on rich curves first has another important consequence. Suppose we know that
no candidate in C covers more than γ points in P . This immediately implies that if there are
strictly more than kγ points in P , it is impossible to cover P . Therefore we have |P |/k ≤ γ.
Now look at the set of γ2 -rich candidates and decide for each whether to include it in the cover
or not. By the earlier observation, including such a candidate is good for reducing the ratio
|P |/k. But excluding such a candidate has essentially the same effect, because that candidate
will not be considered again (remove it from C). Any remaining candidates in C now cover at
most γ

2 points; we must have |P |/k ≤ γ
2 (or the instance is not solvable) and have strengthened

the bound on the ratio. Regardless of which choice we make, we make progress towards being
able to call the base case.

This strategy also makes sense from a combinatorial point of view, because from Lemma 3.20
it follows that the search space is small for rich curves. Switching to Inclusion-Exclusion
early enough lets us bypass the potentially very large search space of poor candidates.

The Algorithm. Let r be a parameter. The exact value is set in the proof of Theo-
rem 3.25, for now it is enough that r = Θ(log k). For a budget k let 〈k1, . . . , kr〉 with

∑
j kj = k

be a budget partition. We describe a main recursive algorithm CC-Recursive (see the ap-
pendix for pseudocode) that takes 4 arguments: the point set P , the class of curves C , a budget
partition 〈k1, . . . , kr〉, and a recursion level i. For convenience we define γi = sk/2i. A simple
top-level procedure CurveCover tries all budget partitions and calls the recursive algorithm
with that partition at recursion level 1.

At every recursion depth i, let Ki =
∑r
j=i kj be the remaining budget and Pi the remaining

point set. That means earlier levels have created a partial solution Ci−1 of k−Ki curves covering
the points P \ Pi. The recursive algorithm will try to cover the remaining points using γi−1-
poor curves. Specifically, at depth i let S be the set of candidates from C that are γi-rich and
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γi−1-poor. Since from depth i and onward it has a remaining budget of Ki and cannot pick
candidates that are (γi−1 + 1)-rich, the algorithm rejects if strictly more than Kiγi−1 remain.
If fewer than (d−1)

2 Ki log k points remain, the sub problem is solved with inclusion-exclusion.
If neither a reject (due to too many points) or a base-case call to inclusion-exclusion has

occurred, the algorithm will branch. It does so in
(|S|
ki

)
ways by simply trying all ways of choosing

ki candidates from S. For each such choice, all points in P covered by the chosen candidates
are removed and the algorithm recurses to depth i + 1. If all those branches fail, the instance
is rejected.

Analysis

Lemma 3.21. Algorithm CurveCover decides whether P has a k-cover of curves from C .

Proof. Regard CurveCover as being non-deterministic. Suppose P has a k-cover C. The
proof is by induction on the recursion. Assume as the induction hypothesis that the current
partial solution Ci−1 is a subset of C and that C contains no curves that are (γi−1 +1)-rich when
restricted to Pi. The assumption is trivially true for i = 1 as C0 = ∅.

By the induction hypothesis, C \ Ci−1 is a Ki-cover for Pi using only γi−1-poor curves.
Therefore it holds that |Pi| ≤ γi−1Ki, and thus the algorithm does not reject incorrectly.
Furthermore, if Inclusion-Exclusion is called it accepts since we are in the case that a
solution exists.

Otherwise, letD ⊆ C\Ci−1 be the curves that are γi-rich when restricted to Pi. The algorithm
non-deterministically picks D from the set of candidates S and constructs Ci = Ci−1 ∪D. This
leaves Ci to be a subset of C. Additionally, Ci contains all γi-rich curves in C restricted to Pi
and hence to Pi+1 ⊆ Pi, upholding the induction hypothesis.

Suppose the algorithm accepts the instance 〈P, k〉. It can only accept if some call to
Inclusion-Exclusion accepts. Let Cr be the set of curves selected by the recursive part such
that Inclusion-Exclusion accepted the instance 〈P \ Cr, k − |Cr|〉. Let Cie be any (k − |Cr|)-
cover of P \ Cr. Then Cr ∪ Cie is a k-cover of P .

By the nature of the inclusion-exclusion algorithm, CurveCover detects the existence of a
k-cover rather than producing one. But since CC-Recursive produces a partial cover during
its execution, it is straight-forward to extend that into a full k-cover by using Inclusion-
Exclusion as an oracle.

Running time. To analyze the running time of the algorithm we see the execution of
CC-Recursive as a search tree T . Each leaf of the tree is either an immediate reject or a call
to Inclusion-Exclusion. Since the latter is obviously most costly to run, we must assume for
a worst case analysis that every leaf node calls the base case algorithm. The running time is
the number of leaf nodes in the search tree times the running time of Inclusion-Exclusion.
Since the algorithm performs exponential work in these leaf nodes but not in inner nodes, it is
insufficient to reason about the size of the tree. Therefore we will speak of the “running time of
a subtree”, which simply means the running time of the recursive call that corresponds to the
root of that subtree. We show that in the worst case, T is a complete tree T1 of depth r. That
is, T1 has no leaf nodes at depths less than r.

Let Tj be a complete subtree of T1 rooted at depth j. To prove that T1 is the worst case for
T we prove two things. First we first prove an upper bound on the running time for arbitrary
Tj . Then we prove that the running time of T1 can only improve if an arbitrary subtree is
replaced by a leaf (i.e. a call to Inclusion-Exclusion). The most involved part is proving an
upper bound on the number of leaves of Tj .
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Lemma 3.22. Let L be the number of leaves in Tj. Then for some constant c2 = c2(d, s), L is
bounded by

L ≤
(

c2k
d

(k − kr) logd−1 k

)Kj−kr

The proof is long and tedious and we leave it for the appendix. To give an idea of how
Lemma 3.22 is proved, we sketch a simplified worst case analysis for Line Cover. The analysis
can be generalized to Curve Cover and gives (up to a constant in the base of the exponent) the
same running time as the real worst case.

Analysis sketch. The branching of T1 at recursion level i depends on the budget ki that
is being used. That means that the structure of the whole tree depends on the complete budget
partition. From Lemma 3.20 it follows that the lower the richness the more candidates there are.
Since the richness halves after every recursive call, one could conjecture that the worst case bud-
get partition would put as much budget in the end. It could e.g. look like 〈0, 0, . . . , 0, kr−1, kr〉,
where k − kr = kr−1 > kr. That is, only in the penultimate and last recursion level is there
any budget to spend. At the deepest level of recursion, the richness considered is strictly less
than log k

2 (because with this richness the base case algorithm is efficient). Therefore, at the
penultimate recursion level the richness is log k. At this level there are k log k points left and
we can apply Lemma 3.20 to bound the number of log k rich lines. This yields a bound of k2

log k
on the number of candidates. From these we pick k − kr lines, giving a branching of roughly(

k2

(k−kr) log k

)k−kr

(where roughly means up to a constant in the base of the exponent).
It turns out that the worst case budget partition is in fact

〈
k021, k022, ..., k02r−1, kr

〉
for

some k0. However, to understand where the division by logd−1 k comes from in the expression
of Lemma 3.22, it is sufficient to understand the above analysis sketch. With Lemma 3.22 in
place, we can prove the following bound on the running time of Tj .

Lemma 3.23. The time complexity of a complete subtree Tj is O∗
(
(c4k/ log k)(d−1)Kj

)
, where

c4 = c4(d, s) is a constant that depends on the family C .

Proof. By Lemma 3.22, the number of leaves in Tj is L ≤
(

c2kd

(k−kr) logd−1k

)Kj−kr

. Observe that

at depth r, Inclusion-Exclusion runs in time O∗
(
2

d−1
2 kr log k

)
= O∗

(
(k1/2)(d−1)kr

)
. Since an

inner node performs polynomial time work and the leaves perform exponential time work, this
immediately implies that the running time for Tj is

O∗
( c2k

d

(k − kr) logd−1k

)Kj−kr

· (k1/2)(d−1)kr

 .
Suppose that k − kr ≥ c3k for some constant c3 > 0, then the running time solves to:

O∗
( c2k

d−1

c3 logd−1k

)Kj−kr

· (k1/2)(d−1)kr

 = O∗
((

c4k

log k

)(d−1)Kj
)

where c4 = (c2/c3)1/(d−1).
When k − kr is less than a constant fraction of k, that is k − kr = o(k), it holds that

Kj − kr = o(Kj) since k ≥ Kj ≥ kr.

O∗
( c2k

d

(k − kr) logd−1k

)o(Kj)

· (k1/2)(d−1)(Kj−o(Kj))

 = O∗
(
2o(dKj log k)+ d−1

2 (Kj log k−o(k log k))
)
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With some simple algebra one gets that the exponent is bounded by (d−1)Kj(log k− log log k),
giving the desired time bound O∗

(
2(d−1)Kj(log k−log log k)

)
= O∗

(
(k/ log k)(d−1)Kj

)
.

Lemma 3.24. Let Lj be a depth j < r leaf of T that calls Inclusion-Exclusion. Then the
running time of Tj dominates that of Lj.

Proof. By Lemma 3.23, the time complexity of Tj is O∗
(
(c4k/ log k)(d−1)Kj

)
. At depth j the al-

gorithm has Kj remaining budget to spend. Since the algorithm called Inclusion-Exclusion
at this depth, at most d−1

2 Kj log k points remained and the call takes O∗
(
2

d−1
2 Kj log k

)
=

O∗
(
(k1/2)(d−1)Kj

)
time, which is bounded by that for Tj .

Theorem 3.25. CurveCover decides Curve Cover in time O∗
(
(Ck/ log k)(d−1)k

)
where C =

C(d, s) is a constant that depends on the family C .

Proof. Fix a budget partition 〈k1, . . . , kr〉. By Lemma 3.24, calling Inclusion-Exclusion at a
depth j < r does not increase the running time of the algorithm. Therefore the time complexity
of CC-Recursive is O∗

(
(c4k/ log k)(d−1)K1

)
= (c4k/ log k)(d−1)k.

CurveCover runs CC-Recursive over all possible budget partitions, of which by the
“stars and bars” theorem are only

(k+r−1
k

)
, a quasi-polynomial in k. Therefore by letting

C = c4 + ε for any ε > 0, the time complexity of CurveCover is O∗
(
(Ck/ log k)(d−1)k

)
.

Lemma 3.26. The polynomial time dependency of CurveCover is O
(
(k log k)2+s) and its

space complexity is O
(
k4 log2 k

)
bits.

Proof. The height of the tree is r = O(log k). Inner nodes have polynomial time and space
which is strictly dominated by the exponential time and polynomial space of the leaves. Hence
the polynomial time dependency of CurveCover is exactly the polynomial time dependency
of the leaves. Inclusion-Exclusion runs in O

(
ns+22n

)
and n = O(k log k) points remain

when it is called; the polynomial dependency is O
(
(k log k)s+2).

Inclusion-Exclusion requires only O(nk) = O
(
k2 log k

)
bits of storage, while an inner

node stores its set of candidates S. A trivial bound on the size of any S is
(sk2

2
)
elements, which

can be stored in O
(
k4 log k

)
bits. Since r = Θ(log k), we use no more than O

(
k4 log2 k

)
bits to

store them.

3.5 Hyperplane Cover

One generalization of Line Cover was discussed in the previous section. In this section we discuss
its other generalization Hyperplane Cover, and give an algorithm for the three dimensional case.
We would like to follow the same basic attack plan of using incidence bounds but here we face
significant challenges and we need non-trivial changes in our approach. One major challenge
is the nature of incidences in higher dimensions. For example, the asymptotically maximum
number of incidences between a set of points and hyperplanes in d-dimensions is obtained by
placing half of the points on one two-dimensional plane (see [2, 11]) which clearly makes it
an easy instance for our algorithm (due to kernelization). Thus, in essence, we need to use
specialized incidence bounds that disallow such configurations of points; unfortunately, such
bounds are more difficult to prove than ordinary incidence bounds (and as it turns out, also
more difficult to use).
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Point-Hyperplane incidence bounds in higher dimensions

The most general bound for point-hyperplane incidences from [2, 12] yields a bound of Θ
(
nd

γ3 + nd−1

γ

)
on the number of γ-rich hyperplanes in d dimensions similar to Lemma 3.20 (where the left term
is again the significant one). Our method requires that the exponent is greater in the denom-
inator than in the numerator, so this bound is not usable beyond R2. As stated before, the
constructions that make the upper bound tight are easy cases for our algorithm; they contain
very low dimensional flats that have many points on them. A specialized bound appears in
[13], where the authors study the number of incidences between points and hyperplanes with a
certain saturation.

Definition 3.27. Consider a point set P and a hyperplane H in Rd. We say that H is σ-
saturated, σ > 0, if H ∩ P spans at least σ · |H ∩ P |d−1 distinct (d− 2)-flats of F .

For example in three dimensions, a (1− 1
n)-saturated plane contains no three collinear points.

The main theorem of [13] can be stated as follows.

Theorem 3.28 (Elekes and Tóth [13]). Let d ≥ 2 be the dimension and σ > 0 a real number.
There is a constant C1(d, σ) with the following property. For every set P of n points in Rd, the
number of γ-rich σ-saturated hyperplanes is at most:

O
(
C1(d, σ)

(
nd

γd+1 + nd−1

γd−1

))
.

The interesting term in this bound has a greater exponent in the denominator, as required.
An issue is that it is not easy to verify if a hyperplane is σ-saturated. In the same paper as
Theorem 3.28, the authors give another bound based on a more manageable property called
degeneracy.

Definition 3.29. Given a point set P and a hyperplane H in Rd, we say that H is δ-degenerate,
0 < δ ≤ 1, if H ∩P is non-empty and at most δ · |H ∩P | points of H ∩P lie in any (d− 2)-flat.

For example in R3, any 1-degenerate plane might have all its points lying on a single line,
and a plane with degeneracy strictly less than 1 must have at least 3 points not on the same
line. As such it is an easy property to test.

Theorem 3.30 (Elekes and Tóth [13]). For any set of n points in R3, the number of γ-rich
δ-degenerate planes is at most

O
(

1
(1− δ)4

(
n3

γ4 + n2

γ2

))
.

This bound is usable and relies on an easily-tested property, but unfortunately only applies
to the R3 setting.

Algorithm for Plane Cover
In this section we present our algorithm PC-Recursive that solves Plane Cover using the
bound from Theorem 3.30. This algorithm is similar to the algorithm for Curve Cover, and
it is assumed that the reader is sufficiently familiar with CC-Recursive before reading this
section.

Recall that by Lemma 3.7, Plane Cover has a kernel of size k3 + k2 where no plane contains
more than k(k+1) ≤ 2k2 points and no two planes pairwise intersect in more than k+1 points.
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For convenience we define γ0 = k2 + k and γi = k2/2i for i > 0. We inherit the basic structure
of the CC-Recursive algorithm, such that every recursion level considers γi-rich-γi−1-poor
candidates. Additionally, any candidate considered must be not-too-degenerate:

Definition 3.31. Let δi = 1 − γ−1/5
i . A γi-rich-γi−1-poor plane is called not-too-degenerate if

it is δi-degenerate, and too-degenerate otherwise.

It is of no consequence that the definition does not cover all candidates considered on depth
1. The main extension of PC-Recursive compared to CC-Recursive is to first use a different
technique to deal with too-degenerate candidates, which then allows normal branching on the
not-too-degenerate ones. The key observation is that any too-degenerate candidate has at least
γiδi = γi − γ4/5

i points on a line and at most γi−1(1− δi) = 2γ4/5
i points not on it.

Suppose a k-cover contains some too-degenerate plane H. By correctly guessing its very
rich line L and removing the points on the line, the algorithm makes decent progress in terms
of shrinking the instance. The points on H but not L will remain in the instance even though
the budget for covering them has been paid. These are called the ghost points of H (or of L),
and L is called a degenerate line. The ghost points must be removed by extending the line L
into a full plane. But the ghost points are few enough that the algorithm can delay this action
until a later recursion level. Specifically, for a line L guessed at depth i, we extend L into a
plane at the first recursion depth which considers 2γ4/5

i -poor candidates, i.e. the depth j such
that γj−1 ≥ 2γ4/5

i ≥ γj .
Therefore the algorithm keeps a separate structure L of lines that have been guessed to be

degenerate lines on some planes in the solution. Augment L to remember the recursion depth
that a line was added to it. At any recursion depth, the algorithm will deal with old-enough
lines in L, then guess a new set of degenerate lines to add to L before finally branching on
not-too-degenerate planes.

The algorithm Let r = Θ(log k) as before. Let 〈h1, `1, . . . , hr, `r〉 with
∑r
i=1 hi + `i = k

be a budget partition. The recursive algorithm PC-Recursive takes 4 arguments: the point
set P , a set of lines L, the budget partition, and a recursion level i. A top level algorithm
PlaneCover tries all budget partitions and calls PC-Recursive accordingly.

Let the current recursion depth be i, and let Ki =
∑r
j=i hj + `j be the remaining budget.

The sub-budget hi will be spent on not-too-degenerate planes, and `i on degenerate lines. Let
L be an augmented set of lines as described above. This means that earlier levels have already
created a partial solution of k − (Ki + |L|) planes, and a set L of lines that still need to be
covered by a plane. If strictly more than (Ki + |L|)γi−1 points remain, the algorithm rejects.
If at most Ki log k points, the algorithm switches to Inclusion-Exclusion passing on the
instance 〈P ∪ L,Ki + |L|〉.

Let f =
⌈

5(i−1)−2 log k
4

⌉
. Let A be the set of all lines in L that were added at depth f or

earlier. Remove A from L. For each way of placing |A| planes H such that every plane contains
one line in A and at least one point in P , let P ′ = P \ (P ∩H) be the point set not covered by
these planes. For a P ′, let H be the set of not-too-degenerate planes and L the set of degenerate
lines too-degenerate candidates.

For every P ′ and every way of choosing hi planes from H and `i lines from L, branch depth
i+ 1 by removing the covered points from P and adding the chosen lines of L to L.

Analysis

Correctness. To prove that the algorithm is correct, we follow a similar strategy as for
CurveCover. We build on the notion that the algorithm is building up a partial solution of
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planes. Removing the points covered by the partial solution yields a “residual problem” just as
in CurveCover. A partial solution is correct if it is a subset of some k-cover. Correctness of
the algorithm follows from proving that a k-cover exists if and only if one branch maintains a
correct partial solution until it reaches Inclusion-Exclusion.

The difference here is that the residual problem is an instance of Any-flat Plane Cover
and not Plane Cover. Therefore, we simply consider the original problem to be an instance
of Any-flat Plane Cover, namely R1 = 〈P, ∅〉. We say that C covers 〈P,L〉 if C covers both
P and L. What needs to be established is that there is a correct way to replace points with
lines (Observation 3.32) and, conversely, that there is a correct way to extend a line in Li
(Observation 3.33). The proofs for these are elementary and we omit them. Given these two
facts, we can easily show that the algorithm will call Inclusion-Exclusion on appropriate
instances.

Observation 3.32. Let ` be a line and C a set of planes such that some plane h ∈ C covers `.
Then C is a cover for 〈P,L〉 if and only if C is a cover for 〈P \ `,L ∪ {`}〉.

Observation 3.33. Let ` be a line, L 3 ` be a set of lines, and C be a set of planes such that
some h ∈ C covers ` but not any other line `′ ∈ L. Then C is a cover for 〈P,L〉 if and only if
C \ {h} is a cover of 〈P \ h,L \ {`}〉.

The conditions for Observation 3.33 might seem overly restrictive. But as the following
Lemma 3.34 shows, that situation arises when L contains only correctly guessed degenerate
lines.

Lemma 3.34. Let h be a too-degenerate plane with degenerate line ` such that h \ ` is a
too-degenerate plane with degenerate line `′. Then at no point during the execution of PC-
Recursive will L contain ` and `′.

Proof. Let j1 be the depth that ` was put in L, and j2 the depth for `′. Since ` is a degenerate
line, it has at most 2γ4/5

j ghost points. It gets removed from L on some depth i where j1 ≤
f =

⌈
5(i−1)−2 log k

4

⌉
. Since `′ was put in L before ` was taken out we have j2 ≤ i − 1 and

j1 >
5(j2)−2 log k

4 . This implies that k2

2j2 >
(
k2

2j1

)4/5
or γj2 > γ

4/5
j1

. Since `2 is also a degenerate
line, it was on a γj2-rich candidate. This candidate contains more points than the possible
number of ghost points of `, so ` was not a degenerate line.

Lemma 3.35. If L contains only the degenerate lines of some too-degenerate planes in a k-
cover, the number of ghost points at depth i is at most |L|γi−1.

Proof. Consider a degenerate line ` ∈ L guessed at some recursion depth j < i. Line ` was on
a δj-degenerate plane, i.e. it covered at least γjδj points and has at most 2γ4/5

j ghost points.
Since ` was not removed from L at depth i − 1, we get j > fi−1 =

⌈
5((i−1)−1)−2 log k

4

⌉
. Some

simple algebra gives k2

2i−2 ≥
(
k2

2j

)4/5
, i.e. γi−1 ≥ 2γ4/5

j . Hence any line in L has left at most γi−1

ghost points in the instance, and the sum of ghost points is at most |L|γi−1.

Lemma 3.36. Algorithm PlaneCover decides whether P has a k-cover of planes.

Proof. View the algorithm as being non-deterministic. Suppose P has a k-cover. Obser-
vation 3.32, Observation 3.33 and Lemma 3.34 guarantee that there is a correct path, and
Lemma 3.35 guarantees that the point set is not erroneously rejected. Therefore the algorithm
will send a yes-instance to Inclusion-Exclusion and accept.
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Suppose P has no k-cover. If the conditions for Observation 3.33 are not satisfied, removing
` from L and pairing it up with points but not with another `′ ∈ L can only reduce the number
of solutions. Therefore the algorithm detects no cover and rejects.

We can now state our main theorem for Plane-Cover.

Theorem 3.37. PlaneCover decides Plane Cover in O
(
(Ck2/ log1/5 k)k

)
time for some

constant C.

To give an idea of how to prove the above theorem, we give a sketch of the analysis that
reflects the core of the real analysis. As before, we assume a (slightly incorrect) worst case
for the budget partition where all the budget is assigned to the two deepest recursion levels.
This gives a bound analogous to the bound appearing in Lemma 3.22. After achieving this
bound, the same arguments as for Curve-Cover can be applied to achieve the bound from
Theorem 3.37.

Analysis sketch. The branching of the analysis is twofold. First there is the branching
done on picking not-too-degenerate planes. Secondly, we have the branching on too-degenerate
planes. This branching is actually a combination of picking the rich lines in too-degenerate
planes, and the branching done by covering these lines with planes later on.

We sketch a bound here for the cases that either all the budget goes into picking not-
too-degenerate planes, or all budget goes into picking too-degenerate planes (i.e. lines). We
show that if either (i) ∀i, ki = hi or (ii) ∀i, `i = ki, then the branching can be bounded by(

k3

(k−kr) log1/5 k

)k−kr

(compare to Lemma 3.22). The full proof for Theorem 3.37 shows that if
the budget is distributed between these cases, then taking the product of the worst case running
times of both cases is roughly the same as what we present here. For both cases, we again assume
a (slightly incorrect) worst case budget partition where kr−1 + kr = k and kr−1 ≥ kr. By the
same arguments as in the analysis sketch of Section 3.4 we have the following two parameters
at recursion level r − 1; the number of of points remaining is n = k log k and the richness γr−1
is log k.

For (i) we can directly apply Theorem 3.30 as follows. For the term 1
(1−δ)4 we can sub-

stitute δ with 1 − γ−1/5
r−1 = 1 − log−1/5 k to get log4/5 k. Plugging in all these values in Theo-

rem 3.30 we get that the number of not-too-degenerate planes is bounded by log4/5 n3

log4 k
= k3

log1/5 k
.

From these candidates we pick k − kr planes, giving a branching of
( k3

log1/5 k

k−kr

)
, which is roughly(

k3

(k−kr) log1/5 k

)k−kr

.
For (ii) we do the following. The algorithm picks γi+1-rich lines at level i, and these lines

are matched with points at later level j where γj = γ
4/5
i . The cost for branching at level j is

charged to level i, so that we can more easily analyze the total branching on lines selected at
level i. With the budget partition as stated above, we can now bound the branching done at
level r − 1. By the Szemerédi-Trotter theorem, there are at most n2

(log k)3 = k2

log k candidates,

from which we select k − kr lines. This yields a total branching of
( k2

log k

k−kr

)
, which is roughly(

k2

(k−kr) log k

)k−kr

. We then need to mach these k − kr lines with k log4/5 k points, yielding a
further branching of (k log4/5 k)k−kr . Taking the product of both these branching factors gives(

k2

(k−kr) log k

)k−kr

· (k log4/5 k)k−kr =
(

k3

(k−kr) log1/5 k

)k−kr

.
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Proof of Theorem 3.37. It holds that
∑r
i=1 hi +

∑r
i=1 `i =

∑r
i=1 ki = k−Kr, so for convenience

we define ε such that ε(k −Kr) =
∑r
i=1 hi.

By the bound we have that the number of not-too-degenerate planes at level i is:

( 1
1− δi

)4 (kγi−1)3

(γi)4 = O
(
k3

γ
1/5
i

)
= O

(
2i/5k13/5

)

For convenient notation, set α = 21/5 and β = c1k
13/5 for some constant c1, so that the

above expression becomes αiβ. The total branching for picking planes at level i can thus be
bounded by

(αiβ
hi

)
. Taking the product of branching factors at each level gives the following

(very similar to curve case):

r∏
i=1

(
αiβ

hi

)
≤

r∏
i=1

(
αiβ

αih0

)αih0

=
r∏
i=1

(
β

h0

)αih0

=
(
β

h0

)∑r

i=1 hi

=
(
β

h0

)ε(k−Kr)

The number of γi+1-rich lines at level i is (kγi−1)2

γ3
i+1

= 2k2

γi
. From these we pick `i lines, giving

a branching of ( k2

γi`i
)`i (up to constants in the base). The number of points at level j where

γj = γ
4/5
i is kγ4/5

i , thus matching `i lines with this many points yields a branching of (kγ4/5
i )`i .

Combining this with the branching factor above gives

(kγ4/5
i )`i ·

(
k2

γi`i

)`i
=
(
αiβ

`i

)`i
By the same technique as the curves and planes, the total branching on lines can thus be
bounded by (

β

`0

)∑r

i=1 `i

=
(
β

`0

)(1−ε)(k−Kr)

Similar to the way the value h0 is lower bounded in the proof of Lemma 3.22 in Section 3.6,
the numbers h0 and `0 can be lower bounded by Ω

(
ε(k−Kr) log1/5 k

k2/5

)
and Ω

(
(1−ε)(k−Kr) log1/5 k

k2/5

)
.

Let c2 be the constant that collects the implicit constant in these lower bounds, the ignored
constants in the base, and c1. The total branching can now be bounded as follows:

(
β

h0

)ε(k−Kr)
·
(
β

`0

)(1−ε)(k−Kr)
=(

c2k
3

ε(k −Kr) log1/5 k

)ε(k−Kr)

·
(

c2k
3

(1− ε)(k −Kr) log1/5 k

)(1−ε)(k−Kr)

=

(
c2k

3

εε(1− ε)1−ε(k −Kr) log1/5 k

)(k−Kr)

≤
(

2c2k
3

(k −Kr) log1/5 k

)(k−Kr)

The Inclusion-Exclusion part runs in 2
1
2Kr log k =

√
k
Kr . By the same arguments as before,

we can bound the total running time as desired.

Lemma 3.38. The polynomial time dependency of PlaneCover is O
(
k4 log4 k

)
and its space

complexity is O
(
k6 log2 k

)
bits.
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Proof. Inclusion-Exclusion runs in O
(
nd+12n

)
time when n ≤ k log k; the polynomial de-

pendency is O
(
(k log k)4). At any point there are at most

(n
d

)
candidates, so any internal node

stores a set of at most O
(
(k2)3) elements. There are at most O(log k) such sets in memory at

any time so O
(
k6 log2 k

)
bits are enough to store them.

3.6 Discussion
We have presented a general algorithm that improves upon previous best algorithms for all
variations of Curve Cover as well as for the Hyperplane Cover problem in R3. Given good
incidence bounds it should not be difficult to apply this algorithm to more geometric covering
problems. However, such bounds are difficult to obtain in higher dimensions and for Hyperplane
Cover the bound O

(
nd/γ3

)
is tight when no constraints are placed on the input, but it is too

weak to be used even in R3. The bound by Elekes and Tóth works when the hyperplanes are well
saturated, but the convenient relationship between saturation and degeneracy on hyperplanes
does not extend past the R3 setting. Our hyperplane kernel guarantees a bound on the number
of points on any j-flat. This overcomes the worst-case constructions for known incidence bounds,
which involve placing very many points on the same line. An incidence bound for a kernelized
point set might provide the needed foundation for similar Hyperplane Cover algorithms in higher
dimensions.
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A Algorithms

Algorithm 1 Recursive Curve Cover
1: procedure CC-Recursive(P, 〈k1, . . . , kr〉 , i)
2: if |P | > Kisk/2i−1 then
3: return no
4: if |P | < Ki log k then
5: return Inclusion-Exclusion(P, k′)
6: let S be the set of γi-rich-γi−1-poor candidates
7: for all S′ s.t. S′ ⊆ S, |S′| = ki do
8: if CC-Recursive(P \ (

⋃
S′), 〈k1, . . . , kr〉 , i+ 1) then

9: return yes
10: return no

Algorithm 2 Recursive Plane Cover
1: procedure PC-Recursive(P,L, 〈h1, `1, . . . , hr, `r〉 , i)
2: if |P | > (Ki + |L|)γi−1 then
3: return no
4: if |P | < Ki log k then
5: return Inclusion-Exclusion(P ∪ L,Ki + |L|)
6: let A be the set of lines in L added at depth

⌈
5(i−1)−2 log k

4

⌉
or earlier

7: if |A| ≥ 1 then
8: for all sets of |A| planes H s.t. each h ∈ H covers a ` ∈ A and a p ∈ P do
9: if PC-Recursive(P \ (

⋃
H),L \A, 〈h1, `1, . . . , hr, `r〉 , i) then

10: return yes
11: return no
12: let H be the set of not-too-degenerate planes
13: let L be the set of γiδi-rich γi−1-poor lines
14: for all 〈H ′, L′〉 s.t. H ′ ⊆ H, |H ′| = hi and L′ ⊆ L, |L′| = `i do
15: let P ′ be the set of points that are in P but not on any h ∈ H ′ or on any ` ∈ L′
16: if PC-Recursive(P ′,L ∪ L′, 〈h1, `1, . . . , hr, `r〉 , i+ 1) then
17: return yes
18: return no

2

2Fixed typo in Algorithm 1 (|S′| rather than |S|)
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B Proof of Lemma 3.22
This entire section is used to prove Lemma 3.22. To do so, we must first give a number of
auxiliary lemmas. The whole setup of the algorithm is to be able to use the incidence bound
from Lemma 3.20 to bound the number of candidates at recursion level i. With a bound on the
number of candidates we can bound the branching at level i as follows.

Lemma 3.39. For some constant c1 = c1(d, s) and α = 2d−1. The branching factor of an
internal node of T at level i is bounded by

(
αic1k
ki

)ki.

Proof. Let the budget partition 〈k1, . . . , kr〉 be fixed and consider recursion level i. At this
point at most Kiγi−1 ≤ sk2/2i−1 points remain and all candidate curves in S are γi-rich. By
Lemma 3.20, |S| is bounded by one of the following:

O
(

(Kiγi)d

γ2d−1
i

)
= O

( sk2

2i−1

)d(
sk

2i
)−(2d−1)

 = O
(
αis1−d2dk

)

O
(

(Kiγi)
γ2d−1
i

)
= O

((
sk2

2i−1

)(
sk

2i
)−1)

= O(k)

Let c1 be the smallest constant (dependent on the constants s and d) such that αi c1
e k is always

greater than the implicit functions of both bounds. At level i, the algorithm will branch on all
possible ways of picking ki curves out of |S| ≤ αi c1

e k candidates. We can bound this by(
αi c1

e k

ki

)
≤
(
eαi c1

e k

ki

)ki

=
(
αic1k

ki

)ki

For the worst case analysis, we need to know for which budget partition the product of
branching factors is maximized. We therefore prove the following.

Lemma 3.40. Let k1, . . . , kt be non-negative integers with a fixed sum, and α > 1 and β
constant real numbers. It holds that:

Π =
t∏
i=1

(
αiβ

ki

)ki

≤
(
β

k0

)∑t

i=1 ki

where k0 = α− 1
αt − α

t∑
i=1

ki

Proof. Let
∑t
i=1 ki = k and assume that k1, ..., kt maximize Π. To prove the statement we

explicitly compute the value of ki as a function of α, i, r, and k. Let ki and ki+1 sum to κ,
and let c be any constant. Consider the function f : [0, κ] 7→ R, where f(x) =

(
c
x

)x( αc
κ−x

)κ−x.
Because ki and ki+1 maximize Π, the function f is maximal at f(ki) and thus we derive the
maximum of f by finding the maximum of its derivative.

log f(x) = x(log c− log x) + (κ− x)(logαc− log(κ− x))
(log f(a))′ = (log c− log x)− 1− (logαc− log(κ− x)) + 1

= log κ− x
xα

= 0

From this we derive that f(x) is maximal when κ−x = xα, and thus that αki = ki+1. Since
the above argument holds for all i ≥ 1, only k1 can be freely set and all other ki are of the
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form αi−1k1. Define k0 = αk1, so that for all i ≥ 1 we have ki = αik0. The expression for k0
as it appears in the lemma can be derived from

∑r
i=1 α

ik0 = k by finding the correct geometric
series. Filling in the computed values for ki in the definition of Π we get:

Π =
t∏
i=1

(
αiβ

αik0

)αik0

=
t∏
i=1

(
β

k0

)αik0

=
(
β

k0

)∑t

i=1 ki

.

The product Π here is essentially the bound on L from Lemma 3.22 that we are looking
for. Before we can apply it however, we need to solve for k0. Note that k0 depends on r
(the deepest recursion level of the algorithm) and the sum

∑r
i=1 ki (i.e. the budget used in

the recursive part). To determine the deepest recursion level, recall that the algorithm keeps
recursing until either too few or too many points remain. That means that we can derive
the maximal recursion depth by solving what the recursion depth is where both those bounds
are equal (i.e. no more branching can occur). The algorithm switches no later than depth r,
where at most (d−1)

2 Kr log k points remain. Conversely, if the instance was not immediately
rejected, at most Ktsk/2r−1 points remain. By solving for r and using the expression for k0
from Lemma 3.40 we can prove the following.

Lemma 3.41. Let r be the deepest level of recursion in CC-Recursive, k0 is bounded by:

k0 = O
(

(k − kr)((d− 1) log k)d−1

(2sk)d−1

)
.

Proof. The algorithm does not recurse if either the number of points left is less than (d−1)
2 kr log k,

or more than krsk/2r−1. This means that it cannot recurse if

(d− 1)
2 kr log k > krsk/2r−1

Setting these quantities equal and solving for r will thus give an upper bound on the recursion
depth of any branch.

(d− 1)
2 kr log k = krsk/2r−1

2r = 4sk
(d− 1) log k

r = log k

log k + log 4s
d− 1

Thus at most the budgets k1, ..., kr−1 summing to k − kr can be used by the recursive part of
the algorithm. Plugging these values into Lemma 3.40 yields:

k0 = k − kr∑r−1
i=1 α

i
= (k − kr)(α− 1)

αr − α
.

We now expand (2d−1)r

(2d−1)r = (2d−1)log k
log k

+log 4s
d−1 =

( 4sk
(d− 1) log k

)d−1
= 2d−1

( 2sk
(d− 1) log k

)d−1
.
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We substitute αr = (2d−1)r in the expression for k0 to get:

k0 = (k − kr)(2d−1 − 1)

2d−1
(

2sk
(d−1) log k

)d−1
− 2d−1

= Θ

 (k − kr)(
2sk

(d−1) log k

)d−1
− 1

 = Ω

 (k − kr)(
2sk

(d−1) log k

)d−1

 .
By simplifying the last expression the proof is complete.

We now have enough machinery to prove Lemma 3.22.

I Lemma 3.22. Let L be the number of leaves in Tj . Then for some constant c2 = c2(d, s), L
is bounded by

L ≤
(

c2k
d

(k − kr) logd−1 k

)Kj−kr

Proof of Lemma 3.22. Let α = 2d−1. Lemma 3.39 gives a bound of
(
αic1k
ki

)ki on the branching
of an internal node at recursion level i. Taking the product of branching factors on the recursion
levels j through r gives a bound on Tj . We can directly apply the bound from Lemma 3.40 to
bound this product and therefore bound Tj .

Tj ≤
r−1∏
i=j

(
αic1k

ki

)ki

≤
(
c1k

k0

)∑r−1
i=j

ki

=
(
c1k

k0

)Kj−kr

Now substitute k0 from Lemma 3.41 and collect any constants in c2 = c2(d, s) to get

T ≤
(

c1k(2sk)d−1

(k − kr)((d− 1) log k)d−1

)Kj−kr

=
(

c2k
d

(k − kr) logd−1 k

)Kj−kr

.
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Chapter 4

A simple greedy algorithm for
dynamic graph orientation

Edvin Berglin and Gerth Stølting Brodal

Graph orientations with low out-degree are one of several ways to efficiently store sparse
graphs. If the graphs allow for insertion and deletion of edges, one may have to flip the ori-
entation of some edges to prevent blowing up the maximum out-degree. We use arboricity as
our sparsity measure. With an immensely simple greedy algorithm, we get parametrized trade-
off bounds between out-degree and worst case number of flips, which previously only existed
for amortized number of flips. We match the previous best worst-case algorithm (in O(logn)
flips) for general arboricity and beat it for either constant or super-logarithmic arboricity. We
also match a previous best amortized result for at least logarithmic arboricity, and give the
first results with worst-case O(1) and O

(√
logn

)
flips nearly matching degree bounds to their

respective amortized solutions.
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4.1 Introduction

An important building block in algorithmic theory and practice is the ability to store graphs with
low memory usage and fast query times. Classical storage methods are edge lists and adjacency
matrix, but both have pitfalls for sparse graphs: adjacency matrices use too much memory,
while edge lists can have slow adjacency queries and/or updates on high-degree vertices. Much
research has been devoted to improving these simple methods. The graph parameter arboricity
α is a well-known measure of a graph’s sparsity, which captures the minimum number of forests
the edges of a graph can be partitioned into. Kannan et al. [22] showed how to efficiently store
static graphs with low arboricity and supporting fast (O(α) time) adjacency queries in the worst
case.

Brodal and Fagerberg [8] extended this idea to consider dynamic graphs, where edges may
be arbitrarily inserted or deleted. If the arboricity of the graphs remains bounded by a constant
α, the forest partitions may be forced to change due to the updates. The authors deal with
this by considering the problem of orienting the edges of the dynamic graph as in [22], but
by re-orienting (“flipping”) edges as needed to maintain low out-degree. They gave a simple
greedy algorithm and proved that its amortized number of flips was O(1)-competitive to the
number of flips made by any other algorithm – even if that other algorithm is afforded unlimited
computational resources and knowledge of the entire sequence of updates in advance. In this
paper, we will use the term ‘offline strategy’ to describe such an algorithm. In particular,
Brodal and Fagerberg showed how to maintain the out-degrees bounded by O(α) with O(logn)
amortized flips, where n is the number of vertices in the graph. They also gave a lower bound of
Ω(n) flips for maintaining the out-degrees bounded by α. It is not hard to see that this bound
holds even for α = 1.

Kowalik [24] gave another offline strategy and applied it to the algorithm by Brodal and
Fagerberg, getting O(α logn) out-degree in constant amortized flips, demonstrating that a rea-
sonable trade-off was possible. Both the algorithms of Brodal and Fagerberg [8] and Kowalik [24]
need to know, and use as a parameter, a bound on the arboricity of the graph.

Kopelowitz et al. [23] later found a different algorithm, which came with slightly worse
bounds but in the worst case rather than amortized. Their algorithm maintains O(α+ logn)
out-degree with O(α+ logn) flips, without knowing α. However, if α is known, they give an
alternate algorithm with somewhat faster running time but otherwise equal bounds. Also, if
α = O

(√
logn

)
, both bounds can be improved slightly toO(logn/ log logn) due to some freedom

in setting the base of the logarithmic terms.
He et al. [21] gave a new offline strategy with a parametrized trade-off between out-degree

and flips, generalizing the two strategies in [8] and [24]. When applied to the algorithm by
Brodal and Fagerberg it achieves O

(
α
√

logn
)
out-degree with O

(√
logn

)
amortized flips. They

also give another algorithm with worst-case bounds, nearly matching those in [23] but with
somewhat simpler pseudocode.

Some other works, e.g. [14] and [29], solve the problem of maintaining dynamic graphs with
a different approach, expressing their bounds in terms of the graph’s h-index. The h-index of a
graph is at least as large as the arboricity, but since the upper bound on this parameter is very
crude (O(

√
m) in a graph with m edges), it is difficult to compare these solutions.

The problem was originally motivated by quick adjacency queries [22]. But rather than
making an explicit dictionary data structure, we focus on the problem of dynamically flipping
edges to guarantee low maximum out-degree. This allows us to ignore lower bounds for dic-
tionary operations, and we deliberately omit comparisons of update time complexity as they
might be skewed unfairly in our favor. It is straightforward to create such a data structure on
top of our machinery, should one so desire, by extending our solution to report which edges are
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Table 4.1: Previous and new results for the dynamic edge orientation of dynamic graphs with
bounded arboricity α. Flip bounds are either amortized (am.) or worst-case (w.c.) per update.

Reference Out-degree Flips α known Note
Brodal & Fagerberg [8] O(α) O(logn) am. yes Ω(n) worst-case flips
Kowalik [24] O(α logn) O(1) am. yes uses alg. from [8]
Kopelowitz et al. [23] O(α+ logn) O(α+ logn) w.c. no
Kopelowitz et al. [23] O

(
logn

log logn

)
O
(

logn
log logn

)
w.c. no if α = O

(√
logn

)
He et al. [21] O

(
α
√

logn
)

O
(√

logn
)
am. yes uses alg. from [8]

He et al. [21] O(α logn) O(α logn) w.c. no
New (Corollary 4.18) O(α+ logn) O(logn) w.c. no
New (Corollary 4.19) O(α logn) O

(√
logn

)
w.c. no

New (Corollary 4.20) O(logn) O
(
α
√

logn
)
w.c. yes if α = O

(√
logn

)
New (Corollary 4.17) O

(
α log2 n

)
O(1) w.c. no

New (Corollary 4.16) O
(
α log2 n
f(n)

)
O(f(n)) w.c. no if f(n) = O(logn)

flipped. This allows programmers to tailor the balance between update and query time to suit
their own needs.

Dynamic edge orientations have recently become a very popular building block in dynamic
graph algorithms, especially for maintaining maximal matchings; see e.g. [4] [5] [31] [33] [34].
For an overview of other applications, we refer to the appendix in the full version of [23].

Our contribution

We present a new algorithm for maintaining an edge orientation of a dynamic graph, with a
guarantee of low out-degree and worst-case number of flips. Like many previous solutions we
relate the performance to the arboricity α of the dynamic graph, but unlike some previous
works, ours does not require knowledge of the arboricity in the general case. Our algorithm is
furthermore much simpler than previous ones, and uses queues as the only under-the-hood data
structure. It owes its simplicity to the fact that it greedily chooses which edge to flip.

By controlling a run-time parameter, our algorithm allows a user-specified trade-off between
the out-degree and the number of flips; this was previously only possible for algorithms with
amortized number of flips. Depending on the choice of the parameter, the algorithm can main-
tain e.g. O(α+ logn) out-degree with O(logn) flips, or O

(
α log2 n

)
out-degree with constant

flips. Various other parameter settings are possible. We match or improve all known bounds
with worst-case flips, except when the arboricity is within a specific, very narrow range.

4.2 Preliminaries

The arboricity of a graph G is the smallest number t such that the edges of G can be parti-
tioned into t forests. Several equivalent definitions are used throughout the literature. We use
arboricity(G) to denote the arboricity of G. A graph G with bounded arboricity arboricity(G) ≤
α is sparse: any induced subgraph of G on n′ ≤ n vertices contains at most (n′ − 1)α edges.
Note that while bounded arboricity graphs have no dense neighbourhood they can still have
vertices of arbitrarily high degree, e.g. stars have arboricity 1 but maximum degree n− 1.

We say that G = G0, G1, G2, . . . , Gt is an edit-sequence of graphs if for each i > 0 there exists
some edge (u, v) s.t. either Gi = Gi−1∪{(u, v)} (update i is an insertion) or Gi = Gi−1\{(u, v)}
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(update i is a deletion). We typically assume G0 = ∅. We say that G has bounded arboricity
(by a number α), or that arboricity(G) ≤ α, if arboricity(Gi) ≤ α for every i.

An orientation of a graph G is a directed graph G with the same vertex and edge sets as G,
but where an undirected edge (u, v) ∈ G exists as the directed edge (u, v) or (v, u) in G. We use
deg(G) to denote the maximum out-degree of G; it is a c-orientation if deg(G) ≤ c. Any graph
G with arboricity(G) ≤ α has an α-orientation; to see this, partition the edges into α forests,
pick an arbitrary root in every tree, and direct every edge towards the root of its respective
tree.

We say that G = G0, G1, . . . , Gt is a sequence of orientations of G if every Gi is an orientation
of Gi. Similarly, G is a c-orientation if every Gi is a c-orientation. A flip is a triple (i, v, u) such
that (v, u) is an edge in Gi−1 and (u, v) is an edge in Gi.

An offline c-orientation strategy κ is some method that takes G and produces a c-orientation
G. By abusing notation we will also use κ to refer to the G produced by κ.

An online c-orientation algorithm A is analogous to the offline strategy, except that it
receives G as a stream and has only a single Gi stored in memory at any time. Hence, upon
receiving update i, it produces Gi as a function of Gi and Gi−1 and then forgets Gi−1. We also
say that A maintains an online c-orientation of G.

We say that κ or A makes σ flips (in the worst case) if the number of flips between any two
updates i, i+ 1 is at most σ, and that it makes σ amortized flips if after any update i the total
amount of flips is at most σi.

Note the difference in wording: a strategy has access to the whole sequence G and produces
the entire c-orientation at once, possibly using brute force. The online algorithm instead sees
G as a stream of unknown length and, after every update i, produces only a single “current”
orientation.

4.3 The algorithm
The algorithm takes an edit-sequence of graphs G as an online stream, and a positive integer
parameter k. Each vertex v maintains a standard FIFO queue Qv which holds all of its out-
edges. On an insertion (deletion) update, orient the new edge arbitrarily (delete the edge via
object reference) and then k times pick a vertex v with maximum out-degree and flip the first
edge in Qv. The book-keeping of out-degrees is trivial by using e.g. a degree-indexed array and
a pointer to the maximum degree. We do not explicitly support queries. See pseudocode below
for ease of reading.

Algorithm 3 Greedy flipping algorithm
procedure insertion(v, u)

push (v, u) to Qv
k-flips

procedure deletion(v, u)
remove (v, u) from Qv
k-flips

procedure k-flips
for i = 1 to k do

let v be a max out-degree vertex
pop an edge (v, u) from Qv
push (u, v) to Qu

4.4 Analysis
To show the efficiency of Algorithm 3, we will prove that its out-degree is competitive to an
unknown offline strategy. For given G and k, let δ, σ and ε be values satisfying the following
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Table 4.2: Potential by type and placement in queue.

Front Back
Good 1 + 2ε 1− ε
Bad (first 3δ) 1 1 + ε
Bad (rest) 1 1

conditions: (i) there exists an offline δ-orientation strategy κ of G making at most σ flips in the
worst case, (ii) 0 < ε ≤ 1, and (iii) k ≥ 1 + 1/ε+ 2σ.

Theorem 4.1. Algorithm 3 maintains an online O(δ + (δε+ 1) log2 n)-orientation of G with k
flips and in O(k) time.

Note that Algorithm 3 is completely oblivious to the values of δ, σ and ε, as well as any
graph properties of G itself. The number of flips, and hence the running time, in Theorem 4.1 is
trivial from the pseudocode. The rest of this section is dedicated to proving the bound on the
out-degree. While the proof is quite non-trivial, the roadmap thereof is easy. We will associate
potentials on all edges, such that the potential of an edge depends on where it is stored. Then
we show that the total potential cannot increase, unless the maximum out-degree is O(δ) in
which case the potentials do not matter. Finally we re-interpret the moving of potentials as a
game, where even an adversary cannot concentrate more than O((δε+ 1) logn) extra potential
in any single vertex – this also (roughly) bounds the maximum out-degree.

For purposes of analysis, we consider each queue Qv to be two queues, the Front Fv and
Back Bv. Edges are always inserted into Bv, and extracted from Fv. If Fv is empty when
an edge should be extracted from Qv, simply swap the two queues (by renaming) and then
continue. It should be trivially clear that this is equivalent to using a single queue. We say an
edge was flipped from v and to u if it was removed from Qv/Fv and inserted into Qu/Bu.

To bound the maximum out-degree, we introduce potentials on the edges. At update i, we
say that an edge in Gi is good if it has the same orientation as in κ(Gi) and bad otherwise.
Good edges have 1 + 2ε potential if they are in a Front queue and 1 − ε in a Back queue.
Bad edges have potential 1, except for the first 3δ bad edges in any Back queue which have
potential 1 + ε. Let p(v) be the sum of potentials of all edges stored in Qv, p̂(G) = maxv p(v)
and P (G) =

∑
v p(v). When we need to differentiate the potential of a vertex in a specific

orientation Gi, we use pi(v) to denote p(v) at the time that the algorithm was storing Gi.
Since Algorithm 3 does not know the values of δ or ε, it cannot determine the exact potential

of a vertex. But as the following lemma shows, the out-degree of a vertex is a close approximation
of its potential. We will prove the theorem by bounding the maximum potential of any vertex,
which then implies a bound on its degree.

Lemma 4.2. For any vertex v, deg(v) + 5δε ≥ p(v) ≥ deg(v)− δε.

Proof. For the upper bound, all edges contribute a base 1 potential, accounting for the deg(v)
term. Note that at most δ out-edges of v are good. If they are all placed in Fv, they contribute
an extra 2δε. At most 3δ bad edges in Bv contribute an extra ε each, giving at most 5δε extra
potential in total.

For the lower bound, only good edges in Bv can contribute less than 1 potential. Again
there are at most δ of these and they contribute ε less, giving at least deg(v)− δε potential in
the vertex.

Let β = 6δε be the resolution of the system. The following states that the potential of the
highest-degree vertex is not too far from the maximum potential of any vertex.
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Lemma 4.3. Let u be some vertex with maximum potential, and let v be some maximum out-
degree vertex. Then p(u)− p(v) ≤ β.

Proof. By Lemma 4.2, the potential of v is at least p(v) ≥ deg(v) − δε and the potential
of u is at most p(u) ≤ deg(u) + 5δε ≤ deg(v) + 5δε. Rearranging we get p(u) − p(v) ≤
deg(v) + 5δε− (deg(v)− δε) = 6δε = β.

Lemma 4.4. Assume a vertex v has an empty Fv and at least 4δ edges in Bv. Then swapping
Fv and Bv does not increase p(v).

Proof. The Back queue contains at most δ good edges and at least 3δ bad edges, hence exactly
3δ bad edges carry an extra ε potential which is released when moving from Bv to Fv. This 3δε
potential is enough to raise the potential of all δ good edges from 1− ε to 1 + 2ε. Any surplus
potential is lost.

Lemma 4.5. Let v have out-degree at least 4δ. Then flipping an edge from v releases at least
ε potential.

Proof. By Lemma 4.4 we can assume Fv is non-empty. Let (u, v) be the edge moved from Fv to
Bu. Note that if the edge was previously good it is now bad, and vice versa. Hence its potential
decreases either from 1 + 2ε to at most 1 + ε, or from 1 to 1− ε.

Lemma 4.6. Let S be any suffix of the sequence of flips performed by Algorithm 3 after some
update. Let d = deg(G) at the start of S. Then deg(G) ≤ d+ 1 after S.

Proof. Note that flips can increase the maximum degree only if there are at least two vertices
u, v with maximum degree, and the algorithm flips an edge incident on both of them. As soon as
some vertex reaches degree d+1, it will be the only vertex of maximum degree and immediately
fall down to degree d in the following flip. Consequently no sequence of flips can raise a second
vertex to degree d+ 1, which is a necessary condition for raising any vertex to degree d+ 2.

Lemma 4.7. Let v be a vertex that had an edge flipped from it on update i. Then degGi
(v) ≥

deg(Gi)− 2.

Proof. Take the suffix S of flips that begins with the last flip from v. Before S, v had maximum
out-degree d. After S, d− 1 ≤ deg(v) and deg(Gi) ≤ d+ 1 by Lemma 4.6.

Consider the algorithm as it receives an update i. We say that the currently stored
graph Gi−1 has sufficient degree if each of the k flips associated with update i is from a vertex
with out-degree at least 4δ. Conversely, we say the graph Gi−1 has insufficient degree if at least
one of the k flips is from a vertex with out-degree less than 4δ.

Lemma 4.8. If Gi−1 has insufficient degree, then deg(Gi) = O(δ).

Proof. Since some edge was flipped from a vertex with out-degree d < 4δ, it follows from
Lemma 4.6 that deg(Gi) ≤ d+ 1 ≤ 4δ.

Lemma 4.9. If Gi−1 has sufficient degree, then P (Gi) ≤ P (Gi−1).

Proof. Assume update i is an insertion. The new edge is inserted into a Back queue, and adds
at most 1 + ε potential. The offline strategy κ makes at most σ flips, which causes σ stored
edges to swap their classification (“renaming”) from good to bad or vice versa. A Front edge
that was bad increases potential from 1 to 1 + 2ε, and a Back edge that was good increases
from 1 − ε to 1 or 1 + ε. The renaming can therefore increase the total potential by at most
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2σε. Each flip frees ε potential by Lemma 4.5 and the assumption of sufficient degree, so the
total potential does not increase as long as kε ≥ 1 + ε+ 2σε. This is guaranteed by the choice
of parameters.

If the update was instead a deletion, the flips still release kε potential while even less
potential is inserted.

Note that the potential of the system can increase on both insertion and deletion updates
if the graph has insufficient degree, since we cannot rely on Lemma 4.4 to ensure that the
potential of a vertex is well-behaved when flipping edges from it. Also note that if κ is known
not to perform any flips on deletion updates, no potential gets added to the system and so our
algorithm can also forgo flipping on deletions.

So far we have shown that either the maximum out-degree is O(δ), or we have a non-
increasing quantity of potential and the degree of each vertex is closely approximated by its
own potential. We next bound the maximum out-degree via a counter game, disassociated from
the actual graph orientation, played by an adversary whose goal it is to concentrate as much
potential as possible in a single counter. Counter games have been explored previously, under
various names, in e.g. [10] and [28]: typically they may be thought of as two-player games
where the second player is benevolent. Our game is different because the lone player is instead
restricted by the concept of resolution β.

Formally, the game is played by a single player on n counters x1, . . . , xn. Each counter xi will
hold a non-negative real-valued weight |xi|, and the sum of weights is a constant

∑
i |xi| = X.

Any such distribution of X on the n counters is called a game configuration C. Let x̂ = maxi |xi|
be the maximum weight at any time. The player can perform arbitrarily many iterations of
the following three-step operation: (i) pick a counter xi and a c > 0 such that |xi| − c ≥
max(0, x̂− β − 2), (ii) remove c weight from xi and (iii) add positive weights whose sum is c to
any set of counters.

The player is therefore allowed to redistribute weight to arbitrary counters, but must take it
in not-too-large chunks from counters that are within the resolution (here β+2) of the maximum
counter. Before upper-bounding x̂, we show that the player is powerful enough to simulate the
movement of potentials by Algorithm 3. We say a game configuration C dominates a graph
orientation G if |xj | ≥ p(vj) for every j.

Lemma 4.10. Let i be an update such that Gi−1 has sufficient degree. Let C be a game
configuration that dominates Gi−1. Then the player can reach a game configuration C ′ that
dominates Gi.

Proof. We need to show that if some vertex gains potential (so its corresponding counter no
longer dominates it), then we can safely take enough weight from other counters to fill that ‘gap’.
Keep in mind that the total potential does not increase (Lemma 4.9). Since the player is allowed
to redistribute weight to any counter, we let the gaps be filled in arbitrary order and only show
that enough weight can be taken from other counters to make up the difference. If x̂ > p̂(Gi−1)
then greedily take weight from all counters greater than p̂(Gi−1) to get x̂ = p̂(Gi−1).

Let vj be a vertex that had an edge flipped from it. Then its resulting out-degree is
degGi

(vj) ≥ deg(Gi)− 2 (Lemma 4.7) and its potential is pi(vj) ≥ degGi
(vj)− δε ≥ deg(Gi)−

2 − δε (Lemma 4.2). Also by Lemma 4.2 the maximum potential in the system is p̂(Gi) ≤
deg(Gi) + 5δε. Hence the final potential of vj is within 6δε+ 2 = β+ 2 of the maximum poten-
tial. As the rules of the counter game allow us to take weight up to β + 2 from the maximum
counter, then however much potential vj lost we can take at least the same amount of weight
from its corresponding counter xj .
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Conversely, if a vertex loses potential but its resulting potential is not at least p̂(Gi)−β−2,
it must have lost that potential due to deletion or renaming rather than flipping. Its counter
can safely be left untouched and still dominate the potential of the vertex.

Since the sum of potential decreases (by flipping) is at least as large as the sum of increases
(for any reason) (Lemma 4.9), and for any vertex that lost potential by flipping we can remove
at least as much weight from its counter, then we can redistribute enough weight to raise the
too-low counters to again dominate their respective vertex potentials. The updated counters
form a game configuration that dominates Gi.

Lemma 4.11. Let Ga, . . . , Gb be any sequence of orientations such that Gi has sufficient degree
for every a ≤ i ≤ b. Consider a game with starting configuration Ca that dominates Ga, with
x̂ = p̂(Ga). Then the player can reach game configurations Ca, . . . , Cb where Ci dominates Gi
for every a ≤ i ≤ b.

Proof. For every a < i ≤ b iterate Lemma 4.10 on Ci−1 to create Ci.

We now let an adversary play the game, with the goal to increase x̂ as much as possible.
For simplicity we assume that every counter is raised to x̂ as the starting configuration. For
j = −1, 0, 1, 2, . . . let `j = X/n + j(β + 2) be weight level j. A counter xi is above level j, or
above `j , if |xi| ≥ `j . Let Xj =

∑n
i=1 max(0, |xi| − `j) be the weight above `j , and Xj = X −Xj

the weight below `j . We say a counter xi contributes max(0, |xi| − `j) to Xj and min(|xi|, `j)
to Xj .

Lemma 4.12. Let j be a weight level such that `j ≤ x̂. Let the player make any sequence of
moves that maintain the condition `j ≤ x̂. Then Xj−1 does not increase.

Proof. Note that any counter xi contributes min(|xi|, `j−1) to Xj−1. By assumption there will
always be a counter xk with `j ≤ |xk|. Hence the resolution rule prevents the player from
making any counter contribute less to Xj−1 than it already does. Since X is a constant and
Xj−1 is non-decreasing, Xj−1 = X −Xj−1 is non-increasing.

Since `0 = X/n is the average weight of all counters, it must always be the case that x̂ ≥ `0
and X−1 ≤ n(β + 2).

Lemma 4.13. Let j be a weight level such that `j ≤ x̂ ≤ `j+1. Let the player make any sequence
of moves that maintain the condition `j ≤ x̂ ≤ `j+1. Then 2Xj ≤ Xj−1.

Proof. By Lemma 4.12, Xj−1 is a non-increasing amount. Let xi be any counter that will
contribute some positive weight w to Xj . Since the player maintains that x̂ ≤ `j+1, no counter
will be able to contribute more than `j+1 − `j = β + 2 to Xj , i.e. 0 < w ≤ β + 2. Then xi must
contribute w + β + 2 to Xj−1. Hence any counter that contributes to Xj contributes at least
twice as much to Xj−1, and 2Xj ≤ Xj−1.

The player is therefore stuck in the following dilemma: once x̂ reaches some level `j , only
a bounded amount Xj−1 of weight remains available to redistribute. But once x̂ reaches `j+1,
only the weight above `j will be possible to redistribute. Therefore, in order to concentrate as
much weight as possible above `j+2, the player must first maximize Xj without any counter
actually reaching above `j+1.

Lemma 4.14. The player cannot increase x̂ to `1+log2 n.
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Proof. Assume x̂ ≥ `log2 n. By alternatingly iterating Lemma 4.12 and Lemma 4.13, the weight

above `log2 n is Xlog2 n ≤
(

1
2

)1+log2 n
X−1 = 1

2nX−1 ≤ 1
2nn(β + 2) < β + 2. Since the weight is

strictly less than β + 2, even concentrating all of it in a single counter is not enough to make
that counter reach `1+log2 n. Hence x̂ < `1+log2 n.

We are now ready to prove the out-degree part of Theorem 4.1.

Proof of Theorem 4.1. Either the graph orientation has insufficient degree and maximum out-
degree O(δ) (Lemma 4.8) or it has non-increasing potential (Lemma 4.9) which is dominated by
a counter game where the starting weight of any counter is O(δ) (Lemma 4.11). By Lemma 4.14,
the maximum counter is x̂ < `1+log2 n = O(δ) + (1 + log2 n)(β + 2). By Lemma 4.2, deg(v) ≤
p(v) + δε, and therefore any vertex has out-degree bounded by O(δ) + (1 + log2 n)(β+ 2) + δε =
O(δ + (δε+ 1) log2 n).

4.5 De-amortizing offline strategies
In the previous work by Brodal and Fagerberg [8], their amortized algorithm is shown compet-
itive with an offline strategy with bounded amortized number of flips, and hence subsequently
published strategies have focused on achieving good amortized bounds. However, for our algo-
rithm analysis, we require an offline strategy with worst-case flips per update. In this section
we show one way to de-amortize offline strategies. Our technique does not generalize to ev-
ery offline strategy, but relies on the special structure inherent to the strategies of both [23]
and [21]. These strategies partition the edit-sequence into blocks of consecutive updates, with
some length λ. No flips occur within a block, only in the seams between two blocks. The
amortized flip complexity of these strategies is therefore simply the maximum number of flips
between two blocks, divided by the length λ of the preceding block.

Since no flips are allowed within a block, the strategy is required to find an orientation of
the union of all graphs Gi, . . . , Gi+λ−1 within a block. The maximum out-degree of the entire
strategy is therefore upper bounded by the maximum out-degree of any oriented union-graph.
Higher λ gives a less sparse union-graph, necessitating higher out-degree, but also allows for a
better amortized flip complexity. The following theorem shows a simple way of de-amortizing
strategies with this structure, by taking all the flips between two blocks and spreading them
evenly over the updates in the later block.

Theorem 4.15. Let κ be a δ-orientation strategy of G where, for arbitrary λ, any update with
σλ flips is followed by at least λ − 1 updates with no flips. Then there exists a 2δ-orientation
strategy of G making σ flips in the worst case.

Note that if the last block of flips is not followed by λ − 1 updates due to G ending, then
one can pad G to appropriate length by repeatedly inserting and removing a dummy edge after
the end of G. Also note that λ can vary within the same sequence – blocks do not need to be
of uniform length.

Proof. Let i be an update where κ performs a set of λσ flips. Let F be the set of flipped
edges. Let κ′ be an offline strategy with the same edge orientations as κ except on updates
i, . . . , i+ λ− 1. On any insertion update i, . . . , i+ λ− 1, let κ′ orient the new edge in the same
direction as κ. Furthermore, on each update i, . . . , i + λ − 1, κ′ takes σ arbitrary edges in F ,
removes them from F , and flips them.

Then F will be empty after update i + λ − 1, so κ(Gi+λ−1) = κ′(Gi+λ−1). At all times F
forms a δ-orientation, since F is a subset of κ(Gi−1). Similarly, κ′(Gj) \ F is δ-orientation for
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every i ≤ j ≤ i+ λ− 1, since they are a subset of κ(Gj). Hence κ′ is a 2δ-orientation. Finally,
κ′ performs at most σ flips per update between updates i and i + λ− 1; exhaustively perform
the same transformation on all of κ for σ flips on any update.

4.6 Discussion

With our two theorems proven, we can relate the algorithm to known offline strategies and
achieve the following corollaries. In all of the following, G is an arbitrary edit-sequence with
arboricity(G) ≤ α.

Kowalik [24] presents an offline O(α logn)-orientation strategy making 1 amortized flip.
Using Theorem 4.15 we can de-amortize it to an offline O(α logn)-orientation strategy making
1 flip in the worst case, giving the following two corollaries.

Corollary 4.16. For a positive function f(n) = O(logn), Algorithm 3 maintains an O
(
α log2 n
f(n)

)
-

orientation with k = 3 + df(n)e flips.

Proof. Let δ = O(α logn), σ = 1 and ε = 1/f(n). Then the algorithm maintains out-degree
O
(
α logn+

(
α logn
f(n) + 1

)
logn

)
= O

(
α log2 n
f(n)

)
.

Corollary 4.17. Algorithm 3 maintains an O
(
α log2 n

)
-orientation of G with k = 4 flips.

Proof. Let f(n) ≡ 1 in Corollary 4.16.

Corollary 4.17 is the first result with O(1) worst-case flips. Compared to [24] (with O(1)
amortized flips), it incurs an extra O(logn) factor on the out-degree, but avoids the Ω(n)
worst-case flips which that algorithm can experience.

Brodal and Fagerberg [8] give an offline O(α)-orientation strategy with O(logn) flips in the
worst case. It only makes flips on insertion updates.

Corollary 4.18. Algorithm 3 maintains an O(α+ logn)-orientation of G with k = O(logn)
flips.

Proof. Let δ = O(α), σ = O(logn) and ε = 1/ logn. Then the algorithm maintains out-degree
O
(
α+

(
α

logn + 1
)

logn
)

= O(α+ logn).

He et al. [21] give an offline O
(
α
√

logn
)
-orientation strategy making O

(√
logn

)
amortized

flips, which we de-amortize using Theorem 4.15.

Corollary 4.19. Algorithm 3 maintains an O(α logn)-orientation of G with k = Θ(
√

logn)
flips.

Proof. Let δ = O
(
α
√

logn
)
, σ = O

(√
logn

)
and ε = 1/

√
logn. Then the algorithm maintains

out-degree O
(
α
√

logn+
(
α
√

logn√
logn + 1

)
logn

)
= O(α logn).

Corollary 4.20. Algorithm 3 maintains an O(logn)-orientation of G with k = O
(
α
√

logn
)

flips, if α = O
(√

logn
)
.

Proof. Let δ = O
(
α
√

logn
)
, σ = O

(√
logn

)
and ε = 1/α

√
logn. Then the algorithm maintains

out-degree O
(
α
√

logn+
(
α
√

logn
α
√

logn + 1
)

logn
)

= O(logn).
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Corollary 4.19 is an improvement over [23] in the flip complexity for edit-sequences with
arboricity bounded by a constant. For α = O

(√
logn/ log logn

)
, Corollary 4.20 matches or

improves the flip complexity from [23], albeit with a slightly worse degree bound, and only if
α is known. If α is both O

(√
logn

)
and ω(

√
log(n)/ log logn) we are narrowly outperformed

by [23], by no more than an O(log logn) factor.
Corollary 4.19 also nearly matches the degree bound in [21] but with worst-case flips instead

of amortized. Corollary 4.18 matches the bounds in [23] for general arboricity and improves on
their flip complexity if α = ω(logn). Furthermore, if α = Ω(logn), Corollary 4.18 matches the
amortized bounds from [8].

Reverse trade-off

Compared to an offline strategy, our analysis lends itself to a trade-off in one direction, getting
(at most) an O(logn) factor on the out-degree for a constant factor on the number of flips.
It allows us to perform much fewer flips than in [23] at the price of weaker degree bounds. A
trade-off in the opposite direction would also be highly desirable, achieving out-degree (closer
to) O(δ) by making Ω(σ) flips. We have only found a very weak such trade-off:

Lemma 4.21. Algorithm 3 can maintain an O(α)-orientation of G with k = O(αn) flips.

Proof. Let δ = O(α) and ε = 1 (the value of σ is inconsequential). Then each edge holds
between 0 and 3 potential. And since any Gi has at most αn edges (by definition of arboricity),
the total potential is between 0 and 3αn. Furthermore each flip releases 1 potential from the
system, contingent on the graph having sufficient degree (Lemma 4.5). Hence after performing
at most 3αn flips on any starting orientation Gi, we must reach a state where the next flip does
not release potential, contradicting Lemma 4.5, and so by Lemma 4.8 the graph has out-degree
at most 4δ = O(α) after all flips.

Lemma 4.21 only matches the worst-case bound of the algorithm in [8], which has drastically
better amortized performance. Hence it should not be used in practice. Still, we believe a
stronger reverse trade-off is possible and conjecture the following:

Conjecture 4.22. For some function f , Algorithm 3 maintains an online O
(
δ + σ+1

f(k)δ logn
)
-

orientation of G with k flips and in O(k) time.

Dynamic arboricity

Throughout the paper we have done all our performance analysis against a static arboricity
bound, i.e. a bound on the greatest arboricity seen anywhere in the edit-sequence. An interesting
issue arises if the sequence contains contiguous sub-sequences, of non-trivial length, with higher
or lower arboricity than elsewhere in the sequence. Some previous algorithms, e.g. one of the
algorithms in [23] and the non-amortized algorithm in [21], adapt to increasing and decreasing
arboricity automatically.

Our analysis immediately adapts to sequences with increasing arboricity, since the analysis
can be performed on any prefix (or contiguous sub-sequence) of G. In the case of periods with
lower arboricity than earlier in the sequence, our algorithm obeys the new arboricity if the
maximum out-degree is already within that new bound. In other words, if the maximum out-
degree is already bounded relative to the new arboricity, then it will remain so. However, if
the arboricity falls enough that the current maximum out-degree breaks the new bounds, our
analysis does not require the maximum out-degree to decrease accordingly. Intuitively, using a
k strictly larger than 1 + 1/ε + 2σ (thus experiencing a net loss of total potential with every

53



update) should force the maximum out-degree to tend towards the updated degree bounds,
similar to the proof of Lemma 4.21. However, we do not have a formal argument for this.

Open problems

For all known strategies that maintain out-degree δ with σ (amortized) flips, it holds that δσ =
Ω(α logn) and most achieve δσ = Θ(α logn). Can one design a strategy with δσ = o(α logn)?
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Chapter 5

Further results

5.1 Offline edit sequences

This section makes a general statement about the structure of amortized offline edit sequences.
Since the structure is very nicely behaved, it is our hope that this result can be used as a
foundation for a general de-amortization scheme, as well as a starting point for other amortized
offline sequences that sacrifice maximum out-degree for better flip complexity.

Let G = G0, G1, . . . be an edit sequence, and let δ be some fixed integer such that there
exists a δ-orientation strategy of G. This section will use several different strategies for the same
edit sequence, and we use κ(Gi) to describe the oriented version of Gi produced by a strategy
κ. When an orientation strategy orients a newly inserted edge as (v, u), we say that v is the
target of that insertion.

For a given δ-orientation G of a graph G, let R[G] be the directed sub-graph of G where a
directed edge (v, u) ∈ G is in R[G] if and only if v has out-degree δ in G. Note that any vertex
in R[G] has out-degree either 0 or δ. A vertex is called a leaf if it as out-degree 0 in R[G]. A
leaf-path (from a vertex v) is a vertex-disjoint directed path in R[G] from v to any leaf. If v
is itself a leaf, then the empty path is the only leaf-path from v. Conversely, if v is not a leaf,
then the empty path is not a leaf-path from v.

For a δ-orientation strategy κ, we use Rκi as shorthand for R[κ(Gi)], or Ri when κ is clear
from context. For an update i, we say κ flips a leaf-path (from a vertex v) if it flips a set
K ⊆ κ(Gi−1) on the update and some subset of K is a leaf-path from v in Ri−1.

The following two lemmas essentially state that flipping a leaf-path is a ‘necessary and
sufficient operation’ for maintaining a δ-orientation on insertion updates. In other words, not
only must any δ-orientation strategy flip a leaf-path, but flipping nothing but a leaf-path is
enough to maintain a δ-orientation.

Lemma 5.1. On an insertion update, flipping a leaf-path from the target is sufficient to main-
tain a δ-orientation.

Proof. Let i be an insertion update and let G be any δ-orientation of Gi−1. Create G
′ from G

by orienting the new edge as (v, u) and flipping an arbitrary leaf-path from v in R[G].
If v was a leaf in R[G] then the empty path was flipped, i.e. no edges were flipped, and

G
′ = G ∪ {(v, u)} is a δ-orientation.
Otherwise, let P be the flipped leaf-path, starting in v and ending in the vertex w. Flipping

all edges in P increments the out-degree of w, decrements the out-degree of v, and does not
change the out-degree of any other vertex. Since w was a leaf it had out-degree at most δ−1 in
G, and now has out-degree at most δ. Since v had out-degree δ and lost one out-edge (flipping)
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but gained one out-edge (insertion), it still has out-degree δ. No other out-degrees have been
changed from G, so G′ a δ-orientation.

Lemma 5.2. Let κ be a δ-orientation strategy and let i be an insertion update. Then κ flips a
leaf-path from the target on update i.

Proof. Let K be the set of directed edges, oriented as in κ(Gi−1), that are flipped by κ for
update i. Let v be the target of the insertion. If v has out-degree 0 in Ri−1, then the empty
subset of K is a leaf-path from v and we are done. Thus assume that v has out-degree δ in Ri−1.
Equivalently v has out-degree δ in κ(Gi−1), and since v gains one out-edge (via insertion), κ
must also flip at least of its δ other out-edges or κ(Gi) is not a δ-orientation. Note that it does
not flip the new edge (v, u) – then we would simply have said that the edge was inserted with
the opposite orientation (u, v) instead. Hence κ flips an edge that is an out-edge of v in Ri−1.

Partition K arbitrarily into a set of cycles and maximal paths, i.e. so that the partition does
not include any two paths P1, P2 such that P2 begins where P1 ends. Note that flipping all
edges of a directed cycle does not change the out-degree of any constituent vertex. Therefore
K must contain a path that contains v. Similarly, flipping the edges of a directed path does
not alter the out-degrees of any of the internal nodes, but decrements the out-degree of the first
vertex and increments the out-degree of the last one. So if any maximal path in K ends in a
non-leaf, then κ(Gi) is not a δ-orientation. Similarly, if there is no maximal path that starts in
v, then the flips do not decrease the out-degree of v and v would get out-degree at least δ + 1
in κ(Gi). Hence K contains a maximal path P that starts in v and ends in a leaf. If P is not
itself a leaf-path from v, then it must contain edges that are not in Ri−1. Let P ′ be the longest
prefix of P that only uses edges from Ri−1. By the previous paragraph, P ′ contains at least
one edge. Then P ′ is a leaf-path from v.

It is important to note here that while any κ must flip some leaf-path, we cannot say which
leaf-path is flipped. Furthermore, κ may choose to flip any other edges arbitrarily at both
insertion and deletion updates in addition to ‘the necessary leaf-path’ from Lemma 5.2. Indeed,
since it is an offline algorithm that can anticipate future updates, it might make all flips ‘in
advance’ to ensure that the necessary leaf-path is always the empty path. We now show that
without loss of generality, we can assume that any κ only flips the necessary leaf-path and
no other edges. This is accomplished by transforming an arbitrary offline strategy without
loss in either out-degree or amortized flip complexity. This technique will involve grouping flips
together to the same update which breaks the worst-case number of flips of the starting strategy.
Hence it is only applicable to strategies with bounded amortized number of flips.

We will characterize an orientation strategy κ as a pair of sets I and F , i.e. κ = (I, F ). A
flip is a triple (i, v, u) where (v, u) is an edge in κ(Gi−1) and (u, v) is an edge in κ(Gi). An
insertion is a triple (i, v, u) such that (v, u) is an edge in κ(Gi) and neither (v, u) nor (u, v) are
edges in κ(Gi−1). Then I and F are simply the set of insertions and flips, respectively. We
omit the deletions of edges from these characterizations, since clearly an edge is equally deleted
from any orientation strategy regardless of its orientation. Note that we will only be concerned
with pairs of sets that truly represent an orientation strategy: e.g. these sets cannot include
any triples (i, v, u) with i < 0 or i > |G|. It should then be clear that two strategies κ = (I, F )
and κ′ = (I ′, F ′) produce the same sequence of orientations if and only if I = I ′ and F = F ′.
This gives a convenient notation for manipulating a given strategy by replacing insertions and
flips in their respective sets.

For a strategy κ(I, F ) and an i, let Fi = {(j, v, u) | (j, v, u) ∈ F, j = i} be the set of flips
associated with update i, and F≤i = {(j, v, u) | (j, v, u) ∈ F, j ≤ i} be the set of flips associated
with updates up to i. The sets Ii and I≤i are defined analogously as subsets of I. Similarly, Gi
is the prefix G0, . . . , Gi of G.
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For a strategy κ = (I, F ), we say a set of flips S ⊆ F is impairing κ (or simply impairing)
if it there is a Sd ⊆ S such that κ′ = (I, F \ S ∪ {(i+ 1, v, u) | (i, v, u) ∈ Sd}) is a δ-orientation.
We say the flips in Sd are early, while the flips in S \ Sd are superfluous, and we also say that
an individual flip f ∈ F is impairing if f is a member of any impairing set. Then κ′ is the
improved strategy and was created by delaying the early flips (from i to i+ 1) and removing the
superfluous flips.

Lemma 5.3. Suppose a strategy κ = (I, F ) flips a directed cycle C on some update i. Then
the flips of C are impairing.

Proof. The key observation is that flipping all edges in a directed cycle does not influence the
out-degrees of any of the constituent vertices. Let j > i be the earliest next update that any
of the edges in C are either deleted or flipped again. If no such j exists then the flips of C are
superfluous: the edges will not be deleted or flipped again after i, and they contribute equally
to the out-degree of all constituent vertices regardless of which direction the cycle is oriented.
Thus removing the flips of C at update i from F yields a δ-orientation.

If j > i + 1 then κ neither deletes nor flips these edges on update i + 1; all the flips of the
edges in C can be delayed to i+ 1 so they are early.

Otherwise j = i+1. Suppose j is a deletion update which deletes the edge (v, u) ∈ C. Then
the flip (i, v, u) is superfluous and the flips of the edges in C \ {(v, u)} are early.

Otherwise, j = i + 1 is an update where all edges in C remain in the graph, and where κ
re-flips some C ′ ⊆ C of the edges. Then the flips of C \C ′ at update i are early, while the flips
of C ′ at updates i and j are superfluous.

Lemma 5.4. For a δ-strategy κ = (I, F ), let i be an update where the edges flipped in Fi induce
a connected component C ∈ Gi−1 such that update i did not insert a new edge with target in C.
Then some flip in Fi is impairing.

It is important here to note that this lemma applies to both insertion and deletion updates:
for insertion updates it applies to every connected component except the component which
includes the target, and for deletion updates it applies to every single connected component.

Proof. Assume for contradiction that Fi includes no impairing flip. Let FC ⊆ Fi be the flips
which induce the connected component C, and let Ft be the (possibly empty) subset of Fi which
contains the target of the insertion. If i was a deletion, then Ft = ∅. Then clearly (I≤i, F≤i\FC)
is a δ-strategy of Gi – so FC is impairing for this prefix Gi, but not for the entire G. Let j > i
be the smallest number such that Fi \ Fv contains an impairing flip for (I≤j−1, F≤j−1) but not
for (I≤j , F≤j). By assumption this j exists, but note that the impairing set to which f belongs
is not necessarily a subset of Fi.

Suppose j > i+1. Then the flips in Fi\Ft are early for G. To see this, we know that the entire
set Fi \ Ft is superfluous for Gi, and that it contains some impairing flip f = (i, v, u) ∈ Fi \ Ft
for Gi+1. Being superfluous and early is not mutually exclusive, so it is sufficient to show that if
f is superfluous it is also early. But this is obvious: if f = (i, v, u) is superfluous for Gi+1, then
the flips Fi+1 do not require a specific orientation of the edge (v, u) to maintain a δ-orientation,
and so we could instead delay f rather than remove it. This ensures that all subsequent flips for
i+ 2, . . . also maintain δ-orientations. Hence (I, F \{(i, v, u)}∪{(i+ 1, v, u)}) is a δ-orientation
strategy of G, and Fi contained an impairing flip.

Otherwise j = i + 1. We get three sub-cases. Let f = (i, v, u) ∈ Fi \ Ft such that j is
a deletion update which deletes the edge (u, v). Then {f} is superfluous in some impairing
subset of Fi. If no such flip exists, let f = (i, v, u) ∈ Fi \ Ft be a flip such that there exists a
f2 = (i + 1, u, v) ∈ Fi+1. Then {f, f2} are superfluous in some impairing subset of Fi ∪ Fi+1:
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the edge has orientation (v, u) in orientation of Gi−1, should also have orientation (v, u) in the
orientation of Gi+1, and is allowed to have either orientation for Gi. If neither of the previous
two sub-cases apply, then Fi \ Ft is an early set: none of these edges are removed or flipped
again on update i+ 1 and are allowed to have either orientation in the orientation of Gi. Hence
we can delay all of them to i+ 1.

All four cases imply contradiction, so Fi includes an impairing flip.

Let κ = (I, F ) be an arbitrary δ-orientation strategy of G that performs at most σ amortized
flips. Let κ∗ = (I, F ∗) be a δ-orientation strategy that is the result of exhaustively choosing
an arbitrary impairing set in κ, and replacing κ with its improved strategy κ′, until a strategy
with no impairing sets is reached. Note that κ∗ is not necessarily unique – the order of choosing
impairing sets can lead to different fix-points.

Lemma 5.5. κ∗ is a δ-orientation strategy making at most σ amortized flips.

Proof. Since κ is a δ-orientation and κ∗ is formed from κ by operations that maintain this
property, κ∗ is a δ-orientation.

Assume for contradiction that κ∗ makes more than σ amortized flips. Then there is prefix
Gi of G such that κ∗ makes |F ∗≤i| > iσ total flips on Gi, while κ makes |F≤i| ≤ iσ total flips on
Gi since it makes at most σ amortized flips.

But F ∗≤i was constructed by removing and delaying flips in F≤i: hence every flip in F ∗≤i can
be uniquely associated with a flip in F≤i. Therefore |F ∗≤i| ≤ |F≤i|, contradiction.

Lemma 5.6. On any deletion update, κ∗ flips no edges.

Proof. Follows from Lemma 5.4, since there is no target on deletion updates.

Lemma 5.7. On any insertion update i, the edges induced by the flips F ∗i form a directed
acyclic graph in κ∗(Gi−1), and a connected component in Gi−1.

Proof. By Lemma 5.3, if F ∗i contains any cycle, all these flips are impairing. Similarly by
Lemma 5.4, if F ∗i induced two or more components in Gi−1, some flip is impairing. But κ∗ has
no impairing flips by construction.

Lemma 5.8. On any insertion update i, κ∗ flips one leaf-path from the target and no other
edges.

Proof. Consider an insertion (i, v, u) ∈ I∗. By Lemma 5.7, κ∗ flips a connected DAG D ⊆
κ∗(Gi−1) on update i.

For a directed edge (w, x) in D, we say that the edge is an in-going flip on x and an out-going
flip from w. Every in-going flip increases the degree of the vertex by 1, while every out-going
flip decreases it by 1.

Consider a vertex w 6= v that has strictly more out-going flips than in-going flips. This
decreases the out-degree of w from Gi−1 to Gi. Hence at least one of the out-going flips of w
is early, contradicting the construction of κ∗. Conversely, if v had out-degree δ in κ∗(Gi−1),
its must have strictly more out-going flips than in-going flips, to incur a net loss of out-degree
which accommodates the newly inserted out-edge (v, u). However, if it has at least two more
out-going flips than in-going flips, then some out-going flip from v is early. Consequently, if v
had out-degree δ in κ∗(Gi−1), then v has exactly one more out-going than in-going flip in D.

Perform a topological sort on the vertex set of D. Since D is connected and v is the only
vertex with more out-going than in-going edges, no other vertex can be sorted before v. Since
v has is sorted first, it has no in-going flips, and therefore one out-going flip. By temporarily
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hiding v and its out-going flip (v, u), the same argument holds for the neighbour u in D \ {u}
and so u must have exactly one out-going flip. So by exhaustively iterating this argument, we
get that D is a path starting in v. The path is clearly vertex-disjoint (or it would contain a
cycle), and from lemma Lemma 5.2 we know that it ends in a leaf (which may be v itself).
Hence D is a leaf-path from v.

An orientation strategy is said to be nice if it flips no edges on deletion updates, and flips
only a leaf-path from the target on insertion updates.

Lemma 5.9. κ∗ is nice.

Proof. Follows from Lemma 5.6 and Lemma 5.8.

Theorem 5.10. Suppose there exists δ-orientation of G making σ amortized flips. Then there
exists a nice δ-orientation of G making σ amortized flips.

Proof. κ∗ is a δ-orientation of G making σ amortized flips, by Lemma 5.5, and it is also nice,
by Lemma 5.9.
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5.2 Lossy counter games
One of the main difficulties in proving an improved bound for Algorithm 3 in Chapter 4, is that
we have no statements of how the potential of the system behaves when k is strictly more than
1 + 1/ε + 2σ, not even if the difference is quite pronounced. This section is one attempt to
bridge that gap by generalizing the counter game in Chapter 4 to have a loss factor. That is
to say, any time the player makes a move, he incurs some multiplicative loss on the weight he
‘touches’. Unfortunately this idea seems hard to combine with the analysis of Algorithm 3 as-is,
since the expected potential lost can be much less than the potential moved, even with ε ≈ 1:
most moves have a loss factor of 1−ε

1+ε → 0, but some moves have a loss factor of 1+ε
1+2ε → 2/3 and

we cannot push this fraction any lower.
Furthermore, with the deterministic approach of Algorithm 3, it seems very hard to say for

sure when moves will a high factor will occur. Even if we set k to be very much larger than
1 + 1/ε+ 2σ, it is unclear how to push the loss factor down to a guarenteed low value with the
deterministic algorithm. However, it seems likely that with a slight modification to the greedy
algorithm that adds random choice to which edge is popped, one would with high probability
get a loss factor that is consistently low over a sub-sequence of updates. To this end, we design
the lossy counter game. We expect the reader to be familiar with the notation from the lossless
counter game, of which this game inherits a significant portion.

Let x0, x1, . . . , xn−1 be a set of n counters, with each xi holding a non-negative real value
(or weight) |xi|. Let β > 0 be the resolution of the system and let φ be the loss constant, with
0 < φ ≤ 1. It may be convenient to think of 1− φ as the loss factor. For the case that φ = 1,
the game does not suffer any loss and the results herein will be no different than the counter
game in Chapter 4. 1. For this reason we will assume that φ < 1. Let x̂ refer to arg maxxi |xi|,
the current maximum weight in any counter.

A player may perform an arbitrary sequence of the following three-step operation: (i) let
i and c > 0 be values such that |xi| − c ≥ max(x̂ − β, 0), (ii) decrease |xi| by c, and (iii) add
positive weights, with sum at most φc, to any set of counters.

The player is therefore allowed to redistribute weight to any counter, but must take it in
not-too-large chunks from counters that are within the resolution β of the maximum counter
value. Furthermore, each time the player makes a move, he incurs a multiplicative loss of 1−φ
on the weight that is relocated. The goal of the player is to maximize x̂.

Given a game configuration C, we refer to any sequence S of moves starting from C as a
play. An optimal play achieves the maximum increase of x̂ among all possible plays, and an
optimal player is one who performs any optimal play.

Conjecture 5.11. The optimal play increases x̂ by O(βφ logn+ β).

This proposed bound is not taken out of thin air, but the combination of the individual
bounds by two simple different plays: O(βφ logn) when φ is decently large, and O(β) when φ
is close to 0. The former is intuitively obvious as we already have this bound for φ = 1, so
φ ≈ 1 ‘should’ behave similarly. Any other play seems to be a combination of these, although
we have been unable to prove this. However, the proofs for the bounds of the two types of play
are found below.

We say that any counter xi has ci = max(0, x̂− |xi|) available weight, and that any counter
with positive available weight is alive while those with 0 available weight are dead.

Although perhaps not immediately obvious, the player may choose to make moves that lower
x̂ depending on the starting condition, e.g. if the maximum counter is just a little more than β

1The referenced counter game uses the resolution β + 2 rather than β in order to comply with the notation
of the rest of the paper. However, the game itself can easily adapt to any resolution, even in the lossless version.
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above all other counters: then it is beneficial to remove weight from this maximum counter, in
order to make a greater sum of weights available to redistribute.

Lemma 5.12. Let S be an optimal play. After the first move in S which raises x̂, S does not
lower x̂.

Proof. Let S be any play, and let S′ be the longest suffix of S such that the first move of S′
increases x̂. Then our task is to show that the optimal sub-play S′ does not lower x̂. But this is
trivial: if x̂ is lowered in S′, the weight spent to raise x̂ in the first move of S could instead have
been spent on raising some dead counter, and have more total available weight at the same x̂
level.

For this reason we will only consider plays that have already performed their ‘catching up’
to make as much starting weight available as possible. As the lemma states, from that point
the optimal player never lowers x̂ again, and so for our purposes the play is said to start at this
point. A full play is a play that ends with a single counter alive, i.e. exhausts all its available
moves.

We keep all alive counters sorted, such that |x0| ≥ |x1| ≥ . . . |xi| for i + 1 alive counters.
This is easy to ensure: if any move changes the order, simply re-label the alive counters. This
implies that x̂ = x0 at all times.

Lemma 5.13. Without loss of generality, an optimal play does not add weight to a dead counter.

Proof. By Lemma 5.12 the optimal play S will not x̂. Let xi be the counter from which weight
is removed, and let xk be a dead counter that receives weight. Let c ≤ ci be the portion of
ci such that φc is added to xk: the updated available weight on xk is then then c′k ≤ φc < c.
Let d = c − c′k. Replace the move in question with the move that takes ci − c + d weight
from xi: distribute φ(ci − c) as originally, and use the weight φd ≥ 0 on a trivial move that
adds to all alive counters including xi. Then the available weight is exactly the same for every
alive counter as in the original move (after re-labeling), furthermore x̂ has been raised by an
additional non-negative amount.

A trivial move takes some weight c from an alive counter and distributes φc evenly across
all other alive counters. We also say that ‘part of a move’ can be a trivial move, i.e. take weight
c from an alive counter, for a c′ ≤ c distribute φc′ evenly across all other alive counters, and
distribute φ(c− c′) in some other unspecified way. Note that the available weight on any other
alive counter remains unchanged after a trivial move.

An ordered move takes all available weight ci from the smallest alive counter xi, and dis-
tributes φci among the remaining alive counters in some fashion. An unordered move is any
move that is not ordered. An ordered play is a play in which every move is ordered.

Lemma 5.14. Without loss of generality, an optimal play is an ordered play.

Proof. Let S be an optimal play which is not ordered. Let S′ be the smallest suffix of S such that
the first move in S′ is unordered. Let xi be smallest alive counter in the starting configuration
of S′. There are three cases.

Case 1. The player makes a move that raises x̂ enough that xi is no longer alive. Then
S is not optimal: it is outperformed by the strategy that makes a trivial move from xi before
performing the moves S′.

Case 2. The player takes weight from a counter xj , j < i, and places it in a way that does
not raise x̂. Then without loss of generality, there is an optimal play that makes an ordered
move from xi. In particular, since S′ is the shortest unordered suffix of S, its next move is
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ordered and takes all weight from xi. Let φc′ be the weight placed on xi in the move from xj ,
which is possibly 0. If φc′ = 0, the two counters do not interact, i.e. taking from them in the
opposite order but redistributing their combined weight in the original order yields a play S′′
which starts with an ordered move and is at least as good as S′. The second move in S′′ is not
necessarily ordered; recurse the proof on the strictly shorter suffix of S.

If φc′ > 0, this quantity gets moved twice in the first two moves of S′. Then S′ is not optimal:
it distributes at most φ(ci+φc′)φ(cj−c′) < φ(cj +ci) among the counters x0, . . . , xi−2. Perform
the same transformation of S′ as above and make a trivial move with the additional weight on
the move from xj .

Case 3. The player makes an unordered move from xj that raises x̂, but not so much that
xi is no longer alive. Let c′i < ci be the updated available weight of xi after the move, such
that x̂ was raised by ci − c′i. Then replace the first two moves in S′ thusly: perform an ordered
move on xi that greedily fills the target counters of the original move from xj . Since cj ≥ ci,
this move raises x̂ by no more than the original first move in S′. Hence cj − c′j ≤ ci − c′i, and
the move from xj can distribute at least as much weight as the original second move in S′. In
the case of surplus weight (cj − c′j ≤ ci − c′i), then S was not optimal since this extra weight
can be used for a trivial move that increases x̂ further.

We define a weak move as the ordered trivial move, i.e. takes all available weight ci from
the smallest alive counter xi, and distributes φci evenly among the remaining i alive counters.

Lemma 5.15. Consider a full play of weak moves. Then the increase of x̂ is O(βφ logn).

Proof. Let S be a length i play of weak moves. Since weak moves are ordered trivial moves,
the increase is

∑1
j=i

1
jφcj . Since i ≤ n and cj ≤ β for every j, the expression simplifies to

Hiφβ = O(βφ logn).

A strong move takes all available weight ci from the smallest alive counter i and puts φci
on x0. Since the move increases x0 and no other counters, every other alive counter xj sees an
increased distance to x̂ and their corresponding available weight cj will decrease. For some i, j
with 0 < j < i, we use c(i)

j to denote the available weight in counter cj immediately after the
player has performed a strong move on counter xi. For ease of notation, for a play of k strong
moves we use c(k+1)

i = ci is used to refer to the value of ci before the play.

Lemma 5.16. Consider a strong move from xi, and let xj be an alive counter with 0 < j < i.
Then c(i)

j = c
(i+1)
j − φc(i+1)

i > 0.

Proof. The strong move increases x0 by c
(i+1)
i , and increases no other counter. Hence the

distance from xj to x̂ has increased by c(i+1)
i , i.e. the weight available on cj after the ith move

has decreased by exactly φc(i+1)
i .

The updated value c(i)
j > 0 because c(i+1)

i ≤ c(i+1)
j and φ < 1, hence φc(i+1)

i < c
(i+1)
j .

Lemma 5.17. For a full play of i strong moves, x̂ increases by φ
(∑i

r=1(1− φ)r−1c
(i+1)
r

)
.

Proof. Since there are i strong moves and a move from xr increases x̂ by φx
(j+1)
j for every

0 < r ≤ i. Hence the total increase is φ
∑i
r=1 c

(r+1)
r , and we need to find the updated values

c
(r+1)
r . We do this via induction on j = 1, . . . , i. The case for j = 1 is obvious since φc(2)

1 =
φ
∑1
r=1(1− φ)r−1c

(j+1)
r .
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Now for the induction step, suppose the statement is true for a full play of j− 1 moves, and
show it also holds for j strong moves. Then the increase is

φc
(j+1)
j + φ

j−1∑
r=1

(1− φ)r−1c(j)
r

 =

φc
(j+1)
j + φ

j−1∑
r=1

(1− φ)r−1
(
c(j+1)
r − φc(j+1)

j

) =

φ

j−1∑
r=1

(1− φ)r−1c(j+1)
r + c

(j+1)
j

1− φ

j−1∑
r=1

(1− φ)r−1

 =

φ

j−1∑
r=1

(1− φ)r−1c(j+1)
r + c

(j+1)
j

(
1− φ

(
1− (1− φ)j−1

1− (1− φ)

)) =

φ

j−1∑
r=1

(1− φ)r−1c(j+1)
r + c

(j+1)
j (1− φ)j−1

 =

φ

 j∑
r=1

(1− φ)r−1c(j+1)
r

 .

Lemma 5.18. For a full play of strong moves, the increase of x̂ is at most β.

Proof. Let S be a length i full play of strong moves. From Lemma 5.17, the increase of x̂ by S
is φ

(∑i
r=1(1− φ)r−1c

(i+1)
r

)
≤ φ

(∑∞
r=1(1− φ)r−1β

)
= φβ 1

φ = β.

Lemma 5.15 and Lemma 5.18 combine into the bound O(βφ logn+ β), as stated in Conjec-
ture 5.11.
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Postface

This version of the thesis has been edited slightly from the original version. The changes are:

• Added bibliography item for the publication A simple greedy algorithm for dynamic graph
orientation [3], and

• edited one sentence in the Preface to reflect that this paper has now been published.

• Fixed a reference to Lemma 5.2 (used to say “Lemma XXX”) in the proof for Lemma 5.8.

• Fixed an occurrence of O(logn) (used to say “O(log)”), in the abstract for Chapter 4.

• Renamed Chapter 5 to Further results, from Unpublished work.

• Added the word ’can’ to the final sentence of Section 2.2, to reflect that this statement is
unproven speculation.

• Added this Postface.
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