Hardware-Aware Algorithms and Data Structures

Gabriel Moruz
BRICS
University of Aarhus
Hardware /nm./: “the part of the computer that you can kick.”

– Geeky folklore.
Algorithms and Data Structures

- Algorithm:
 - A finite sequence of steps to solve a problem
 - Is given an input
 - Is required to produce an output
 - Should be efficient

- Data structure:
 - The "way" in which data is stored
 - Supports operations
Example – Searching

- **The problem**
 - **Input:** A sequence of numbers A, an element e
 - **Output:** YES, if e is in A, NO otherwise

- **Dictionary** – underlying data structure
 - **Static:** Supports only searches
 - **Dynamic:** Supports searches and updates

- **Why bother**
 - Numerous applications: Database systems, search engines, implementing sets, sorting, interval trees, orthogonal range searching, line segment intersection, phone book, the search for the Holy Grail, finding Nemo, the vial of life, cherchez la femme, the lost city of Atlantis, the bad Mafia guys, the dark Mordor, pirates’ treasure chest etc.
Linear Search

- Consider sequence A to be an array of size n
- Efficiency - the number of comparisons

<table>
<thead>
<tr>
<th>A</th>
<th>21</th>
<th>42</th>
<th>7</th>
<th>10</th>
<th>22</th>
<th>15</th>
<th>12</th>
<th>8</th>
<th>31</th>
<th>18</th>
<th>24</th>
<th>5</th>
<th>35</th>
<th>28</th>
<th>3</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
</tbody>
</table>

- The algorithm
 - Compare elements in A against e left-to-right
 - Stop upon encountering an element equal to e

- Analysis
 - What if $e = 13$ or e not in A?
 - Worst case scenario: need to access all elements in A!!
 - Why avoiding this approach: imagine $n = 100,000,000$
What if A is sorted?

The algorithm – binary search:

- Compare e against the middle element in A
- If e is smaller then restrict to the left half of A
- If e is larger then restrict to the right half of A
- Stop when:
 - an element in A matching e is found, or
 - the sequence in which we search has one element
What if A is sorted?

The algorithm – binary search:

- Compare e against the middle element in A
- If e is smaller then restrict to the left half of A
- If e is larger then restrict to the right half of A
- Stop when:
 - an element in A matching e is found, or
 - the sequence in which we search has one element
- The searched element $e = 13$
What if A is sorted?

The algorithm – binary search:

- Compare e against the middle element in A
- If e is smaller then restrict to the left half of A
- If e is larger then restrict to the right half of A
- Stop when:
 - an element in A matching e is found, or
 - the sequence in which we search has one element
- The searched element $e = 13$
What if A is sorted?

The algorithm – binary search:

- Compare e against the middle element in A
- If e is smaller then restrict to the left half of A
- If e is larger then restrict to the right half of A
- Stop when:
 - an element in A matching e is found, or
 - the sequence in which we search has one element
- The searched element $e = 13$
What if A is sorted?

The algorithm – binary search:

- Compare e against the middle element in A
- If e is smaller then restrict to the left half of A
- If e is larger then restrict to the right half of A
- Stop when:
 - an element in A matching e is found, or
 - the sequence in which we search has one element
- The searched element $e = 13$
Analyzing Binary Search

<table>
<thead>
<tr>
<th>3</th>
<th>5</th>
<th>7</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>13</th>
<th>15</th>
<th>18</th>
<th>21</th>
<th>22</th>
<th>24</th>
<th>28</th>
<th>31</th>
<th>35</th>
<th>42</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
</tbody>
</table>

- **Analysis**
 - One comparison: search in a sequence of size $n/2$
 - Two comparisons: search in a sequence of size $n/4$
 - k comparisons: search in a sequence of size $n/(2^k)$
 - Worst case scenario: stop in a sequence of size 1
 - Sequence size $n/(2^k) = 1$, meaning $k \approx \log_2 n$
 - **Conclusion:** we need about $\log_2 n$ comparisons
Analyzing Binary Search

- Analysis
 - One comparison: search in a sequence of size \(n/2 \)
 - Two comparisons: search in a sequence of size \(n/4 \)
 - \(k \) comparisons: search in a sequence of size \(n/(2^k) \)
 - Worst case scenario: stop in a sequence of size 1
 - Sequence size \(n/(2^k) = 1 \), meaning \(k \approx \log_2 n \)
 - Conclusion: we need about \(\log_2 n \) comparisons

- Imagine \(n = 100,000,000 \): \(\log_2 100,000,000 \approx 26.5 \)
Outline

• Hardware factors affecting the running time
 – Instructions performed by microprocessor
 – Branch mispredictions
 – Memory transfers
 – Streaming

• Hardware factors affecting the reliability
 – Memory corruptions

• Optimal resilient dictionaries
Theory vs Practice

In theory, theory and practice are the same
Theory vs Practice

In theory, theory and practice are the same

In practice, theory and practice may be quite different . . .

Gabriel Moruz: Hardware aware algorithms and data structures
Traditional RAM model

- Consists of a processor and an infinite memory
- Instructions:
 - Load/stores of memory cells, assignments, comparisons, simple math operations
 - NO loops!
- Complexity: given by # instructions
- Not always adequate!!!
Branch Mispredictions – Motivation

- **Input:**
 - a – array of size 2×10^7, $a_i \in [1, \ldots, 100]$
 - $param$ – a threshold, $param \in [0, \ldots, 101]$

- **Output:**
 - g – # elements in a larger than $param$
 - s – # elements in a smaller or equal to $param$

- **Algorithm:**
 - Compare each element in a against $param$
 - Use a left-to-right scan

| 72 | 21 | 3 | 45 | 98 | 53 | 87 | 17 | 24 | 33 | 52 | 8 | 81 | 79 | 63 | 48 |

$param = 30$, $g = 0$, $s = 0$
Branch Mispredictions – Motivation

• Input:
 – a – array of size 2×10^7, $a_i \in [1, \ldots, 100]$
 – $param$ – a threshold, $param \in [0, \ldots, 101]$

• Output:
 – g – # elements in a larger than $param$
 – s – # elements in a smaller or equal to $param$

• Algorithm:
 – Compare each element in a against $param$
 – Use a left-to-right scan

\[
\begin{array}{cccccccccccccc}
72 & 21 & 3 & 45 & 98 & 53 & 87 & 17 & 24 & 33 & 52 & 8 & 81 & 79 & 63 & 48 \\
\end{array}
\]

\[param = 30, \ g = 1, \ s = 0\]
Branch Mispredictions – Motivation

- **Input:**
 - a – array of size 2×10^7, $a_i \in [1, \ldots, 100]$
 - param – a threshold, $\text{param} \in [0, \ldots, 101]$

- **Output:**
 - g – # elements in a larger than param
 - s – # elements in a smaller or equal to param

- **Algorithm:**
 - Compare each element in a against param
 - Use a left-to-right scan

$$\begin{array}{cccccccccccc}
72 & 21 & 3 & 45 & 98 & 53 & 87 & 17 & 24 & 33 & 52 & 8 & 81 & 79 & 63 & 48 \\
\end{array}$$

$\text{param} = 30$, $g = 1$, $s = 1$
Branch Mispredictions – Motivation

• Input:
 – a – array of size 2×10^7, $a_i \in [1, \ldots, 100]$
 – $param$ – a threshold, $param \in [0, \ldots, 101]$

• Output:
 – g – # elements in a larger than $param$
 – s – # elements in a smaller or equal to $param$

• Algorithm:
 – Compare each element in a against $param$
 – Use a left-to-right scan

$param = 30$, $g = 11$, $s = 5$
The number of instructions is the same regardless of \textit{param}.
Running Time

Theory

Practice

Explanation: branch mispredictions!

Gabriel Moruz: Hardware aware algorithms and data structures
Pipelining
Pipelining

- Each instruction is broken into several stages
- The smaller pieces can be executed in the same time
- Significant gains in running time

```
x=1;
y=y-1;
z=m+n;
if (t==0)
    printf(‘‘It’s zero’’);
else
    t=0;
```
Pipelining

- Each instruction is broken into several stages
- The smaller pieces can be executed in the same time
- Significant gains in running time

```c
x=1;
y=y-1;
z=m+n;
if (t==0)
    printf('It's zero');
else
    t=0;
```
Pipelining

- Each instruction is broken into several stages
- The smaller pieces can be executed in the same time
- Significant gains in running time

```c
x=1;
y=y-1;
z=m+n;
if (t==0)
    printf(''It’s zero’’);
else
    t=0;
```
Pipelining

- Each instruction is broken into several stages
- The smaller pieces can be executed in the same time
- Significant gains in running time

```c
x=1;
y=y-1;
→z=m+n;
if (t==0)
    printf("It's zero");
else
    t=0;
```
Pipelining

- Each instruction is broken into several stages
- The smaller pieces can be executed in the same time
- Significant gains in running time

```c
if(t==0)
z=m+n; y=y-1; x=1;
else
    t=0;
```
Pipelining

- Each instruction is broken into several stages
- The smaller pieces can be executed in the same time
- Significant gains in running time

```c
x=1; y=y-1; z=m+n; if (t==0) printf("It's zero"); else t=0;
```
Modern processors include branch predictors
Attempts to predict the direction of each branch
Accurate over 90% of the times
Significant penalties upon mispredictions
Pipelines are getting longer
Running Time

Theory

Practice

Many branch mispredictions for $param \approx 50!$
Memory Transfers and Streaming
Memory Hierarchy – Motivation

Simple algorithm:

- Consider an array of size n
- Perform r element accesses circularly
- n is a parameter, r is fixed

Accesses per element (apm) for $r = 20$:

- $n = 2$, $apm = 10$
- $n = 4$, $apm = 5$
- $n = 5$, $apm = 4$
- $n = 10$, $apm = 2$
Running Time

Theory

- The number of instructions is the same regardless of n
- The number of memory accesses is also the same
- Branch mispredictions don’t stand in the way
Running Time

Theory

Practice

Explanation: memory hierarchy!

Gabriel Moruz: Hardware aware algorithms and data structures
Memory Hierarchy

- Each level is larger and slower than the previous
- Transfers are done only between consecutive levels
- Transfer large blocks of data at once
- Real bottleneck: between memory and disk
- Bad news: data sets are getting huge
Many memory transfers when n exceeds memory!
Streaming

- Data access is done only sequentially
- Don’t want to store all data, use only small memory
- One pass streaming
 - Data comes on the fly: sensor data, IP monitoring
 - Use a single pass, get as much use of it as possible
- Multi pass streaming
 - Modern disks have high sequential access
 - A tempting approach for really massive data sets
Outline

- Hardware factors affecting the running time
 - Instructions performed by microprocessor
 - Branch mispredictions
 - Memory transfers
 - Streaming

- Hardware factors affecting the reliability
 - Memory corruptions

- Optimal resilient dictionaries
Soft Memory Errors

- Nowadays memories:
 - Small, complex, high frequency, low voltage
 - Price to pay - reliability

- Soft memory errors:
 - Bit flip, implying cell corruption
 - Caused by radiation, power failures, cosmic rays

- Good news:
 - Doesn’t happen often (every few months)

- Bad news:
 - Happen often for large clusters
 - Soft memory error rate is increasing
Soft Memory Errors – Applications

[Govindavajhala and Appel ’03]
Applications:

- Break JVM
- Insecure cryptographic protocols, smart-cards

[Govindavajhala and Appel ’03]
Outline

• Hardware factors affecting the running time
 – Instructions performed by microprocessor
 – Branch mispredictions
 – Memory transfers
 – Streaming

• Hardware factors affecting the reliability
 – Memory corruptions

• Optimal resilient dictionaries
Contributions

Submissions:
Optimal resilient dictionaries
Resilient Search Trees: Randomization and Prejudice
I. Finocchi, F. Grandi, and G. F. Italiano

Reviewers deciding:
Optimal resilient dictionaries
Resilient Search Trees: Randomization and Prejudice
I. Finocchi, F. Grandi, and G. F. Italiano

Acceptance notification:
Optimal resilient dictionaries

Gabriel Moruz: Hardware aware algorithms and data structures
Faulty-Memory RAM

[Finocchi and Italiano ’04]

- A regular RAM with possibly corrupted cells
- Bad news:
 - Memory corruptions occur at any time and at any place
 - Corruptions are performed by an adversary
 - Corrupted and uncorrupted cells can’t be distinguished
 - No space increase (asymptotically)
Faulty-Memory RAM

[Finocchi and Italiano ’04]

- A regular RAM with possibly corrupted cells
- Bad news:
 - Memory corruptions occur at any time and at any place
 - Corruptions are performed by an adversary
 - Corrupted and uncorrupted cells can’t be distinguished
 - No space increase (asymptotically)
- Good news:
 - Assumption: at most δ corruptions
 - $O(1)$ corruption-free cells (reliable CPU registers)
Resilient Algorithms

- Work correctly for uncorrupted values
- Searching:

Search key $e = 13$.
Resilient Results

- **Sorting**: $\Theta(n \log n + \delta^2)$
- **Static dictionaries**:
 - Randomized: $\Theta(\log n + \delta)$ expected time
 - Deterministic: $\Omega(\log n + \delta)$, $O(\log n + \delta^{1+\epsilon})$ worst case
- **Search trees**: amortized $O(\log n + \delta^2)$ time per operation
- **Priority queues**: amortized $O(\log n + \delta)$ time per operation

Our paper:

- Randomized static dictionary: $\Theta(\log n + \delta)$ expected time
- Deterministic static dictionary: $O(\log n + \delta)$ worst case time
- Deterministic dynamic dictionary: $O(\log n + \delta)$ worst case time for search, $O(\log n + \delta)$ amortized time for updates
Classical Binary Search

3 5 7 8 10 12 13 0 18 21 22 24 28 31 35 42

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Classical Binary Search

The adversary can mislead the search

The answer may be wrong

The search may end very far from the correct location

A single corruption suffices!!!
Randomized Static Dictionary

1. Split the input in 2δ disjoint sequences $S_1, \ldots, S_{2\delta}$
2. Perform a classic binary search on a random S_k
3. Check whether the search was not mislead by corruptions
4. If search was mislead restart from step 2. with a new S_k

A

\[
\begin{array}{cccccccccccccccc}
\end{array}
\]

S_1

\[
\begin{array}{cccc}
1 & 12 & 21 & 32 & 42 \\
\end{array}
\]

S_2

\[
\begin{array}{cccc}
4 & 13 & 25 & 33 & 44 \\
\end{array}
\]

S_3

\[
\begin{array}{cccc}
7 & 16 & 27 & 37 & 45 \\
\end{array}
\]

S_4

\[
\begin{array}{cccc}
9 & 18 & 30 & 39 & 46 \\
\end{array}
\]

$\delta = 2$
The Magic Step 3

	1	4	7	9	12	13	16	18	21	25	10	30	32	33	37	39	42	44	45	46	
A																					
S_1	1	12	21	32	42																
S_2	4	13	25	33	44																
S_3						7	16	10	37	45											
S_4					9	18	30	39	46												

$e = 13$, $\delta = 2$, $c_l = 1$, $c_r = 5$

- $|L| = |R| = 2\delta + 1$
- c_l – # keys in L smaller than e
- c_r – # keys in R larger than e
- Restart if $c_l \leq \delta$ or $c_r \leq \delta$
- Scan all elements between L and R otherwise
Analysis

1. Split the input in 2^δ disjoint sequences $S_1, \ldots, S_{2^\delta}$
2. Perform a classic binary search on a random S_k
3. Check whether the search was not mislead by corruptions
4. If search was mislead restart from step 2. with a new S_k
Analysis

1. Split the input in 2δ disjoint sequences $S_1, \ldots, S_{2\delta}$
2. Perform a classic binary search on a random S_k
3. Check whether the search was not mislead by corruptions
4. If search was mislead restart from step 2. with a new S_k
 - Step 2: $O(\log n)$ time and $O(\log \delta)$ random bits
 - Step 3: $O(\delta)$ time
 - Probability theory: expected at most two iterations
 - Altogether: $O(\log n + \delta)$ time, $O(\log \delta)$ random bits
Analysis

1. Split the input in 2δ disjoint sequences $S_1, \ldots, S_{2\delta}$
2. Perform a classic binary search on a random S_k
3. Check whether the search was not mislead by corruptions
4. If search was mislead restart from step 2. with a new S_k
 - Step 2: $O(\log n)$ time and $O(\log \delta)$ random bits
 - Step 3: $O(\delta)$ time
 - Probability theory: expected at most two iterations
 - Altogether: $O(\log n + \delta)$ time, $O(\log \delta)$ random bits

Note
 - Adaptive adversaries can compute index k of S_k!
 - For adaptive adversaries: $O(\delta \log n)$ time
Deterministic Static Dictionary
High Level Picture

- Adapted binary search
 - Reuse the sub-sequencing idea
 - Perform adapted binary search on subsequences
 - Change the subsequence when identifying corruptions
 - A corruption forces it to advance one level

- Verification procedure
 - Checks whether the search was mislead by corruptions
 - Upon success takes $O(\delta)$ time
 - Upon failure takes $O(f)$ time and identifies $\Omega(f)$ errors

- Final scan
 - Performed once, check $O(\delta)$ elements
Structure

- Use different elements for search and verification
- Query segment Q:
 - Used only by the binary search
 - Defines subsequences $S_0, \ldots, S_{\delta+1}$
 - There is at least an S_k corruption-free
- Verification segments LV and RV
 - Used only by verification
 - Allow the use of a majority argument
Adapted Binary Search

\[S_k = \begin{array}{cccccccccccccccc}
-\infty & 3 & 4 & 8 & 10 & 12 & 13 & 18 & 21 & 14 & 23 & 25 & 29 & 31 & 32 & 35 & 41 & 47 & +\infty \\
-1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17
\end{array} \]

The search key \(e = 21 \).

- Check the next to last element in the pointed direction
Adapted Binary Search

The search key $e = 21$.

- Check the next to last element in the pointed direction
Adapted Binary Search

The search key $e = 21$.

- Check the next to last element in the pointed direction
- A corruption would be identified in the next step (unless another corruption occurs)
- **Big idea:** each step in the wrong direction corresponds to a corruption
- **Conflict area:** search key must be there or corruption
- Call verification procedure on conflict area:
 - Succeeds: search key must be there, scan two blocks
 - Fails: Backtrack the search on a different S_k
Verification procedure

Search key $e = 45$, $\delta = 3$, # corruptions found $k = 1$

- Performed on LV_i and RV_{i+1}
- c_l – confidence that e is to the right of LV_i
- c_r – confidence that e is to the left of RV_{i+1}

Gabriel Moruz: Hardware aware algorithms and data structures
Verification procedure

\[LV_i \rightarrow Q_i \rightarrow RV_i \rightarrow LV_{i+1} \rightarrow Q_{i+1} \rightarrow RV_{i+1} \]

Search key \(e = 45, \delta = 3, \) # corruptions found \(k = 1 \)

- Performed on \(LV_i \) and \(RV_{i+1} \)
- \(c_l \) – confidence that \(e \) is to the right of \(LV_i \)
- \(c_r \) – confidence that \(e \) is to the left of \(RV_{i+1} \)
Verification procedure

Search key $e = 45$, $\delta = 3$, # corruptions found $k = 1$

- Performed on LV_i and RV_{i+1}
- c_l – confidence that e is to the right of LV_i
- c_r – confidence that e is to the left of RV_{i+1}
Verification procedure

<table>
<thead>
<tr>
<th></th>
<th>LV_i</th>
<th>Q_i</th>
<th>RV_i</th>
<th>LV_{i+1}</th>
<th>Q_{i+1}</th>
<th>RV_{i+1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>12</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>21</td>
<td>23</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
<td></td>
<td>28</td>
<td>49</td>
<td>31</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td>35</td>
<td>38</td>
<td>71</td>
</tr>
<tr>
<td>40</td>
<td>41</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Search key $e = 45$, $\delta = 3$, # corruptions found $k = 1$

- Performed on LV_i and RV_{i+1}
- c_l – confidence that e is to the right of LV_i
- c_r – confidence that e is to the left of RV_{i+1}
- Fails if $c_l = 0$ or $c_r = 0$, succeeds otherwise
- $2f$ elements visited in each segment to detect f errors
- Start $2k$ positions away from end of each segment
Analysis

- Adapted binary search:
 - Corruption-free: $O(\log n)$
 - Time spent in wrong direction: $O(f)$ for f corruptions

- Verification:
 - A single verification: $O(f)$ time for f corruptions
 - All verifications: $O(\delta)$

- Final scan: $O(\delta)$ time to scan two blocks

Altogether:

The resilient static deterministic dictionary supports searches in $O(\log n + \delta)$ time.
Dynamic Deterministic Dictionary
Reliable Value

- Stored in unreliable memory, retrieved reliably
- Uses $O(\delta)$ time and $O(\delta)$ space
- Replicate the given value $2\delta + 1$ times
- Retrieve during a scan using a majority argument
 - Keep in safe memory a candidate element and a counter
 - Increase counter when encountering a matching element
 - Decrease counter when encountering a different element
 - Discard candidate when counter becomes zero
Dynamic Dictionary – Structure

- **Top tree**
 - Introduced in [Brodal et al. ’02]
 - Stores only guiding elements, not input elements

- **Leaf structure**
 - Consists of $\Theta(\log n)$ buckets and a top bucket
 - Only B_0, \ldots, B_{b-1} contain input elements
Common knowledge:
- Has height $\log |T| + O(1)$, can be laid in BFS order
- Supports updates in amortized $O(\log^2 |T|)$ time

We store it reliably:
- Updates cost becomes amortized $O(\delta \log^2 |T|)$ time
Leaf Structure

- Stores $\Theta(\delta \log n)$ input elements
- Each bucket B_i store $\Theta(\delta)$ input elements
- Top bucket contains guiding elements stored reliably
Searches

- Search the last level of internal nodes in the top-tree, and identify two consecutive nodes.
- Search reliably the $O(1)$ remaining nodes.
- Search the top bucket, identify some bucket B_i.
- Scan B_i and report result.

Gabriel Moruz: Hardware aware algorithms and data structures
Searches

- Search the last level of internal nodes in the top-tree, and identify two consecutive nodes
- Search reliably the $O(1)$ remaining nodes
- Search the top bucket, identify some bucket B_i
- Scan B_i and report result
- **Time:** $O(\log n + \delta)$ worst case.
Updates

- Use standard bucketing techniques
 - Split/merge buckets each $\Omega(\delta)$ operations
 - Insert/delete new elements in B each $\Omega(\delta)$ operations
 - Insert/delete new elements in the top tree each $\Omega(\delta \log n)$ operations

- **Time:** $O(\log n + \delta)$ amortized for insertions and deletions.
Conclusion

Will theory catch practice?