
1

Self-Adjusting Data Structures

Self-Adjusting Data Structures

2

Lists
[D.D. Sleator, R.E. Tarjan, Amortized Efficiency of List Update Rules, Proc. 16th Annual ACM Symposium on Theory of
Computing, 488-492, 1984]

Dictionaries
[D.D. Sleator, R.E. Tarjan, Self-Adjusting Binary Search Trees, Journal of the ACM, 32(3): 652-686, 1985]
 splay trees

Priority Queues
[C.A. Crane, Linear lists and priority queues as balanced binary trees, PhD thesis, Stanford University, 1972]
[D.E. Knuth. Searching and Sorting, volume 3 of The Art of Computer Programming, Addison-Wesley, 1973]
 leftist heaps

[D.D. Sleator, R.E. Tarjan, Self-Adjusting Heaps, SIAM Journal of Computing, 15(1): 52-69, 1986]
 skew heaps

[C. Okasaki, Alternatives to Two Classic Data Structures, Symposium on Computer Science Education, 162-165, 2005]
 maxiphobic heaps

[A. Gambin, A. Malinowski. Randomized Meldable Priority Queues, Proc. 25th Conference on Current Trends in Theory and
Practice of Informatics: Theory and Practice of Informatics, 344-349, 1998]
 randomized version of maxiphobic heaps

Okasaki: maxiphobic heaps are an alternative to leftist heaps ... but without the “magic”

7 4 2 3 5 9 1

Search(2), Search(2), Search(2) , Search(5), Search(5), Search(5)

2 7 5 3 9 1 4 m
o

ve
-t

o
-f

ro
n

t

= Meld (,)

Meld (,)

Meld (,) =

[C.A. Crane, Linear lists and priority queues as balanced binary
trees, PhD thesis, Stanford University, 1972]
[D.E. Knuth. Searching and Sorting, volume 3 of
The Art of Computer Programming,
Addison-Wesley, 1973]

MakeHeap, FindMin, Insert, Meld, DeleteMin

3

Heaps

Meld Cut root + Meld

= =

(via Binary Heap-Ordered Trees)

Maxiphobic Heaps

T3

y

T1 T2

x

Ti Tj Tk

x

largest size two smallest

Max size n ⅔n

Time O(log3/2 n)

Each node distance to empty leaf
Inv. Distance right child left child
 rightmost path log n+1 nodes

5

2

3

4 6

8

10 11

13

9 7

12

13

1

1 1

1

1

1

2

2

1

2 2

3

1

x < y

[C. Okasaki, Alternatives to Two Classic Data Structures,
Symposium on Computer Science Education,

162-165, 2005]

Leftist Heaps

4

7

9

13

2

2

2

4

1

1

1

2

3

3

3

1

4

13
2

1

2

7

9

2

2

4

1

1

2

3

Time O(log n)

Meld (,) =

[D.D. Sleator, R.E. Tarjan, Self-Adjusting Heaps, SIAM Journal of Computing, 15(1): 52-69, 1986]

4

Skew Heaps

Meld Cut root + Meld

= =

O(log n) amortized Meld
Heavy right child on merge path before meld replaced by light child
 1 potential released for heavy child
 amortized cost 2∙ # light children on rightmost paths before meld

4

7

9

13

2

4

13 7

9

2

 Heap ordered binary tree with no balance information
 MakeHeap, FindMin, Insert, Meld, DeleteMin

 Meld = merge rightmost paths + swap all siblings on merge path

v heavy if |Tv| > |Tp(v)|/2, otherwise light
 any path log n light nodes

Potential = # heavy right children in tree

5

2

3

4 6

8

10

9 7

12

Meld (,) =

[D.D. Sleator, R.E. Tarjan, Self-Adjusting Heaps, SIAM Journal of Computing, 15(1): 52-69, 1986]

5

Skew Heaps – O(1) time Meld

O(1) amortized Meld
Heavy right child on merge path before meld replaced by light child 1 potential released
Light nodes disappear from major paths (but might heavy) 1 potential released
 and become a heavy or light right children on major path potential increase by 4

O(log n) amortized DeleteMin
Cutting root 2 new minor paths, i.e. 2∙log n new light children on minor & major paths

4

7

9

13

2 4

13

 Meld = Bottom-up merge of rightmost paths + swap all siblings on merge path

7

9

2

1

1

5

8

11

6

3 4

2

1

11

6

3

5

8

 = # heavy right children in tree + 2 ∙ # light children on minor & major path

=

4 5

6

[D.D. Sleator, R.E. Tarjan, Self-Adjusting Binary Search Trees, Journal of the ACM, 32(3): 652-686, 1985]

Splay Trees

 Binary search tree with no balance information
 splay(x) = rotate x to root (zig/zag, zig-zig/zag-zag, zig-zag/zag-zig)

 Search (splay), Insert (splay predecessor+new root), Delete (splay+cut root+join),

Join (splay max, link), Split (splay+unlink)

B

y

A

x
C

C

x

B

y
A

zig

B

y

A

x
C

D

y

C

z

B

zig-zig z

D

x

A

C

y

B

x

A

D

x

C

z

B

zig-zag z

D y

A

root

D

y

C

x

B

v

F z

A

u

E

B

x

A

z
C

zag-zag
zig-zig

F

u

E

v

D

y

B

x

A

z
C

F

u

E

v

D

y

insert

7

[D.D. Sleator, R.E. Tarjan, Self-Adjusting Binary Search Trees, Journal of the ACM, 32(3): 652-686, 1985]

Splay Trees

 The access bounds of splay trees are amortized

 (1) O(log n)
 (2) Static optimal
 (3) Static finger optimal
 (4) Working set optimal (proof requires dynamic change of weight)

 Static optimality: = v log |Tv|

