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Lists 
[D.D. Sleator, R.E. Tarjan, Amortized Efficiency of List Update Rules, Proc. 16th Annual ACM Symposium on Theory of 
Computing, 488-492, 1984] 

Dictionaries 
[D.D. Sleator, R.E. Tarjan, Self-Adjusting Binary Search Trees, Journal of the ACM, 32(3): 652-686, 1985] 
 splay trees 

Priority Queues 
[C.A. Crane, Linear lists and priority queues as balanced binary trees, PhD thesis, Stanford University, 1972] 
[D.E. Knuth. Searching and Sorting, volume 3 of The Art of Computer Programming, Addison-Wesley, 1973] 
 leftist heaps 

[D.D. Sleator, R.E. Tarjan, Self-Adjusting Heaps, SIAM Journal of Computing, 15(1): 52-69, 1986] 
 skew heaps 

[C. Okasaki, Alternatives to Two Classic Data Structures, Symposium on Computer Science Education, 162-165, 2005] 
  maxiphobic heaps    

[A. Gambin, A. Malinowski. Randomized Meldable Priority Queues, Proc. 25th Conference on Current Trends in Theory and 
Practice of Informatics: Theory and Practice of Informatics, 344-349, 1998] 
  randomized version of maxiphobic heaps    

Okasaki:  maxiphobic heaps are an alternative to leftist heaps ... but without the “magic” 
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[C.A. Crane, Linear lists and priority queues as balanced binary 
trees, PhD thesis, Stanford University, 1972] 
[D.E. Knuth. Searching and Sorting, volume 3 of  
The Art of Computer Programming, 
Addison-Wesley, 1973] 

MakeHeap, FindMin, Insert, Meld, DeleteMin 
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Heaps 

Meld                             Cut root + Meld 

= = 

(via Binary Heap-Ordered Trees) 

Maxiphobic Heaps 
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Max size n  ⅔n 

Time O(log3/2 n) 

Each node distance to empty leaf 
Inv.  Distance right child    left child 
 rightmost path  log n+1  nodes 
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[C. Okasaki, Alternatives to Two Classic Data Structures, 
Symposium on Computer Science Education,  

162-165, 2005] 

Leftist Heaps 
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Meld (          ,           )   =   

[D.D. Sleator, R.E. Tarjan, Self-Adjusting Heaps, SIAM Journal of Computing, 15(1): 52-69, 1986] 
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Skew Heaps 

Meld                             Cut root + Meld 

= = 

O(log n) amortized Meld 
Heavy right child on merge path before meld  replaced by light child 
 1 potential released for heavy child 
 amortized cost 2∙ # light children on rightmost paths before meld 
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 Heap ordered binary tree with no balance information 
 MakeHeap, FindMin, Insert, Meld, DeleteMin 

 
 Meld = merge rightmost paths + swap all siblings on merge path 

v heavy if |Tv| > |Tp(v)|/2, otherwise light 
    any path  log n light nodes 

 
Potential   = # heavy right children in tree 
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Meld (                 ,                  )   =                            

[D.D. Sleator, R.E. Tarjan, Self-Adjusting Heaps, SIAM Journal of Computing, 15(1): 52-69, 1986] 
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Skew Heaps – O(1) time Meld 

O(1) amortized Meld 
Heavy right child on merge path before meld  replaced by light child  1 potential released 
Light nodes disappear from major paths (but might  heavy)   1 potential released 
      and       become a heavy  or  light right children on major path  potential increase by  4 

O(log n) amortized DeleteMin 
Cutting root  2 new minor paths, i.e.  2∙log n new light children on minor & major paths 
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 Meld = Bottom-up merge of rightmost paths + swap all siblings on merge path 
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 = # heavy right children in tree + 2 ∙ # light children on minor & major path  

= 

4 5 
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[D.D. Sleator, R.E. Tarjan, Self-Adjusting Binary Search Trees, Journal of the ACM, 32(3): 652-686, 1985] 

Splay Trees 

 Binary search tree with no balance information 
 splay(x) = rotate x to root (zig/zag, zig-zig/zag-zag, zig-zag/zag-zig) 

 
 
 
 

 
 Search (splay), Insert (splay predecessor+new root), Delete (splay+cut root+join), 

Join (splay max, link), Split (splay+unlink) 
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[D.D. Sleator, R.E. Tarjan, Self-Adjusting Binary Search Trees, Journal of the ACM, 32(3): 652-686, 1985] 

Splay Trees 

 
 

 The access bounds of splay trees are amortized 
  
 (1) O(log n)  
 (2) Static optimal 
 (3) Static finger optimal 
 (4) Working set optimal (proof requires dynamic change of weight) 

 
 Static optimality:      =       v  log |Tv| 
 

 


