
1

Self-Adjusting Data Structures

Self-Adjusting Data Structures

2

Lists
[D.D. Sleator, R.E. Tarjan, Amortized Efficiency of List Update Rules, Proc. 16th Annual ACM Symposium on Theory of
Computing, 488-492, 1984]

Dictionaries
[D.D. Sleator, R.E. Tarjan, Self-Adjusting Binary Search Trees, Journal of the ACM, 32(3): 652-686, 1985]
 splay trees

Priority Queues
[C.A. Crane, Linear lists and priority queues as balanced binary trees, PhD thesis, Stanford University, 1972]
[D.E. Knuth. Searching and Sorting, volume 3 of The Art of Computer Programming, Addison-Wesley, 1973]
 leftist heaps

[D.D. Sleator, R.E. Tarjan, Self-Adjusting Heaps, SIAM Journal of Computing, 15(1): 52-69, 1986]
 skew heaps

[C. Okasaki, Alternatives to Two Classic Data Structures, Symposium on Computer Science Education, 162-165, 2005]
  maxiphobic heaps

[A. Gambin, A. Malinowski. Randomized Meldable Priority Queues, Proc. 25th Conference on Current Trends in Theory and
Practice of Informatics: Theory and Practice of Informatics, 344-349, 1998]
  randomized version of maxiphobic heaps

Okasaki: maxiphobic heaps are an alternative to leftist heaps ... but without the “magic”

7 4 2 3 5 9 1

Search(2), Search(2), Search(2) , Search(5), Search(5), Search(5)

2 7 5 3 9 1 4 m
o

ve
-t

o
-f

ro
n

t

= Meld (,)

Meld (,)

Meld (,) =

[C.A. Crane, Linear lists and priority queues as balanced binary
trees, PhD thesis, Stanford University, 1972]
[D.E. Knuth. Searching and Sorting, volume 3 of
The Art of Computer Programming,
Addison-Wesley, 1973]

MakeHeap, FindMin, Insert, Meld, DeleteMin

3

Heaps

Meld Cut root + Meld

= =

(via Binary Heap-Ordered Trees)

Maxiphobic Heaps

T3

y

T1 T2

x

Ti Tj Tk

x

largest size two smallest

Max size n  ⅔n

Time O(log3/2 n)

Each node distance to empty leaf
Inv. Distance right child  left child
 rightmost path  log n+1 nodes

5

2

3

4 6

8

10 11

13

9 7

12

13

1

1 1

1

1

1

2

2

1

2 2

3

1

x < y

[C. Okasaki, Alternatives to Two Classic Data Structures,
Symposium on Computer Science Education,

162-165, 2005]

Leftist Heaps

4

7

9

13

2

2

2

4

1

1

1

2

3

3

3

1

4

13
2

1

2

7

9

2

2

4

1

1

2

3

Time O(log n)

Meld (,) =

[D.D. Sleator, R.E. Tarjan, Self-Adjusting Heaps, SIAM Journal of Computing, 15(1): 52-69, 1986]

4

Skew Heaps

Meld Cut root + Meld

= =

O(log n) amortized Meld
Heavy right child on merge path before meld  replaced by light child
 1 potential released for heavy child
 amortized cost 2∙ # light children on rightmost paths before meld

4

7

9

13

2

4

13 7

9

2

 Heap ordered binary tree with no balance information
 MakeHeap, FindMin, Insert, Meld, DeleteMin

 Meld = merge rightmost paths + swap all siblings on merge path

v heavy if |Tv| > |Tp(v)|/2, otherwise light
 any path  log n light nodes

Potential  = # heavy right children in tree

5

2

3

4 6

8

10

9 7

12

Meld (,) =

[D.D. Sleator, R.E. Tarjan, Self-Adjusting Heaps, SIAM Journal of Computing, 15(1): 52-69, 1986]

5

Skew Heaps – O(1) time Meld

O(1) amortized Meld
Heavy right child on merge path before meld  replaced by light child  1 potential released
Light nodes disappear from major paths (but might  heavy)   1 potential released
 and become a heavy or light right children on major path  potential increase by  4

O(log n) amortized DeleteMin
Cutting root  2 new minor paths, i.e.  2∙log n new light children on minor & major paths

4

7

9

13

2 4

13

 Meld = Bottom-up merge of rightmost paths + swap all siblings on merge path

7

9

2

1

1

5

8

11

6

3 4

2

1

11

6

3

5

8

 = # heavy right children in tree + 2 ∙ # light children on minor & major path

=

4 5

6

[D.D. Sleator, R.E. Tarjan, Self-Adjusting Binary Search Trees, Journal of the ACM, 32(3): 652-686, 1985]

Splay Trees

 Binary search tree with no balance information
 splay(x) = rotate x to root (zig/zag, zig-zig/zag-zag, zig-zag/zag-zig)

 Search (splay), Insert (splay predecessor+new root), Delete (splay+cut root+join),

Join (splay max, link), Split (splay+unlink)

B

y

A

x
C

C

x

B

y
A

zig

B

y

A

x
C

D

y

C

z

B

zig-zig z

D

x

A

C

y

B

x

A

D

x

C

z

B

zig-zag z

D y

A

root

D

y

C

x

B

v

F z

A

u

E

B

x

A

z
C

zag-zag
zig-zig

F

u

E

v

D

y

B

x

A

z
C

F

u

E

v

D

y

insert

7

[D.D. Sleator, R.E. Tarjan, Self-Adjusting Binary Search Trees, Journal of the ACM, 32(3): 652-686, 1985]

Splay Trees

 The access bounds of splay trees are amortized

 (1) O(log n)
 (2) Static optimal
 (3) Static finger optimal
 (4) Working set optimal (proof requires dynamic change of weight)

 Static optimality:  = v log |Tv|



