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Lists 
[D.D. Sleator, R.E. Tarjan, Amortized Efficiency of List Update Rules, Proc. 16th Annual ACM Symposium on Theory of 
Computing, 488-492, 1984] 

Dictionaries 
[D.D. Sleator, R.E. Tarjan, Self-Adjusting Binary Search Trees, Journal of the ACM, 32(3): 652-686, 1985] 
 splay trees 

Priority Queues 
[C.A. Crane, Linear lists and priority queues as balanced binary trees, PhD thesis, Stanford University, 1972] 
[D.E. Knuth. Searching and Sorting, volume 3 of The Art of Computer Programming, Addison-Wesley, 1973] 
 leftist heaps 

[D.D. Sleator, R.E. Tarjan, Self-Adjusting Heaps, SIAM Journal of Computing, 15(1): 52-69, 1986] 
 skew heaps 

[C. Okasaki, Alternatives to Two Classic Data Structures, Symposium on Computer Science Education, 162-165, 2005] 
  maxiphobic heaps    

[A. Gambin, A. Malinowski. Randomized Meldable Priority Queues, Proc. 25th Conference on Current Trends in Theory and 
Practice of Informatics: Theory and Practice of Informatics, 344-349, 1998] 
  randomized version of maxiphobic heaps    

Okasaki:  maxiphobic heaps are an alternative to leftist heaps ... but without the “magic” 
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[C.A. Crane, Linear lists and priority queues as balanced binary 
trees, PhD thesis, Stanford University, 1972] 
[D.E. Knuth. Searching and Sorting, volume 3 of  
The Art of Computer Programming, 
Addison-Wesley, 1973] 

MakeHeap, FindMin, Insert, Meld, DeleteMin 
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Heaps 

Meld                             Cut root + Meld 

= = 

(via Binary Heap-Ordered Trees) 

Maxiphobic Heaps 
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largest size  two smallest 

Max size n  ⅔n 

Time O(log3/2 n) 

Each node distance to empty leaf 
Inv.  Distance right child    left child 
 rightmost path  log n+1  nodes 
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[C. Okasaki, Alternatives to Two Classic Data Structures, 
Symposium on Computer Science Education,  

162-165, 2005] 

Leftist Heaps 
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Meld (          ,           )   =   

[D.D. Sleator, R.E. Tarjan, Self-Adjusting Heaps, SIAM Journal of Computing, 15(1): 52-69, 1986] 
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Skew Heaps 

Meld                             Cut root + Meld 

= = 

O(log n) amortized Meld 
Heavy right child on merge path before meld  replaced by light child 
 1 potential released for heavy child 
 amortized cost 2∙ # light children on rightmost paths before meld 
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 Heap ordered binary tree with no balance information 
 MakeHeap, FindMin, Insert, Meld, DeleteMin 

 
 Meld = merge rightmost paths + swap all siblings on merge path 

v heavy if |Tv| > |Tp(v)|/2, otherwise light 
    any path  log n light nodes 

 
Potential   = # heavy right children in tree 
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Meld (                 ,                  )   =                            

[D.D. Sleator, R.E. Tarjan, Self-Adjusting Heaps, SIAM Journal of Computing, 15(1): 52-69, 1986] 
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Skew Heaps – O(1) time Meld 

O(1) amortized Meld 
Heavy right child on merge path before meld  replaced by light child  1 potential released 
Light nodes disappear from major paths (but might  heavy)   1 potential released 
      and       become a heavy  or  light right children on major path  potential increase by  4 

O(log n) amortized DeleteMin 
Cutting root  2 new minor paths, i.e.  2∙log n new light children on minor & major paths 
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 Meld = Bottom-up merge of rightmost paths + swap all siblings on merge path 
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 = # heavy right children in tree + 2 ∙ # light children on minor & major path  

= 

4 5 
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[D.D. Sleator, R.E. Tarjan, Self-Adjusting Binary Search Trees, Journal of the ACM, 32(3): 652-686, 1985] 

Splay Trees 

 Binary search tree with no balance information 
 splay(x) = rotate x to root (zig/zag, zig-zig/zag-zag, zig-zag/zag-zig) 

 
 
 
 

 
 Search (splay), Insert (splay predecessor+new root), Delete (splay+cut root+join), 

Join (splay max, link), Split (splay+unlink) 
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[D.D. Sleator, R.E. Tarjan, Self-Adjusting Binary Search Trees, Journal of the ACM, 32(3): 652-686, 1985] 

Splay Trees 

 
 

 The access bounds of splay trees are amortized 
  
 (1) O(log n)  
 (2) Static optimal 
 (3) Static finger optimal 
 (4) Working set optimal (proof requires dynamic change of weight) 

 
 Static optimality:      =       v  log |Tv| 
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