Priority Queues

- MakeQueue
- Insert($Q, k, p)$
- Delete(Q,k)
- DeleteMin(Q)
- $\operatorname{Meld}\left(Q_{1}, Q_{2}\right)$
- $\operatorname{Empty}(Q)$
- Size(Q)
- FindMin(Q)
create new empty queue
insert key k with priority po
\square
delete key with min priority
merge two sets
returns if empty
returns \#keys
returns key with min priority

Priority Queues - Ideal Times

MakeQueue, Meld, Insert, Empty, Size, FindMin: O(1)

$$
\text { Delete, DeleteMin: } O(\log n)
$$

Thm

${ }^{1)}$ Meld $O\left(n^{1-\varepsilon}\right) \Rightarrow$ DeleteMin $\Omega(\log n)$
 ${ }^{2)}$ Insert, Delete $O(t) \Rightarrow$ FindMin $\Omega\left(n / 2^{O(t)}\right)$

1) Follows from $\Omega(n \cdot \log n)$ sorting lower bound
2) [G.S. Brodal, S. Chaudhuri, J. Radhakrishnan, The Randomized Complexity of Maintaining the Minimum. In Proc. 5th Scandinavian Workshop on Algorithm Theory, volume 1097 of Lecture Notes in Computer Science, pages 4-15. Springer Verlag, Berlin, 1996]
 \title{
Binomial Queues
}
 \title{
Binomial Queues
}
[Jean Vuillemin, A data structure for manipulating priority queues, Communications of the ACM archive, Volume 21(4), 309-315, 1978]

- Binomial tree
- each node stores a (k, p) and satisfies heap order with respect to priorities
- all nodes have a rank r (leaf = rank 0 , a rank r node has exactly one child of each of the ranks $0 . . r-1$)
- Binomial queue
- forest of binomial trees with roots stored in a list with strictly increasing root ranks

Problem

Implement binomial queue operations to achieve the ideal times in the amortized sense

Hints

1) Two rank i trees can be linked to create a rank $i+1$ tree in $O(1)$ time

2) Potential $\Phi=$ max rank + \#roots

Dijkstra's Algorithm

(Single source shortest path problem)
Algorithm Dijkstra(V, E, w, s)
Q := MakeQueue $\operatorname{dist}[s]:=0$ Insert($Q, s, 0)$ for $v \in V \backslash\{s\}$ do $\operatorname{dist}[v]:=+\infty$ Insert($Q, v,+\infty)$ while $Q \neq \varnothing$ do $v:=$ DeleteMin(Q) foreach $u:(v, u) \in E$ do
if $u \in Q$ and $\operatorname{dist}[v]+w(v, u)<\operatorname{dist}[u]$ then $\operatorname{dist}[u]:=\operatorname{dist}[v]+w(v, u)$ DecreaseKey(u, dist[u])
$n x$ Insert $+n \times$ DeleteMin $+m \times$ DecreaseKey Binary heaps / Binomial queues: $\mathrm{O}((n+m) \cdot \log n)$

Priority Bounds

	Binomial Queues [Vuillemin 78]	Fibonacci Heaps [Fredman, Tarjan 84]	Run-Relaxed Heaps [Driscoll, Gabow, Shrairman, Tarjan 88]	[Brodal 96] [Brodal, Lagogiannis, Tarjan 12]
Insert	1	1	1	1
Meld	1	1	-	1
Delete	$\log n$	$\log n$	$\log n$	$\log n$
DeleteMin	$\log n$	$\log n$	$\log n$	log n
DecreaseKey	$\log n$	1	1	1
Amortized Worst-case				
Dijkstra's Algorithm O(m+n•logn)				
(and Minimum Spanning Tree $\mathbf{O}\left(\boldsymbol{m} \cdot \mathrm{log}^{*} n\right.$))				
Empty, FindMin, Size, MakeQueue - O(1) worst-case time				

Fibonacci Heaps

[Fredman, Tarjan, Fibonacci Heaps and Their Use in Improved Network Algorithms, Journal of the ACM, Volume 34(3), 596-615, 1987]

- F-tree
- heap order with respect to priorities

- all nodes have a rank $r \in\{$ degree, degree +1$\}$ ($r=$ degree $+1 \Leftrightarrow$ node is marked as having lost a child)
- The i'th child of a node from the right has rank \geq i-1
- Fibonacci Heap
- forest (list) of F-trees (trees can have equal rank)

Fibonnaci Heap Property

Thm Max rank of a node in an F-tree is O($\log n$)

Proof A rank r node has at least 2 children of rank $\geq r-3$. By induction subtree size is at least $2\lfloor r / 3\rfloor$
(in fact the size is at least φ^{r}, where $\varphi=(1+\sqrt{ } 5) / 2$)

Problem

Implement Fibonacci Heap operations with amortized O(1)

 time for all operations, except $\mathrm{O}(\log n)$ for deletions
Hints

1) Two rank i trees can be linked to create a rank $i+1$ tree in $O(1)$ time \underbrace{x}
2) Eliminating nodes violating order or nodes having lost two children

3) Potential $\Phi=2 \cdot$ marks + \#roots

Implementation of

Fibonacci Heap Operations

FindMin
Insert
Join
Delete
DeleteMin

Maintain pointer to min root
Create new tree = new rank 0 node ${ }^{+1}$
Concatenate two forests unchanged
DecreaseKey - $\infty+$ DeleteMin
Remove min root ${ }^{-1}$

+ add children to forest $+0(\log n)$
+ bucketsort roots by rank only $\mathrm{O}(\log n)$ not linked below
+ link while two roots equal rank ${ }^{-1}$ each
DecreaseKey Update priority + cut edge to parent ${ }^{+3}$
+ if parent now has $r-2$ children,
recursively cut parent edges ${ }^{-1}$ each, +1 final cut
* $=$ potential change

Worst-Case Operations
 (without Join)

[Driscoll, Gabow, Shrairman, Tarjan, Relaxed Heaps: An Alternative to Fibonacci Heaps with Applications to Parallel Computation,
Communications of the ACM, Volume 34(3), 596-615, 1987]

Basic ideas

- Require \leq max-rank +1 trees in forest (otherwise \exists rank r where two trees can be linked)
- Replace cutting in F-trees by having O(log n) nodes violating heap order
- Transformation replacing two rank r violations by one rank r+1 violation

