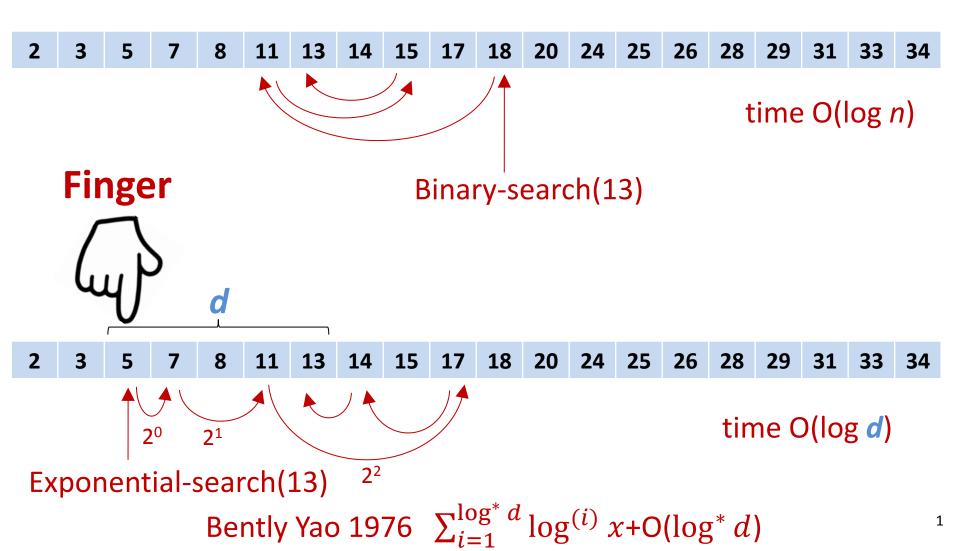
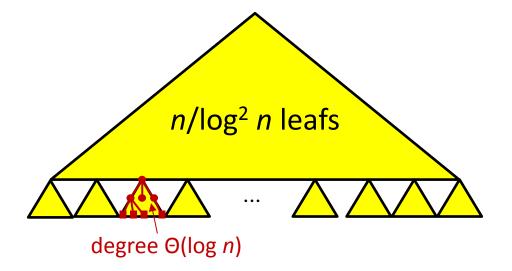
Finger Search

Searching in a sorted array



O(1) Insertions

[C. Levcopoulos, M. Overmars, A balanced search tree with O(1) worst-case update time, Acta Informatica, 1988, 26(3), 269-277, 1988]

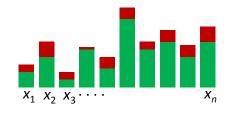


- Buckets $O(\log n) \Rightarrow Amortized O(1)$ insertions (also by 2-4-trees)
- 2-level buckets O(log² n) size
- Incremental splitting of buckets $\downarrow \Rightarrow$ Wost-case O(1) insertions
- Split largest bucket

Zeroing Game

[P. Dietz, D. Sleator, Two algorithms for maintaining order in a list, Proc. 19th ACM Conf. on Theory of Computing, 365-372, 1987]

- Variables $x_1, \dots, x_n \ge 0$ (initially $x_i = 0$)
- Players Z and A alternate to take turns
 - Z: Select j where $a_i = \max_i x_i : x_j := 0$
 - A: Select $a_1, ..., a_n \ge 0$ and $\sum_i a_i = 1 : x_i + = a_i$



Theorem $\forall i : x_i \leq H_{n-1} + 1 \leq \ln n + 2$

Proof

- Consider a vector $x^{(m)}$ after $m \ge n$ rounds
- $S_k \stackrel{\text{\tiny def}}{=} \text{ sum of } k \text{ largest } x_i \text{ of } x^{(m+1-k)}$
- $S_n \le n$ (induction)
- $S_i \le 1 + S_{i+1} \cdot i/(i+1)$
- $S_1 \le 1 + S_2/2 \le 1 + 1/2 + S_2/3 \le 1 + 1/2 + \dots + 1/(n-1) + S_n/n \le H_{n-1} + 1$

Corollary

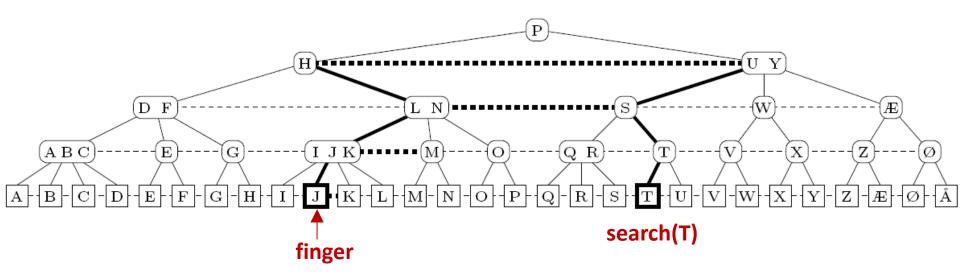
For the halving game, $Z: x_i := x_i/2$ For the splitting game, $Z: x_{i'}, x_{i'} := x_i/2$ $\forall i: x_i \le 2 \cdot (H_{n-1}+1)$

Dynamic Finger Search

	Search	Insert/Delete
Search without fingers		
Red-black, AVL, 2-4-trees, Levcopolous, Overmars 1978	O(log n)	[O(log <i>n</i>)
O(1) fixed fingers		
Guibas et al. 1977,	O(log d)	O(1)
Each node a finger		
Level-linked (2,4)-trees	O(log d)	∫ O(log <i>n</i>) ∫ O(1) am.
Randomized Skip lists	O(log <i>d</i>) exp.	O(1) exp.
Treaps	O(log d) exp.	O(1) exp.
Brodal, Lagogiannis, Makris, Tsakalidis, Tsichlas 2003 Dietz, Raman 1994 (RAM)	O(log d)	O(1)

Level-Linked (2,4)-trees

[S. Huddleston, K. Mehlhorn. A new data structure for representing sorted lists. Acta Informatica, 17:157–184, 1982]

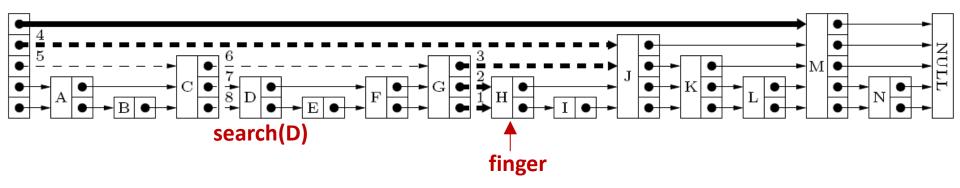


Updates Split nodes of degree >4, fusion nodes of degree <2Search Search up + top-down search

Potential $\Phi = 2 \cdot \#$ degree-4 + # degree-2

Randomized Skip Lists

[W. Pugh. Skip lists: A probabilistic alternative to balanced trees. Communications of the ACM, 33(6):668–676, 1990]



Insertion Increase pile to next level with pr. = 1/2

- **Height** O(log *n*) expected with high probability
- **Pointer** Horizontally spans O(1) exp. piles one level below
- **Finger** Remember nodes on search path

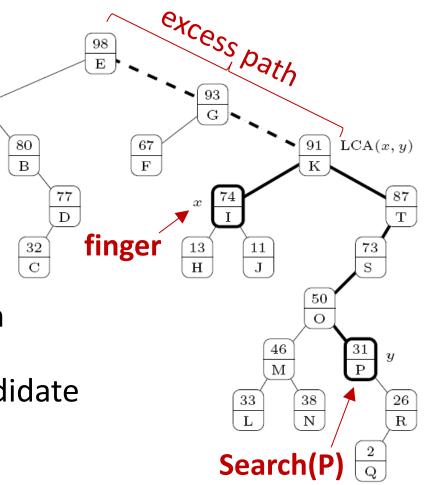
Treaps – Randomized Binary Search Trees

[R. Seidel and C. R. Aragon. Randomized search trees. Algorithmica, 16(4/5):464–497, 1996]

 84

А

- Each element random priority
- Search tree wrt element
- Heap order wrt priority
- Height O(log n) expected
- Insert & deletion rotations
 O(1) expected time
- Search Go up to LCA, and search down – concurrently follow excess path to find next LCA candidate Search path O(log d) expected



Application: Binary Merging

[S. Huddleston, K. Mehlhorn. A new data structure for representing sorted lists. Acta Informatica, 17:157–184, 1982]

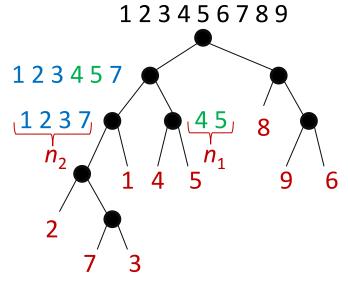
• Merging sorted lists L_1 and L_2 / finger search trees

$$\begin{array}{c|c}
 & \text{repeated} \\
\hline L_1 & \text{insertion} \\
\hline d_i & d_i
\end{array}$$

$$\begin{array}{c}
 & \sum \log(d_i) = |L_1| \log\left(\frac{|L_2| + |L_1|}{|L_1|}\right) \\
\hline d_i & d_i
\end{array}$$

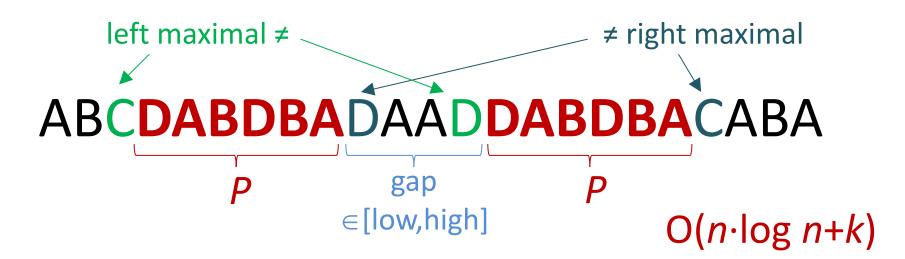
 Merging leaf lists in an arbitrary binary tree O(n·log n)

Proof Induction O(log n!) O(log $n_1! + \log n_2! + n_1 \cdot \log ((n_1+n_2)/n_1))$ = O(log $n_1! + \log n_2! + \log (\binom{n_1+n_2}{n_1})$ = O(log $(n_1! \cdot n_2! \cdot \binom{n_1+n_2}{n_1}))$ = O(log $(n_1+n_2)!)$



Maximal Pairs with Bounded Gap

[G.S. Brodal, R.B. Lyngsø, C.N.S. Pedersen, J. Stoye. *Finding Maximal Pairs with Bounded Gap*, Journal of Discrete Algorithms, Special Issue of Matching Patterns, volume 1(1), pages 77-104, 2000]



- Build suffix tree (ST) & make it binary
- Create leaf lists at each node
- Right-maximal pairs = ST nodes
- Find maximal pairs = finger search at ST nodes