Finger Search

Searching in a sorted array

O(1) Insertions

- Buckets $\mathrm{O}(\log n) \Rightarrow$ Amortized $\mathrm{O}(1)$ insertions (also by 2-4-trees)
- 2-level buckets O($\log ^{2} n$) size
- Incremental splitting of buckets $-\Rightarrow$ Wost-case O(1) insertions
- Split largest bucket

Zeroing Game

- Variables $x_{1}, \ldots, x_{n} \geq 0$ (initially $x_{i}=0$)
- Players Z and A alternate to take turns
- Z: Select j where $a_{j}=\max _{i} x_{i}: x_{j}:=0$
- A: Select $a_{1}, \ldots, a_{n} \geq 0$ and $\sum_{i} a_{i}=1: x_{i}+=a_{i}$

Theorem $\forall i: x_{i} \leq H_{n-1}+1 \leq \ln n+2$
Proof

- Consider a vector $x^{(m)}$ after $m \geq n$ rounds
- $S_{k} \xlongequal{\text { detel }}$ sum of k largest x_{i} of $x^{(m+1-k)}$
- $S_{n} \leq n$ (induction)
- $S_{i} \leq 1+S_{i+1} \cdot i /(i+1)$
- $S_{1} \leq 1+S_{2} / 2 \leq 1+1 / 2+S_{2} / 3 \leq 1+1 / 2+\cdots+1 /(n-1)+S_{n} / n \leq H_{n-1}+1$

Corollary

For the halving game, $Z: x_{i}:=x_{i} / 2$ For the splitting game, $\mathrm{Z}: x_{i j} x_{i}:=x_{i} / 2$

$$
\forall i: x_{i} \leq 2 \cdot\left(H_{n-1}+1\right)
$$

Dynamic Finger Search

Search Insert/Delete

Search without fingers

Red-black, AVL, 2-4-trees, ...
Levcopolous, Overmars 1978
$\mathrm{O}(\log n) \quad\left\{\begin{array}{c}\mathrm{O}(\log n) \\ \mathrm{O}(1)\end{array}\right.$
$\mathbf{O}(1)$ fixed fingers
Guibas et al. 1977,
$O(\log d)$
O(1)

Each node a finger

Level-linked (2,4)-trees
Randomized Skip lists
Treaps
Brodal, Lagogiannis, Makris,
Tsakalidis, Tsichlas 2003
Dietz, Raman 1994 (RAM)
$O(\log d) \quad\left\{\begin{array}{l}O(\log n) \\ O(1) a m .\end{array}\right.$
$\mathrm{O}(\log d) \exp . \quad \mathrm{O}(1) \exp$.
$\mathrm{O}(\log d) \exp . \quad \mathrm{O}(1) \exp$.
$\mathrm{O}(\log d)$
$\mathrm{O}(1)$

Level-Linked (2,4)-trees

[S. Huddleston, K. Mehlhorn. A new data structure for representing sorted lists. Acta Informatica, 17:157-184, 1982]
(P)

Updates Split nodes of degree >4, fusion nodes of degree <2
Search Search up + top-down search

Potential $\Phi=2 \cdot \#$ degree-4 + \# degree-2

Randomized Skip Lists

[W. Pugh. Skip lists: A probabilistic alternative to balanced trees. Communications of the ACM, 33(6):668-676, 1990]

Insertion Increase pile to next level with pr. = 1/2

Height
Pointer
Finger

O(log n) expected with high probability
Horizontally spans O(1) exp. piles one level below Remember nodes on search path

Treaps - Randomized Binary Search Trees

[R. Seidel and C. R. Aragon. Randomized search trees. Algorithmica, 16(4/5):464-497, 1996]

- Each element random priority
- Search tree wrt element
- Heap order wrt priority
- Height O($\log n$) expected
- Insert \& deletion rotations O(1) expected time

Application: Binary Merging

[S. Huddleston, K. Mehlhorn. A new data structure for representing sorted lists. Acta Informatica, 17:157-184, 1982]

- Merging sorted lists L_{1} and L_{2} / finger search trees

- Merging leaf lists in an

Maximal Pairs with Bounded Gap

[G.S. Brodal, R.B. Lyngs \varnothing, C.N.S. Pedersen, J. Stoye. Finding Maximal Pairs with Bounded Gap, Journal of Discrete Algorithms, Special Issue of Matching Patterns, volume 1(1), pages 77-104, 2000]

- Build suffix tree (ST) \& make it binary
- Create leaf lists at each node
- Right-maximal pairs = ST nodes
- Find maximal pairs = finger search at ST nodes

