External Memory Geometric Data Structures

Lars Arge
Duke University

June 28, 2002

Summer School on Massive Datasets

External memory data structures

Yesterday

. Fan-ouG(B%) B-tree(c=1)
— Degree balanced tree with each node/le&(h) blocks
— O(N/B) space
—O(logg N +T4) 1/0 query
— O(logg N) I/O update

e Persistent B-tree
— Update current version, query all previous versions
— B-tree bounds witiN number of operations performed
o Buffer tree technique
— Lazy update/queries using buffers attached to each node
— O(%IogM/B%) amortized bounds
— E.g. used to construct structurei- log " X) 1/Os

Lars Arge 2

External memory data structures

Simplifying Assumption

. Elements in structure
. Elements per block
. Elements in main memory

. Output size in searching problems

o Assumption
— Today (and tomorrow) assume tihatB?2

— Assumption not crucial but simplify
expressions a lot, e.g.:

O(Xlogu,,) = O(Y logg N)

Lars Arge 3

External memory data structures

Today

e “Dimension 1.5” problems:
— More complicated problems: Interval stabbing and point locatipn
— Looking for same bounds:

* O(N/B) space

* O(logg N +T4)query

* O(logg N)update

* O(%IogM/B &) =O(& logg N)construction

o Use oftools/techniquediscussed yesterday as well as
— Logarithmic method
— Weight-balanced B-trees
— Global rebuilding

Lars Arge 4

External memory data structures

Interval Management

e Problem

— MaintainN intervals withunique endpointdynamically such
that stabbing query with poinxtcan be answered efficiently

X
* As in (one-dimensional) B-tree case we are interested in

— O(N4) space
— O(logg N) update
—O(logg N +T4) query

Lars Arge 5

External memory data structures

Interval Management: Static Solution

o Sweepfrom left to right maintaining persistent B-tree
— Insert interval when left endpoint is reached
— Delete interval when right endpoint is reached

X
e Query x answered by reporting all intervals in B-tree at “time” X

— O(N4) space
— O(logg N +7T4) query
— O(%IogB N) construction using buffer technique
e Dynamic withO(IogE3 N) insert bound usinggarithmic method

Lars Arge 6

External memory data structures

Internal Memory Logarithmic Method Idea

e Given (semi-dynamic) structui@ on setV
— O(log N) query,O(log N) delete, O(N log N) construction
« Logarithmic method

— PartitionV into subset¥/, Vi, ... Viggn Vil =2 0r V| =0
— Build D, onV, A

* Delete O(logN) 1 oon
* Query: Query eactD, = O(log? N)
* Insert Find first emptyD, and construcD; out of

= 2i elements in\/O,Vl, Vi-1

— O(2'log 2) construction= O(log N) per moved element
— Element move®(log N) times= O(log® N) amortized

Lars Arge 7

External memory data structures

External Logarithmic Method Idea
« Decrease number of subs&ts

to logs N to getO(log3 N) queryA /\ /\

 Problem Sincel+ Z' - Bl <B' there are not enough elements i
VoV, ... Vi to bUI|dV

« Solution We allowV; to contain any number of elementsB

— Insert Find first D, such thatzij:()’\/j‘ <B' and construct new
D, from elements in/,,V,, ... V,

|

* We move Zij_zloy\/j ‘ > B'™ elements

* If D, constructed irD((JVi|/B)logg [V,]) = O(B"Ylogg N) I/Os
every moved element charg@dlogg N) 1/Os

* Element movedD(logg N) times= O(Iog%3 N)amortized
Lars Arge 8

External memory data structures

External Logarithmic Method Idea

« Given (semi-dynamic) linear space external data structure with
— O(logg N +T4) I/O query
— O(& logg N) I/O construction
(— O(logg N) I/O delete)

U

 Linear spacelynamicdata structure with
—O(log3 N +T4) /O query
—O(log3 N) I/O insert amortized
(— O(logg N) 1/O delete)

e Dynamic interval management
—O(log3 N +T4) /O query
— O(log3 N) I/O insert amortized

Lars Arge 9

External memory data structures

Internal Interval Tree

A A

Ap s
AL g AA@AA@AA

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
|—¢ l |

« Base tree on endpoints slaly XV associated with each nodgle
* Interval stored in highest nodewhere it contains midpoint of,
* Intervalsl, associated with stored in
— Left slab list sorted by left endpoint (search tree)
— Right slab listsorted by right endpoint (search tree)
= Linear space an@(log N) update (assuming fixed endpoint

Lars Arge 10

External memory data structures

Internal Interval Tree
A A

A Y
A’A AA A’A AA

|
|

x
* Querywith x on left side of midpoint oKX,
— Searcheft slab listleft-right until finding non-stabbed interval
— Recurse In left child

= O(log N+T) query bound

Lars Arge 11

External memory data structures

Externalizing Interval Tree

 Natural idea
— Block tree
— Use B-tree foslab lists

 Number of stabbed intervals in large slab list may be small (or z
— We can be forced to do I/O in each©flog N) nodes

Lars Arge 12

ro)

External memory data structures

Externalizing Interval Tree

AN

LAiN

e

multislab

— Decrease fan-out @(JE) = height remain®(logg N)

— O(+/B) slabs defin®(B)

— Interval stored in two slab lists (as before) and one

— Intervals in small multislab lists collected umderflow structure
— Query answered mby looking at2 slab lists and noD(log N)

Lars Arge 13

External memory data structures

External Interval Tree
Base tree: Fan—o@(x/g) B-tree on endpoints
— Interval stored in highest nodevhere it contains slab boundar
Each internal node contains:
— Left slab listfor each of®(+/B) slabs .
— Right slab listdor each of@(«/_) slabs
— O(B) D
— Underflow structure =
Interval in setl of intervals associated wiantored In

Yo 4

— Widest

T Spe pis
If < Bintervals in’ & AA A e'y are in'stead stored imderflow
structure(= contains< B2 intervals)

Lars Arge 14

External memory data structures

External Interval tree

e Each leaf contain®(B) intervals (unique endpoint assumption)
— Stored in on@(1) block
e Slab Implemented using B-trees

—O(1+ ") query
— Linear space

* We may “wasted” a block for each of tlmﬁ) lists in node
* But only @(B—%) internal nodes
o Underflow structuremplemented using static structure
— O(logg B? +™4) = O(1+ 4) query
— Linear space

U

* Linear space

Lars Arge 15

External memory data structures

External Interval Tree

e Querywith x
— Search down tree forwhile in nodev
reporting all intervals in,, stabbed by
* In nodev |
— Query twoslab lists
— Report all intervals in relevant
— Queryunderflow structure
* Analysis:
— VisitO(logg N) nodes
— Queryslab lists
— Query O(L+"4)
— Queryunderflow structur

> = O(logg N +74)

Lars Arge 16

External memory data structures

External Interval Tree

o Update(assuming fixed endpoint set — static base tree):
— Search for relevant node o
— Update twaoslab lists ? O(logg N) .
— Update or underflow structure :

« Update ofunderflow structuréen O(1) I/Os amortized
— Maintain update block witk B updates
— Check of update block add¥1) I/Os to query bound
— Rebuild structure wheB updates have been collected using
O(&"logg B?) = O(B) I/0s (Global rebuilding
U
Update inO(logg N) 1/Os amortized

Lars Arge 17

External memory data structures

External Interval Tree

* Note

— Insert may increase number of intervalsimderflow structure
for same toB

— Delete may decrease number of intervalzin toB

U

Need to mova intervals to/from Jjunderflow structure

 We only move
— intervals from when decreasing to si&2
— Intervals to when increasing to sizi®

U

O(1) I/0Os amortized used to move intervals

Lars Arge 18

External memory data structures

Removing Fixed Endpoint Assumption

 We need to usdynamic base tree
— Natural choice is B-tree

e Insertion .
— Insert new endpoints and rebalance

base tree (usingplits
— Insert interval as previously in
O(logg N)I/Os amortized

« Split: Boundary inv becomes
boundary inparen{v)

Lars Arge 19

External memory data structures

Splitting Interval Tree Node

* Whenv splits we may need to move
O(w(Vv)) intervals
— Intervals inv containing boundary
— Intervals inparen{v) with endpoints
In X, containing boundary
* Intervals move to two newlaband

Lars Arge

20

External memory data structures

Splitting Interval Tree Node

e Moving intervals invin O(w(v)) I/Os
— Collected in left order (and remove) by scanning b lists
— Collected in right order (and remove) by scanning riglab lists
— Removed containing boundary
— Remove fromunderflow structurday rebuilding it
— Construct lists andnderflow structurdor v’ andv” similarly

Lars Arge 21

External memory data structures

Splitting Interval Tree Node

LA
* Moving intervals inparentv) in O(w(v)) I1/Os

— Collect in left order by scanning leftab list

— Collect in right order by scanning rightab list

— Merge with intervals collected m=> two newslab lists

— Construct new by splitting relevant
— Insert intervals in smali In underflow structure

Lars Arge 22

External memory data structures

Removing Fixed Endpoint Assumption

 Split of nodev useO(w(V)) I/Os
— If Q(w(v))inserts have to be made belaw
= O(1) amortized split bound
= O(logg N)amortized insert bound

* Nodes in standard B-tree do not have this property

(2 4)—tree

Lars Arge 23

External memory data structures

BB[a]-tree
In internal memory BBj(]-trees have the desired property
Defined usingveight-constraints

— Ratio between weight of left child an weight of right child of a
nodev is betweera and 1«

U
HeightO(log N)

If 2/, <a< 1—}6\/§rebalancing can be performed using rotationg

X

Seems hard to implement B&ftrees 1/0O-efficiently

Lars Arge 24

External memory data structures

Weight-balanced B-tree

* |dea Combination of B-tree and BB(l-tree
— Weight constraint on nodes instead of degree constraint
— Rebalancing performed using split/fuse as in B-tree

* Weight-balanced B-trewith parametera andk (a>4, k>0)

— All leaves on same level and
contain betweehk and2k-1elements

— Internal noder at levell has
w(v) <2a'k

— Except for the root, internal node 1 -1 5 11
at level | havem(v)> 1a'k ’

— The root has more than one child

level |-1

Lars Arge 25

External memory data structures

Weight-balanced B-tree

« Every internal node has degree between
la'k/2a' "k =1aand2a'k/ia 'k = 4a

U
HeightO(log, ')

| |
%eak;HZa.k

e External memory
— Chooseta=B (or evenB®for 0 <c <1)
— 2k=B
U
O(N/B) spaceO(logg N) query

Lars Arge

levell

level -1

26

External memory data structures

Weight-balanced B-tree

e Insert:
— Search and insert element in |&af
— If w(v)=2k then splitv
— For each node on path to root
if w(v)>2a'k then

splitv into two nodes with weight 2a'k —2a' "k < 3 a'k
Insert element (ref) iparent(v)

» Number of splits after insert 8(log,
« A split levell node will not split for next%a' K inserts below it

U

Desired propertyQ(w(v)) inserts below between splits

Lars Arge 27

External memory data structures

External Interval Tree
« Use weight-balanced B-tree with=+/B afk=B as base structure
— SpaceO(N/B)

— QueryO(logg N +T4)
— Insert:O(logg N) I/Os amortized

» DeleteanO(logg N) I/0Os amortized usinglobal rebuilding
— Delete interval as previously usioglog; N) 1/Os
— Mark relevant endpoint as deleted
— Rebuild structure IO(N log; N) afted/2 deletes

* Note: Deletes can also be handled usunggoperations

Lars Arge 28

External memory data structures

External Interval Tree

e External interval tree
— SpaceO(N/B)
— QueryO(logg N +T4)

— UpdatesO(logg N) 1/Os amortized

 Removing amortization:
— Moving intervals to/from)
underflow structure
— Delete global rebuilding

'Perfg ‘

— Underflow structure upd
— Base node tree splits

Lars Arge

- =
/'\‘\' N }\§'
An £n £n

e Interference
. * Queries

AN

M operations/construction laz
Move lazily — complicated:

29

External memory data structures

Other Applications

« Examples of applications @fxternal interval tree
— Practical visualization applications
— Point location
— External segment tree

« Examples of applications ofeight-balance B-tree
— Base tree of external data structures
— Remove amortization from internal structures (alternative to
BB[a]-tree)
— Cache-oblivious structures

Lars Arge 30

External memory data structures

Summary: Interval Management

 Interval management corresponds to simple forrAddfange search
— Diagonal corner queries

« We obtained the same bounds as forldease
— SpaceO(N/B)
— QueryO(logg N +T4)

— UpdatesO(logg N) 1/Os

X | %/

| | :

I | H [
| E |

| | S
:)

I : 5 .
| H
l H

Lars Arge 31

External memory data structures

Summary: Interval Management
« Main problem in designing structure: :
— Binary - large fan-out
« Large fan-out resulted in the need for
— Multislabs and multislab lists
— Underflow structure to avoi@(B)-cost in each node

A

* General solution techniques
— Filtering Charge part of query cost to output
— Bootstrapping
* Use O(B?) size structure in each internal node
* Constructed using persistence
* Dynamic using global rebuilding
— Weight-balanced B-tre&plit/fuse in amortize®(1)

Lars Arge 32

External memory data structures

Planar Point Location

o Static problem

— Store planar subdivision witd segments on disk such that
region containing query poimfcan be found I/O-efficiently

* We concentrate onertical ray shooting query
— Segments can store regions it bounds

— Segments do not have to form subdivisio 4‘
e Dynamic problem ‘.
— Insert/delete segments ‘

Lars Arge 33

External memory data structures

Static Solution

 Vertical line imposesibove-beloworder on intersected segments

o Sweepfrom left to right maintaining
persistent B-tree on above-below ordef
— Left endpoint: Insert segment
— Right endpoint: Delete segment

* Queryq answered by successor query on B-tree at e
— O(N4) space
—O(logg N +74) query

Lars Arge 34

External memory data structures

Static Solution

« Note Not all segments comparable!

— Have to be careful about what we compare

* Problem Routing elements in internal nodes of leaf oriented B-trdes

— Luckily we can modify persistent B-tree to use regular elemergs
as routing elements

* However, buffer technique construction cannot be used

U

e Only O(Nlogg N) I/O construction algorithm
« Cannot be made dynamic usitmggarithmic method

Lars Arge 35

External memory data structures

Dynamic Point Location

 Structure similar to external interval tree
— Built on x-projection of segments .
. Fan-out@(\/g) base B-tree oacoordinates:
— Interval stored in highest nodevhere '
It contains slab boundary

Lars Arge 36

External memory data structures

Dynamic Point Location

 Linear space in node=> linear space
e Queryidea:
— Search fog,
— Answer query in each nodeencountered
— Result is globally closest segment
U
O(logg N) query in each node> O(logg N)I/O query

Lars Arge 37

External memory data structures

Dynamic Point Location

e Secondary structures:
— For each slab:
* Left slab structur®n segments with left endpoint in slab
* Right slab structuren segments with right endpoint in slab
— Multislab structureon part of segments completely spanning slfb

Lars Arge 38

External memory data structures

Dynamic Point Location

e To answelguerywe query
— Oneleft slab structure
— Oneright slab structure
— Multislab structure
and return globally closest segment

* We need to answer query on
each secondary structure in
O(logg N) 1/Os

Lars Arge 39

External memory data structures

Left (right) slab Structure

» B-tree on segments sorted goordinate of right endpoint
e Each internal node augmented witl®(B) segments
— For each chila,;
The segment in leaves belayywith minimal left x-coordinate

U

O(N/B) space (each node fits in block)™——_ —

—
_—

o Construction
— Sort segments
— Build level-by-level bottom up

U
O(X log, X) I/Os

Lars Arge 40

External memory data structures

Left (right) slab Structure
* Invariant Search top-down such théih step visit nodes, andv,

— v, contains answer topwardquery among segments on level
— V4 contains answer tdownwardguery among segments on leve
= Vv, contains query result when reaching leaf level

o Algorithm: At level i
— Consider two children of
v, andv, containing two
segments hit on level
— Updatev, andyv, to relevant
of these nodes base on their
segments
¢ Analysis O(1) I/Os on each 0O(logg N) |

Lars Arge 41

v

External memory data structures

Multislab Structure

|/ \

A7\

Segments crossing a slab are orderedlbyve-below order

— Butnotall segments are comparable!

B-tree in each ota(\/E) slabs on segments crossing the slab
= query answered i®(logg N) 1/Os

Problem Each segment stored in many structures

Key idea:

— Usetotal orderconsistent with above-below order in each slab
— Build one structure ototal order

Lars Arge 42

External memory data structures

Multislab Structure

A YRIANAY

. Fan-out@(\/g) B-tree on total order
» Nodev augmented witl®(~/B) segments for eacrEo:(f\/E) children
— For childv;, and each slah:
Maximal segment below, crossings
= O(N/B) space (each nodsfits in one block)
* O(logg N) queryas in normal B-tree
— Only@(«/ﬁ) segments crossirgyconsidered irv

Lars Arge 43

External memory data structures

Multislab Structure Construction

« Multislab structure constructed
In O(N/B) I/Os bottom-up
— aftertotal ordercomputed

e Sorting

— Distributesegments to a list for each multislab
— Sort listsindividually

o Correctness
— Selected top segment cannot be below any unprocessed seginent
o Analysis
. . . N N
— Distribute/Merge irfO(N/B), sort mO(EIogM/B &) 1/Os

Lars Arge 44

External memory data structures

Dynamic Point Location

 Static point location structure
— O(N/B) space
—O(§ logg §) I/O construction
— O(log3 N) 1/0 query
o Updatednvolve:
— Updating (and rebalance) base tree
— Updating twoslab structures
— Updating onenultislab structure

N W
AAAAAAAAAA

e Base tree update as in interval tree case usiaght-balanced B-treg
— Inserts: Node split iO(w(Vv)) I/Os
— Deletes: Global rebuilding

Lars Arge 45

External memory data structures

Updating Left (right) Slab Structures

* Recall that each internal node augmented with minimabieft
coordinate segment below each child

e |nsert

— Insert in leafl and (B-tree) rebalance
— Insert segment in relevant nodes
on rooti path

e Delete
— Delete from leaf and rebalance as in B-tree
— Find new minimal x-coordinate segment in
— Replace deleted segment in relevant nodes onlnoath

U
O(logg N) update

Lars Arge 46

External memory data structures

Updating Multislab Structure

* Problem Insertionof segment may change total order completely

ARV

~ 00 T~
~

e

—

\
—_— T

— Seems hard to control changes
U

Need to rebuild multislab structure completely!
« Segmentieletiondoes not change ordes O(logg N) I/0 delete

Lars Arge 47

External memory data structures

Updating Multislab Structure

» Recall that each node in multislab structure is augmented with
maximal segment for each child and each slab

— Deleted segment may be stored in nodes on one root-leaf pat
— Stored segment may correspond to several slabs

/[\ /N WA \I\/ (WAL

* Deletein O(logg N) I/0Os amortized:

— Search leaf-root path and replace segment with segment aboye in
relevant slab

— Relevant replacement segments found in leaf or on path

— Useglobal rebuildingto delete from leaf

Lars Arge 48

External memory data structures

Dynamic Point Location

e Semi-dynamic point location structure
— O(N/B) space
—O(§ logg §) I/O construction
—O(log N) /0 query
— O(logg N) I/O amortized delete

» Usingexternal logarithmic methowe get:
— SpaceO(N/B)
— Insert:O(log3 N) amortized
— DeletesO(logg N) amortized
— Query:O(logi N)
* Improved toO(Iog%3 N) complicated- fractional cascading

Lars Arge 49

External memory data structures

Summary: Dynamic Point Location

e Maintain planar subdivision withl segments such that region
containing query poing can be found efficiently

« We did not quite obtain desiredd) bounds

— DeletesO(logg N) amortized

— SpaceO(N/B) ‘
— QueryO(logg N)
— Insert:O(log3 N) amortized l

« Structure based on interval tree with use of sevE@hniguese.qg.
— Weight-balancing, logarithmic method, and global rebuilding
— Segment sorting and augmented B-trees

Lars Arge 50

External memory data structures

Summary

 Todaywe discussed “dimension 1.5” problems:
— Interval stabbing@nd point location

— We obtained linear space structures with update and query
bounds similar to the ones f&d structures

 We developed a number of
— Logarithmic method

— Weight-balanced B-trees
— Global rebuilding
« We also used techniques from yesterday:
— Persistent B-trees
— Construction using buffer technique

Lars Arge 51

External memory data structures

Summary

 Tomorrowwe will consider two dimensional problems
— 3-sided gueries

— Full (4-sided) queries

Lars Arge 52

