External Memory Geometric Data Structures

Lars Arge

Duke University

June 28, 2002

Summer School on Massive Datasets

Yesterday

- Fan-out $\Theta(B^{\frac{1}{c}})$ B-tree $(c \ge 1)$
 - Degree balanced tree with each node/leaf in O(1) blocks
 - -O(N/B) space
 - $-O(\log_B N + T/B)$ I/O query
 - $-O(\log_B N)$ I/O update
- Persistent B-tree
 - Update current version, query all previous versions
 - B-tree bounds with N number of operations performed
- Buffer tree technique
 - Lazy update/queries using buffers attached to each node
 - $-O(\frac{1}{B}\log_{M/B}\frac{N}{B})$ amortized bounds
 - E.g. used to construct structures in $O(\frac{N}{B}\log_{M/B}\frac{N}{B})$ I/Os

Simplifying Assumption

M

• Model

-N: Elements in structure

-B: Elements per block

-M: Elements in main memory

-T: Output size in searching problems

Assumption

- Today (and tomorrow) assume that $M>B^2$
- Assumption not crucial but simplify expressions a lot, e.g.:

$$O(\frac{N}{B}\log_{M/B}\frac{N}{B}) = O(\frac{N}{B}\log_B N)$$

Today

- "Dimension 1.5" problems:
 - More complicated problems: Interval stabbing and point location
 - Looking for same bounds:
 - * O(N/B) space
 - * $O(\log_B N + T/R)$ query
 - * $O(\log_R N)$ update
 - * $O(\frac{N}{B}\log_{M/B}\frac{N}{B}) = O(\frac{N}{B}\log_B N)$ construction
- Use of tools/techniques discussed yesterday as well as
 - Logarithmic method
 - Weight-balanced B-trees
 - Global rebuilding

Interval Management

- Problem:
 - Maintain N intervals with unique endpoints dynamically such that stabbing query with point x can be answered efficiently

- As in (one-dimensional) B-tree case we are interested in
 - $-O(\sqrt[N]{B})$ space
 - $-O(\log_B N)$ update
 - $-O(\log_B N + T/B)$ query

Interval Management: Static Solution

- Sweep from left to right maintaining persistent B-tree
 - Insert interval when left endpoint is reached
 - Delete interval when right endpoint is reached

- Query x answered by reporting all intervals in B-tree at "time" x
 - $-O(\sqrt[N]{B})$ space
 - $-O(\log_B N + T/B)$ query
 - $-O(\frac{N}{B}\log_B N)$ construction using buffer technique
- Dynamic with $O(\log_B^2 N)$ insert bound using logarithmic method

Internal Memory Logarithmic Method Idea

- Given (semi-dynamic) structure D on set V
 - $-O(\log N)$ query, $O(\log N)$ delete, $O(N \log N)$ construction
- Logarithmic method:
 - Partition V into subsets $V_0, V_1, \dots V_{\log N}, |V_i| = 2^i$ or $|V_i| = 0$
 - Build D_i on V_i

- * Delete: $O(\log N)$
- * Query: Query each $D_i \Rightarrow O(\log^2 N)$
- * Insert: Find first empty D_i and construct D_i out of

$$1 + \sum_{j=0}^{i-1} 2^j = 2^i$$
 elements in $V_0, V_1, \dots V_{i-1}$

- $-O(2^i \log 2^i)$ construction $\Rightarrow O(\log N)$ per moved element
- Element moved $O(\log N)$ times $\Rightarrow O(\log^2 N)$ amortized

External Logarithmic Method Idea

• Decrease number of subsets V_i to $\log_B N$ to get $O(\log_B^2 N)$ query

- Problem: Since $1 + \sum_{j=0}^{i-1} B^j < B^i$ there are not enough elements in $V_0, V_1, \ldots, V_{i-1}$ to build V_i
- Solution: We allow V_i to contain any number of elements $\leq B^i$
 - Insert: Find first D_i such that $\sum_{j=0}^{i} \left| V_j \right| < B^i$ and construct new D_i from elements in V_0, V_1, \ldots, V_i
 - * We move $\sum_{j=0}^{i-1} |V_j| \ge B^{i-1}$ elements
 - * If D_i constructed in $O((|V_i|/B)\log_B |V_i|) = O(B^{i-1}\log_B N)$ I/Os every moved element charged $O(\log_B N)$ I/Os
 - * Element moved $O(\log_B N)$ times $\Rightarrow O(\log_B^2 N)$ amortized

External Logarithmic Method Idea

- Given (semi-dynamic) linear space external data structure with
 - $-O(\log_B N + T/R)$ I/O query
 - $-O(\frac{N}{B}\log_B N)$ I/O construction
 - $(-O(\log_B N) \text{ I/O delete})$

 \bigvee

- Linear space dynamic data structure with
 - $-O(\log_B^2 N + T/B)$ I/O query
 - $-O(\log_B^2 N)$ I/O insert amortized
 - $(-O(\log_B N) \text{ I/O delete})$
- Dynamic interval management
 - $-O(\log_B^2 N + T/B)$ I/O query
 - $-O(\log_B^2 N)$ I/O insert amortized

- Base tree on endpoints "slab" X_v associated with each node v
- Interval stored in highest node v where it contains midpoint of X_v
- Intervals I_v associated with v stored in
 - Left slab list sorted by left endpoint (search tree)
 - Right slab list sorted by right endpoint (search tree)
 - \Rightarrow Linear space and $O(\log N)$ update (assuming fixed endpoint set)

- Query with x on left side of midpoint of X_{root}
 - Search left slab list left-right until finding non-stabbed interval
 - Recurse in left child
- $\Rightarrow O(\log N + T)$ query bound

Externalizing Interval Tree

- Natural idea:
 - Block tree
 - Use B-tree for slab lists
- Number of stabbed intervals in large slab list may be small (or zero)
 - We can be forced to do I/O in each of $O(\log N)$ nodes

Externalizing Interval Tree

• Idea:

- Decrease fan-out to $\Theta(\sqrt{B})$ \Rightarrow height remains $O(\log_B N)$
- $-\Theta(\sqrt{B})$ slabs define $\Theta(B)$ multislabs
- Interval stored in two slab lists (as before) and one multislab list
- Intervals in small multislab lists collected in underflow structure
- Query answered in v by looking at 2 slab lists and not $O(\log N)$

- Base tree: Fan-out $\Theta(\sqrt{B})$ B-tree on endpoints
 - Interval stored in highest node v where it contains slab boundary
- Each internal node *v* contains:
 - Left slab list for each of $\Theta(\sqrt{B})$ slabs
 - Right slab lists for each of $\Theta(\sqrt{B})$ slabs
 - $-\Theta(B)$ multislab lists
 - Underflow structure

- Interval in set I_v of intervals associated with v stored in
 - Left slab list of slab containing left endpoint
 - Right slab list of slab containing right endpoint
 - Widest multislab list it spans
- If < B intervals in multislab list they are instead stored in underflow structure (\Rightarrow contains $\le B^2$ intervals)

- Each leaf contains O(B) intervals (unique endpoint assumption)
 - Stored in one O(1) block
- Slab lists implemented using B-trees
 - $-O(1+\frac{T_{\nu}}{B})$ query
 - Linear space
 - * We may "wasted" a block for each of the $\Theta(\sqrt{B})$ lists in node
 - * But only $\Theta(\frac{N}{B\sqrt{B}})$ internal nodes
- Underflow structure implemented using static structure
 - $-O(\log_B B^2 + \frac{T_v}{B}) = O(1 + \frac{T_v}{B})$ query
 - Linear space

• Linear space

- Query with *x*
 - Search down tree for x while in node v reporting all intervals in I_v stabbed by x

- In node *v*
 - Query two slab lists
 - Report all intervals in relevant multislab lists
 - Query underflow structure

- Analysis:
 - Visit $O(\log_B N)$ nodes
 - Query slab lists
 - Query multislab lists
 - Query underflow structure

$$\Rightarrow O(1 + \frac{T_{\nu}}{B})$$
 $\Rightarrow O(\log_B N + \frac{T}{B})$

- Update (assuming fixed endpoint set static base tree):
 - Search for relevant node
 - Update two slab lists
- $O(\log_B N)$
- Update multislab list or underflow structure

- Update of underflow structure in O(1) I/Os amortized
 - Maintain update block with $\leq B$ updates
 - Check of update block adds O(1) I/Os to query bound
 - Rebuild structure when *B* updates have been collected using $O(\frac{B^2}{B}\log_B B^2) = O(B)$ I/Os (Global rebuilding)

Update in $O(\log_B N)$ I/Os amortized

• Note:

- Insert may increase number of intervals in underflow structure for same multislab to B
- Delete may decrease number of intervals in multislab to B $\downarrow\downarrow$

Need to move *B* intervals to/from multislab/underflow structure

- We only move
 - intervals from multislab list when decreasing to size B/2
 - Intervals to multislab list when increasing to size B

O(1) I/Os amortized used to move intervals

Removing Fixed Endpoint Assumption

- We need to use dynamic base tree
 - Natural choice is B-tree
- Insertion:
 - Insert new endpoints and rebalance base tree (using splits)
 - Insert interval as previously in $O(\log_B N)$ I/Os amortized

 Split: Boundary in v becomes boundary in parent(v)

Splitting Interval Tree Node

- When v splits we may need to move O(w(v)) intervals
 - Intervals in *v* containing boundary
 - Intervals in parent(v) with endpoints in X_v containing boundary

• Intervals move to two new slab and multislab lists in *parent(v)*

Splitting Interval Tree Node

- Moving intervals in v in O(w(v)) I/Os
 - Collected in left order (and remove) by scanning left slab lists
 - Collected in right order (and remove) by scanning right slab lists
 - Removed multislab lists containing boundary
 - Remove from underflow structure by rebuilding it
 - Construct lists and underflow structure for v' and v'' similarly

Splitting Interval Tree Node

- Moving intervals in parent(v) in O(w(v)) I/Os
 - Collect in left order by scanning left slab list
 - Collect in right order by scanning right slab list
 - Merge with intervals collected in $v \Rightarrow$ two new slab lists
 - Construct new multislab lists by splitting relevant multislab list
 - Insert intervals in small multislab lists in underflow structure

Removing Fixed Endpoint Assumption

- Split of node v use O(w(v)) I/Os
 - If $\Omega(w(v))$ inserts have to be made below v
 - $\Rightarrow O(1)$ amortized split bound
 - $\Rightarrow O(\log_R N)$ amortized insert bound
- Nodes in standard B-tree do not have this property

$BB[\alpha]$ -tree

- In internal memory $BB[\alpha]$ -trees have the desired property
- Defined using weight-constraints
 - Ratio between weight of left child an weight of right child of a node v is between α and 1- α

 \bigvee

Height $O(\log N)$

• If $\frac{2}{11} < \alpha < 1 - \frac{1}{2}\sqrt{2}$ rebalancing can be performed using rotations

• Seems hard to implement BB[α]-trees I/O-efficiently

Weight-balanced B-tree

- Idea: Combination of B-tree and BB[α]-tree
 - Weight constraint on nodes instead of degree constraint
 - Rebalancing performed using split/fuse as in B-tree
- Weight-balanced B-tree with parameters a and k (a>4, k>0)
 - All leaves on same level and
 contain between k and 2k-1 elements
 - Internal node v at level l has $w(v) < 2a^{l}k$
 - Except for the root, internal node v at level 1 have $w(v) > \frac{1}{2}a^{l}k$
 - The root has more than one child

Weight-balanced B-tree

• Every internal node has degree between

$$\frac{1}{2}a^{l}k/2a^{l-1}k = \frac{1}{4}a$$
 and $2a^{l}k/\frac{1}{2}a^{l-1}k = 4a$

Height $O(\log_a \frac{N}{k})$

- External memory:
 - Choose 4a=B (or even B^c for 0 < c ≤ 1)
 - -2k=B

 \bigcup

O(N/B) space, $O(\log_B N)$ query

Weight-balanced B-tree

• Insert:

- Search and insert element in leaf v
- If w(v)=2k then split v
- For each node v on path to root if $w(v) > 2a^{l}k$ then

 $\frac{1}{4}a^{l}k...2a^{l}k$ level l $\frac{1}{4}a^{l-1}k...2a^{l-1}k$

split *v* into two nodes with weight $< 2a^lk - 2a^{l-1}k < \frac{3}{2}a^lk$ insert element (ref) in parent(v)

- Number of splits after insert is $O(\log_a \frac{N}{k})$
- A split level l node will not split for next $\frac{1}{2}a^lk$ inserts below it

Desired property: $\Omega(w(v))$ inserts below v between splits

- Use weight-balanced B-tree with $4a = \sqrt{B}$ and 2k = B as base structure
 - Space: O(N/B)
 - Query: $O(\log_B N + T/B)$
 - Insert: $O(\log_B N)$ I/Os amortized

- Deletes in $O(\log_B N)$ I/Os amortized using global rebuilding:
 - Delete interval as previously using $O(\log_B N)$ I/Os
 - Mark relevant endpoint as deleted
 - Rebuild structure in $O(N \log_B N)$ after N/2 deletes
- Note: Deletes can also be handled using fuse operations

- External interval tree
 - Space: O(N/B)
 - Query: $O(\log_B N + T/B)$
 - Updates: $O(\log_B N)$ I/Os amortized

- Removing amortization:
 - Moving intervals to/from underflow structure
 - Delete global rebuilding
 - Underflow structure update
 - Base node tree splits

- Interference
- Queries

Other Applications

- Examples of applications of external interval tree:
 - Practical visualization applications
 - Point location
 - External segment tree
- Examples of applications of weight-balance B-tree
 - Base tree of external data structures
 - Remove amortization from internal structures (alternative to $BB[\alpha]$ -tree)
 - Cache-oblivious structures

Summary: Interval Management

- Interval management corresponds to simple form of 2d range search
 - Diagonal corner queries
- We obtained the same bounds as for the 1d case
 - Space: O(N/B)
 - Query: $O(\log_B N + T/B)$
 - Updates: $O(\log_B N)$ I/Os

Summary: Interval Management

- Main problem in designing structure:
 - Binary → large fan-out
- Large fan-out resulted in the need for
 - Multislabs and multislab lists

- General solution techniques:
 - Filtering: Charge part of query cost to output
 - Bootstrapping:
 - * Use $O(B^2)$ size structure in each internal node
 - * Constructed using persistence
 - * Dynamic using global rebuilding
 - Weight-balanced B-tree: Split/fuse in amortized O(1)

Planar Point Location

- Static problem:
 - Store planar subdivision with N segments on disk such that region containing query point q can be found I/O-efficiently
- We concentrate on vertical ray shooting query
 - Segments can store regions it bounds
 - Segments do not have to form subdivision
- Dynamic problem:
 - Insert/delete segments

Static Solution

• Vertical line imposes above-below order on intersected segments

- Sweep from left to right maintaining persistent B-tree on above-below order
 - Left endpoint: Insert segment
 - Right endpoint: Delete segment

- Query q answered by successor query on B-tree at time q_x
 - $-O(\sqrt[N]{B})$ space
 - $-O(\log_B N + T/B)$ query

Static Solution

- Note: Not all segments comparable!
 - Have to be careful about what we compare

- Problem: Routing elements in internal nodes of leaf oriented B-trees
 - Luckily we can modify persistent B-tree to use regular elements as routing elements
- However, buffer technique construction cannot be used
 ↓
- Only $O(N \log_B N)$ I/O construction algorithm
- Cannot be made dynamic using logarithmic method

Dynamic Point Location

- Structure similar to external interval tree
 - Built on *x*-projection of segments
- Fan-out $\Theta(\sqrt{B})$ base B-tree on x-coordinates
 - Interval stored in highest node v where
 it contains slab boundary

- Linear space in node $v \Rightarrow$ linear space
- Query idea:
 - Search for q_x
 - Answer query in each node *v* encountered
 - Result is globally closest segment

 \bigcup

 $O(\log_B N)$ query in each node $\Rightarrow O(\log_B^2 N)$ I/O query

- Secondary structures:
 - For each slab:
 - * Left slab structure on segments with left endpoint in slab
 - * Right slab structure on segments with right endpoint in slab
 - Multislab structure on part of segments completely spanning slab

- To answer query we query
 - One left slab structure
 - One right slab structure
 - Multislab structure
 and return globally closest segment

• We need to answer query on each secondary structure in $O(\log_B N)$ I/Os

Left (right) slab Structure

- B-tree on segments sorted by y-coordinate of right endpoint
- Each internal node v augmented with $\Theta(B)$ segments
 - For each child c_v :

The segment in leaves below c_v with minimal left x-coordinate

O(N/B) space (each node fits in block)

- Construction:
 - Sort segments
 - Build level-by-level bottom up

 $\downarrow \downarrow$

$$O(\frac{N}{B}\log_{M/B}\frac{N}{B})$$
 I/Os

Left (right) slab Structure

- Invariant: Search top-down such that i'th step visit nodes v_u and v_d
 - $-v_{\mu}$ contains answer to upward query among segments on level i
 - $-v_d$ contains answer to downward query among segments on level i
 - $\Rightarrow v_u$ contains query result when reaching leaf level
- Algorithm: At level i
 - Consider two children of v_u and v_d containing two segments hit on level i
 - Update v_u and v_d to relevant of these nodes base on their segments

Multislab Structure

- Segments crossing a slab are ordered by above-below order
 - But not all segments are comparable!
- B-tree in each of $\Theta(\sqrt{B})$ slabs on segments crossing the slab
 - \Rightarrow query answered in $O(\log_B N)$ I/Os
- Problem: Each segment stored in many structures
- Key idea:
 - Use total order consistent with above-below order in each slab
 - Build one structure on total order

Multislab Structure

- Fan-out $\Theta(\sqrt{B})$ B-tree on total order
- Node v augmented with $\Theta(\sqrt{B})$ segments for each of $\Theta(\sqrt{B})$ children
 - For child v_i and each slab s_i :

Maximal segment below v_i crossing s_i

- $\Rightarrow O(N/B)$ space (each node v fits in one block)
- $O(\log_B N)$ query as in normal B-tree
 - Only $\Theta(\sqrt{B})$ segments crossing s_i considered in v

Multislab Structure Construction

- Multislab structure constructed in O(N/B) I/Os bottom-up
 - after total order computed

• Sorting:

- Distribute segments to a list for each multislab
- Sort lists individually
- Merge sorted lists: Repeatedly consider top segment all lists and select/output (any) segment not below any of the other segments
- Correctness:
 - Selected top segment cannot be below any unprocessed segment
- Analysis:
 - Distribute/Merge in O(N/B), sort in $O(\frac{N}{B}\log_{M/B}\frac{N}{B})$ I/Os

- Static point location structure:
 - -O(N/B) space
 - $-O(\frac{N}{R}\log_B\frac{N}{R})$ I/O construction
 - $-O(\log_B^2 N)$ I/O query

- Updating (and rebalance) base tree
- Updating two slab structures
- Updating one multislab structure

- Base tree update as in interval tree case using weight-balanced B-tree
 - Inserts: Node split in O(w(v)) I/Os
 - Deletes: Global rebuilding

Updating Left (right) Slab Structures

• Recall that each internal node augmented with minimal left *x*-coordinate segment below each child

Insert:

- Insert in leaf *l* and (B-tree) rebalance
- Insert segment in relevant nodes on root-*l* path

• Delete:

- Delete from leaf l and rebalance as in B-tree
- Find new minimal x-coordinate segment in l
- Replace deleted segment in relevant nodes on root-l path

 $O(\log_R N)$ update

Updating Multislab Structure

• Problem: Insertion of segment may change total order completely

Need to rebuild multislab structure completely!

• Segment deletion does not change order $\Rightarrow O(\log_B N)$ I/O delete

Updating Multislab Structure

- Recall that each node in multislab structure is augmented with maximal segment for each child and each slab
 - Deleted segment may be stored in nodes on one root-leaf path
 - Stored segment may correspond to several slabs

- Delete in $O(\log_R N)$ I/Os amortized:
 - Search leaf-root path and replace segment with segment above in relevant slab
 - Relevant replacement segments found in leaf or on path
 - Use global rebuilding to delete from leaf

- Semi-dynamic point location structure:
 - -O(N/B) space
 - $-O(\frac{N}{R}\log_B\frac{N}{R})$ I/O construction
 - $-O(\log_B^2 N)$ I/O query
 - $-O(\log_R N)$ I/O amortized delete
- Using external logarithmic method we get:
 - Space: O(N/B)
 - Insert: $O(\log_B^2 N)$ amortized
 - Deletes: $O(\log_B N)$ amortized
 - Query: $O(\log_B^3 N)$
 - * Improved to $O(\log_B^2 N)$ (complicated fractional cascading)

Summary: Dynamic Point Location

- Maintain planar subdivision with N segments such that region containing query point q can be found efficiently
- We did not quite obtain desired (1d) bounds
 - Space: O(N/B)
 - Query: $O(\log_B^2 N)$
 - Insert: $O(\log_R^2 N)$ amortized
 - Deletes: $O(\log_R N)$ amortized

- Structure based on interval tree with use of several techniques, e.g.
 - Weight-balancing, logarithmic method, and global rebuilding
 - Segment sorting and augmented B-trees

Summary

- Today we discussed "dimension 1.5" problems:
 - Interval stabbing and point location
 - We obtained linear space structures with update and query bounds similar to the ones for *1d* structures
- We developed a number of
 - Logarithmic method
 - Weight-balanced B-trees
 - Global rebuilding
- We also used techniques from yesterday:
 - Persistent B-trees
 - Construction using buffer technique

Summary

- Tomorrow we will consider two dimensional problems
 - 3-sided queries
 - Full (4-sided) queries

