
I/O-EÆient Graph AlgorithmsNorbert ZehDepartment of Computer Siene, Duke University, Durham, NC 27708-0129, USAnzeh�s.duke.edu1 IntrodutionGraph algorithms are fundamental in the sense that many general problems orproblems in omputational geometry an be redued to graph problems. For ex-ample, a number of parallel sheduling problems an be redued to the problemof �nding a maximum or minimum mathing of a bipartite graph. Shortest pathproblems in geometri domains are often solved by omputing shortest paths ingraphs that apture the geometri distanes between well-hosen disrete loa-tions. One may even go as far as saying that most pointer-based data struturesare just graphs with additional information stored at their verties. Extratinginformation from suh a data struture then beomes a graph problem. For ex-ample, a standard searh query on a binary searh tree T is transformed intothe problem of traversing a path in this tree.Now large data strutures used in large sale appliations do not providea fertile ground for interesting graph problems to be studied. So one questionto ask is whether there are other real-life appliations where massive graphsneed to be handled. Two important areas where massive graphs arise are web-modelling and geographi information systems. The graphs produed by reentweb rawls have on the order of 200 million verties and 2 billion edges, whihan be proessed in main memory only by mahines at the higher end of theprie sale. But urrent work in web-modelling studies the struture of the webby performing breadth-�rst searh (BFS) and depth-�rst searh (DFS) in thesegraphs or omputing their onneted omponents. Some of the problems arisingin geographi information systems inlude ow problems on terrains and logistisand road planning appliations that involve the omputation of shortest pathson weighted terrains. These terrains are often represented by large maps at a �negranularity, whih use gigabytes of storage. Many of these appliations reduethe given real-life problem to omputations in graphs that approximate the givensurfae suÆiently well. So what is left is a graph problem.The above is meant to give a motivation for the study of I/O-eÆient graphalgorithms. In this leture series we disuss algorithms for fundamental prob-lems suh as BFS, DFS, shortest paths and onnetivity, with a fous on thetehniques that lead to I/O-eÆient algorithms for these problems. In the �rst,and larger, part of the leture series we onentrate on general approahes thatlead to eÆient algorithms without additional information about the strutureof the given graph. In the seond part we study algorithms for planar graphs,whih is one of the lasses of sparse graphs for whih improved algorithms have



been developed. In light of the above disussion, this lass of graphs is importantbeause the graphs that arise in shortest path omputations on weighted terrainsare \almost planar", and many ideas used in algorithms for planar graphs anbe used to solve the problems disussed here on suh \almost planar" graphs.The following is a list of the problems we onsider, sorted by the setionswhere they are disussed:Problem SetionList ranking 2Euler tours and algorithms for trees 3Evaluating DAGs and greedy algorithms for undireted graphs 4Graph ontration and appliations to onnetivity problems(onneted omponents, minimum spanning tree, et.) 5Breadth-�rst searh and depth-�rst searh 6, 10Single soure shortest paths 7, 8Planar graph partitions 9In Setion 12, we sketh the ideas of solutions to a few more problems onsparse graphs and outline some of the most important and most hallengingopen problems in the area of I/O-eÆient graph algorithms.We assume that the reader is familiar with elementary graph theoreti on-epts suh as the de�nitions of direted and undireted graphs, ayliity ofdireted graphs, adjaeny of verties, or independent sets and maximal math-ings. For good introdutory texts on graph theory, the reader may refer to [15,17, 31℄.2 List RankingThe �rst problem we disuss is list ranking, whih has proved to be an importanttool in parallel algorithms. Given the similarity between the problems arising inthe design of parallel and I/O-eÆient algorithms, an I/O-eÆient list rankingalgorithm an be used to obtain I/O-eÆient algorithms for a wide range ofproblems on simple graphs suh as trees. List ranking is also a nie introdutoryexample to demonstrate how surprisingly diÆult even extremely simple graphproblems an beome, one random memory aess is penalized.The list ranking problem is the following: Given a linked list L, ompute forevery element of L its distane from the head of L.1 To ast this problem in1 Originally, the rank of an element was de�ned as its distane from the tail of thelist. However, it is an exerise to verify that an algorithm that an ompute eitherof the two distanes an ompute the other. The de�nition used here simpli�es thedisussion.



Proedure Na��veListRanking1: v  h2: � 0l f0l is the left-neutral element w.r.t. �.g3: while v 6= nil do4: � �� !(v)5: �(v) �6: v  su(v)7: end whileAlgorithm 2.1A linear-time internal memory list ranking algorithm.graph theoreti terms, list L is a direted ayli graph L = (V;E) with vertexset V = fv1; : : : ; vNg. There are two distinguished verties h and t, whih weall the head and tail of L. Every vertex exept h has exatly one in-edge. Everyvertex exept t has exatly one out-edge. We assume in this setion that the edgeset of L is represented impliitly. That is, every vertex v 2 L stores a pointersuL(v) = w, where (v; w) 2 L. We all vertex w the suessor of v in L. Forthe tail t of L, suL(t) = nil, whih signi�es that t has no suessor in L. Iflist L is lear from the ontext, we write su(v) instead of suL(v) to denotethe suessor of v in L. Now let � : [1; N ℄ ! [1; N ℄ be a permutation so thatfor 1 � i < N , su �v�(i)� = v�(i+1). Then the rank of vertex v�(i) is de�ned as� �v�(i)� = i.As an algorithmi tool, it is often useful to generalize the list ranking problemby adopting the notion of weighted ranks of the elements in L: Assume that! : V ! X is an assignment of weights drawn from a domain X to the vertiesof L, and let � : X�X ! X be an assoiative operator on X . Then the weightedrank �(vi) of vertex vi is de�ned as follows: � �v�(1)� = ! �v�(1)�. For 1 < i � N ,� �v�(i)� = � �v�(i�1)�� ! �v�(i)�.Sine this somewhat formal de�nition inludes a permutation � of the vertiesof list L, it seems that the list ranking problem ontains some formulation of apermutation problem as a subproblem. Hene, we should not be too surprisedthat list ranking requires 
(perm(N)) I/Os. We will see later in this letureseries how to prove this lower bound. But �rst we investigate why the na��veinternal memory algorithm (Algorithm 2.1) is not I/O-eÆient. The algorithmmakes the assumption that a pointer to the head h of list L is provided.To see why proedure Na��veListRanking is not I/O-eÆient, assume thatB = 2 andM = 4, and onsider the layout of list L shown in Figure 2.1. In orderto aess the head of list L, the �rst blok has to be loaded into internal memory.The seond vertex an only be aessed after loading the seond blok. In orderto aess the third vertex, the third blok has to be loaded into internal memory.Sine there is room for only two bloks in internal memory, one of the bloksalready in main memory needs to be disarded. If the LRU2 paging strategy2 LRU stands for \least reently used". That is, to make room for a new blok to beloaded into main memory, the blok to be disarded from main memory is hosen



1 2 3 45 6 7 8Figure 2.1A worst-ase layout of a list L for proedure Na��veListRanking with LRU pagingstrategy.is used, the �rst blok is dropped. Following the exeution of the algorithmfurther, it is not hard to see that the algorithm has to spend one I/O per vertexbeause just before visiting the vertex, the blok ontaining it is not in internalmemory. This example an easily be generalized to bloks of arbitrary size, sothat proedure Na��veListRanking spends 
(N) I/Os in the worst ase.Chiang et al. [12℄ propose an I/O-eÆient list ranking algorithm based ongraph ontration (Algorithm 2.2). If the list �ts into internal memory, the al-gorithm loads the whole list into memory and ranks it using proedure Na��ve-ListRanking. Otherwise the algorithm onstruts a list L0 of size at most 23 jLjby removing the elements of a large independent set I from L. The weights of allelements in L n I are updated so that their weighted ranks in L and L0 are thesame. Hene, the reursive appliation of proedure FastListRanking to list L0assigns the orret ranks to all elements in L n I . In order to ompute the ranksof all elements in I , their weights are added to the ranks of their predeessors.If jLj � M , the algorithm spends O(san(jLj)) I/Os to rank list L. In par-tiular, list L is read into internal memory in O(san(jLj)) I/Os, proedureNa��veListRanking is applied in internal memory, and the ranks of the ele-ments of L are written to disk in O(san(jLj)) I/Os. If jLj > M , we show belowthat, exluding the reursive invoation of the algorithm in Line 20, proedureFastListRanking takes O(sort(jLj)) I/Os. List L0, whih is passed to the re-ursive invoation of the algorithm, has size at most 23 jLj, so that we obtainthe following reurrene desribing the I/O-omplexity of proedure FastList-Ranking: I(N) = (O(san(N)) if N �MI� 23N�+O(sort(N)) if N > MThe solution of this reurrene is I(N) = O(sort(N)), so that proedure Fast-ListRanking is optimal, given the 
(perm(N)) I/O lower bound for this prob-lem disussed later in this ourse.3by the time that has elapsed sine the last aess to the blok. The blok with thelongest elapsed time sine the last aess is disarded.3 Tehnially, there is a gap between the upper and lower bounds in the ase whenN < sort(N), whih is true only for ridiulously large inputs. To satisfy the theo-



Proedure FastListRanking1: if jLj �M then2: Load list L into main memory, and use proedure Na��veListRanking to om-pute the ranks of all elements in L.3: else4: Find an independent set I of size at least N=3 in L.5: for all v 2 L n I do6: suL0 (v) suL(v)7: �L0 (v) �L(v)8: end for9: for all v 2 I do10: if suL(v) 6= nil then11: !L0(suL(v)) !L(v)� !L(suL(v))12: end if13: end for14: for all v 62 I do15: if suL(v) 6= nil and suL(v) 2 I then16: suL0(v) suL(suL(v))17: end if18: end for19: Let L0 be the list de�ned by the verties in L n I, pointers suL0(v) and weights!L0 (v).20: Reursively apply proedure FastListRanking to list L0. Let �L0(v) be the rankassigned to every element v in L n I.21: for all v 62 I do22: �L(v) �L0 (v)23: if suL(v) 6= nil and suL(v) 2 I then24: �L(suL(v)) �L(v)� !L(suL(v))25: end if26: end for27: end ifAlgorithm 2.2An I/O-eÆient list ranking proedure.So let us analyze the I/O-omplexity of Lines 4{26 of the algorithm, exludingthe reursive all to the algorithm itself in Line 20. We show in Setion 4.2 that anindependent set of size at least 23 jLj an be found in O(sort(N)) I/Os. Lines 5{8an be arried out in a single san of list L. To arry out Lines 9{13, assumethat every vertex has a unique numerial ID. Sort the elements in L n I by theirnumbers and the elements in I by the numbers of their suessors and san bothlists simultaneously to add for every element of I , its weight to the weight ofretiian, the gap an be losed by simulating proedures Na��veListRanking andFastListRanking in parallel, allowing eah algorithm to perform one I/O beforeswithing to the other algorithm. By stopping the simulation as soon as one ofthe two algorithms is �nished it is guaranteed that the simulation �nishes afterO(min(N; sort(N))) = O(perm(N)) I/Os.
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Figure 3.1An Euler tour of a tree T .its suessor. To arry out Lines 14{18, sort the elements in I by their numbersand the elements in L n I by the numbers of their suessors and san the twosorted lists to update the suessors of all elements in L n I . Lines 21{26 anbe arried out in a similar fashion as Lines 14{18. Exept for omputing theindependent set I , whih takes O(sort(N)) I/Os, this proedure sorts and sanslists of size O(N) a onstant number of times. Hene, the I/O-omplexity of onereursive step of proedure FastListRanking is O(sort(N)) as laimed. Usingthe above reurrene, this proves the following result.Theorem 2.1. A list of size N an be ranked in O(sort(N)) I/Os.Remark. Note that proedure FastListRanking does not make use of thefat that there is a unique head and a unique tail in list L. This allows thealgorithm to be applied simultaneously to a olletion of linked lists. This fat isexploited by a number of algorithms that use list ranking as a primitive to solvemore ompliated graph problems.3 Algorithms for Trees3.1 The Euler Tour TehniqueBefore moving on to more omplex graph problems, we disuss a simple tehniquethat turns the list ranking algorithm of Setion 2 into a powerful tool for solvingproblems on trees. The goal of this tehnique is to represent a tree T as a list Lso that a number of labelling problems an be solved on T by omputing theweighted ranks of the elements in L.Given a tree T and a distinguished vertex r of T , an Euler tour of T isde�ned as a traversal of T that starts and ends at r and traverses every edgeexatly twie, one in eah diretion (see Figure 3.1). Formally, every undiretededge fv; wg 2 T is replaed with two direted edges (v; w) and (w; v). The tourstarts with an edge (r; v). For every vertex v 2 T with inoming edges e1; : : : ; ekand outgoing edges e01; : : : ; e0k, numbered so that for 1 � i � k, ei and e0i havethe same endpoints, edge ei is sueeded by edge e0(i mod k)+1 in the tour. When



Proedure RootTree1: Compute an Euler tour L of tree T .2: Compute the rank of every edge e in L.3: for every edge fv; wg 2 T do4: Store the ranks of edges (v; w) and (w; v) in L with edge fv; wg.5: end forAlgorithm 3.1Rooting a tree T .referring to the onstrution of an Euler tour, we mean the onstrution of airular linked list L so that every edge has its suessor in the tour as itssuessor in L.Before studying the power of this tehnique for omputing labellings of trees,we make the following observation.Lemma 3.1. Given a tree T in adjaeny list representation, an Euler tour of Tan be omputed in O(san(N)) I/Os. If the edge set of T is represented as anunordered olletion of edges, the tour an be omputed in O(sort(N)) I/Os.Proof. Given the adjaeny list A(v) of a vertex v, the suessors in L of allinoming edges of v an be omputed in a single san of list A(v). If the edgesof T are given as an unordered set of edges, an adjaeny list representationof T an be obtained as follows: First replae every edge fv; wg of T by twodireted edges (v; w) and (w; v). Then sort the resulting set of direted edgeslexiographially. ut3.2 Rooting a TreeA tree as a data struture is often rooted. That is, it has a distinguished rootvertex r and a well-de�ned parent-hild relation between adjaent verties. Trees,when onsidered as undireted graphs, do not have this struture imposed onthem. However, most strutural information about a tree T , provided by labellingthe verties of T in a meaningful manner, an be obtained only after delaringone of the verties to be the root and establishing parent-hild and anestor-desendant relations de�ned as follows: Let r be the hosen root of T . Then avertex v is an anestor of a vertex w, and w is a desendant of v if v is on theunique path from r to w. If v 6= w, v is a proper anestor of w. Vertex v is theparent of w, and w is the hild of v, if v is an anestor of w and fv; wg 2 T .Rooting a tree T is the proess of hoosing a vertex r and labelling theverties or edges of T so that the labels assigned to two adjaent verties vand w, or to edge fv; wg, are suÆient to deide whether v is the parent of wor vie versa. Algorithm 3.1 omputes suh an edge labelling. In partiular, foran edge fv; wg 2 T , v is the parent of w if and only if edge (v; w) has a smallerrank than edge (w; v) in the Euler tour beause for every vertex x 2 T , x 6= r,an Euler tour starting at the hosen root r has to traverse edge (p(x); x) beforeedge (x; p(x)).



Proedure LabelTree1: Compute an Euler tour L of T that starts at the root of T .2: Assign appropriate weights to the edges in the Euler tour.3: Compute the weighted rank of eah edge in L.4: Extrat a labelling of the verties of T from these ranks.Algorithm 3.2Labelling rooted trees.Theorem 3.2. A tree T an be rooted in O(sort(N)) I/Os.Proof. We have to show that Algorithm 3.1 takes O(sort(N)) I/Os. By Theo-rem 2.1 and Lemma 3.1, Lines 1 and 2 of the algorithm take O(sort(N)) I/Os.To arry out Lines 3{5, sort the edges in L by their smaller endpoints as a pri-mary key and their larger endpoints as a seondary key. This stores edges (v; w)and (w; v) onseutively, for every edge fv; wg 2 T . Now san this edge list,replae every pair of edges (v; w) and (w; v) with the orresponding undiretededge fv; wg, and label edge fv; wg with the ranks of both direted edges. utRemark. A vertex labelling that an be used to deide whih of two adjaentverties is the parent an be obtained by assigning to every vertex v the rank ofthe �rst edge in L whose soure is v. For two adjaent verties v and w, v is theparent of w if and only if the rank of the �rst edge with soure v is less than therank of the �rst edge with soure w. This is true beause for any vertex x 2 T ,the �rst edge with soure x an be traversed only after visiting vertex x, whihin turn is possible only after traversing edge (p(x); x).3.3 Labelling Rooted TreesIn this setion we onsider a number of labellings of a rooted tree that pro-vide useful information about the struture of the tree and an be omputed inO(sort(N)) I/Os using the Euler tour tehnique and list ranking. Some of theselabellings are de�ned in terms of an Euler tour of the tree that starts at the root.Hene, it is only natural that these labellings an be omputed using the Eulertour tehnique.Given an Euler tour of a rooted tree T , a preorder numbering of T is anumbering of the verties of T from 1 through N so that a vertex v has asmaller number than another vertex w if and only if the �rst visit of the tour tovertex v ours before the �rst visit to w. A postorder numbering of T assignsthe smaller number to v if the last visit to v ours before the last visit to w.Another important labelling assigns the number of its desendants to every nodev 2 T . Finally, it is handy in a number of appliations to know for every vertexv 2 T , how far away it is from the root. That is, vertex v is to be labelled withthe number of edges on the path from r to v in T . We refer to this number asthe depth of v in T .



Algorithm 3.2 provides a generi method for omputing these labellings. Thealgorithm omputes di�erent labellings depending on the hoie of the weightsassigned to the edges in the Euler tour in Line 2 of the algorithm.To ompute the depth of every vertex v in T , hoose the weight !(e) of anedge e = (v; w) in L as !(e) = (1 if v = p(w)�1 if w = p(v) :It is easy to verify that the depth of a vertex v in T equals the weighted rank ofany edge (u; v) in the Euler tour. To ompute a preorder numbering, hoose!(e) = (1 if v = p(w)0 if w = p(v)and extrat the preorder number of eah vertex v 6= r as the rank of edge (p(v); v)plus one. The root r of T always has preorder number 1. A postorder numberingan be omputed in a similar fashion. In order to ompute the number jT (v)j ofdesendants of eah vertex v, hoose the weights of the edges in the Euler touras for the omputation of a preorder numbering, but extrat the vertex labelsdi�erently. In partiular, jT (r)j = jT j = N for the root r of T . For every non-root vertex v, let r1(v) and r2(v) be the ranks of edges (p(v); v) and (v; p(v)).Then jT (v)j = r2(v) � r1(v) + 1. From this disussion we obtain the followingresult.Theorem 3.3. The following labellings an be omputed in O(sort(N)) I/Osfor a rooted tree with N verties: a preorder or postorder numbering, a labellingof eah vertex with its distane from the root, and a labelling of every vertex withthe number of its desendants.4 Evaluating Direted Ayli GraphsIn Setions 2 and 3 we have disussed the most important tools for dealing withlists and trees in an I/O-eÆient manner. In this setion we turn to a slightlymore ompliated lass of graphs, whih an be onsidered a generalization oflists: direted ayli graphs (DAGs). The problem we study is that of evaluatinga DAG G. More preisely, we are interested in solving the following problem:Given an assignment of labels !(v) to the verties of G, ompute labels �(v) ofthese verties where the omputation of �(v) depends only on !(v) and labels�(u1); : : : ; �(uk) omputed for the in-neighbors u1; : : : ; uk of v.Before studying the tehnique for solving this problem, let us have a lookat the list ranking problem again. List ranking is a speial ase of this evalu-ation problem where the struture of the DAG and the funtion that de�neslabelling � are restrited. These restritions allow an eÆient solution of the listranking problem without making any assumptions about the way the input is



Proedure TimeForwardProessing1: Q ; fQ is a priority queue.g2: for every vertex v 2 G, in topologially sorted order do3: Let u1; : : : ; uk be the in-neighbors of v.4: Retrieve �(u1); : : : ; �(uk) from Q, using k DeleteMin operations.5: Compute �(v) from !(v) and �(u1); : : : ; �(uk).6: Let w1; : : : ; wl be the out-neighbors of v.7: Insert l opies of �(v) into priority queue Q. Give the i-th opy priority wi.8: end forAlgorithm 4.1The time-forward proessing proedure.represented. In order to evaluate an arbitrary DAG I/O-eÆiently, we do haveto make a few assumptions. Fortunately these assumptions are satis�ed in manyinteresting appliations.The �rst assumption we make is that the verties of G are stored in topo-logially sorted order. That is, for every edge (v; w) 2 G, vertex v preedesvertex w in this order. This is ruial beause the proedure for evaluating Gvisits the verties of G in this order and there is no I/O-eÆient algorithm fortopologially sorting arbitrary DAGs. That is, if the verties were arranged in anarbitrary order, the algorithm ould end up spending one I/O per vertex whenevaluating G or 
(jV j) I/Os to topologially sort G, both of whih imply thatevaluating G would require 
(jV j) I/Os.If there is no bound on the number of in-edges a vertex an have, it is furtherrequired that the omputation of �(v) from !(v) and �(u1); : : : ; �(uk) an bearried out in O(sort(k)) I/Os beause the evaluation proedure disussed belowtakes are of providing vertex v with labels �(u1); : : : ; �(uk), but annot arryout the atual omputation.4.1 Time-Forward ProessingAssuming that both assumptions are satis�ed, we an now turn to the disussionof a tehnique for evaluating DAGs. This tehnique is alled time-forward pro-essing and was �rst proposed in [12℄. Here we disuss a variant of this tehniqueproposed by Arge [2℄, whih removes a few restritions of the algorithm of [12℄and is surprisingly simple. Algorithm 4.1 shows the pseudo-ode. The proeduremakes use of a priority queue Q to provide every vertex v with the input re-quired for omputing �(v). In partiular, when a vertex v is evaluated, values�(u1); : : : ; �(uk) are retrieved from Q, and �(v) is omputed from !(v) and theretrieved values, either in internal memory or using the O(sort(k)) I/O algorithmthat exists by our seond assumption. One label �(v) has been omputed, itis inserted into priority queue Q, one for eah of the out-neighbors w1; : : : ; wkof v. The opy of �(v) meant for neighbor wi is inserted with priority wi.The orretness and eÆieny of this tehnique now follows from two obser-vations: (1) Every in-neighbor ui of v is evaluated before v, so that all labels



�(u1); : : : ; �(uk) are inserted into the priority queue before v is evaluated. (2) Allverties preeding v in the topologial order are evaluated before v. Thus, theirinputs are retrieved from Q before v is evaluated, and the inputs for vertex v arethose with smallest priority in Q at the time when v is evaluated. Hene, theyan be retrieved using k DeleteMin operations.Now it remains to be observed that proedure TimeForwardProessingperforms O(jEj) priority queue operations, one Insert and one DeleteMinoperation per edge. This implies that the omputation of labels �(v) from la-bels !(v) takes O(sort(jEj)) I/Os using an I/O-optimal priority queue [2, 10℄.Theorem 4.1. A DAG G = (V;E) an be evaluated in O(sort(jEj)) I/Os, pro-vided that the verties of G are stored in topologially sorted order.The fat that the verties of G have to be given in topologially sorted orderis ertainly a serious restrition that a�ets the general appliability of thistehnique. However, there are many interesting problems on undireted graphsthat an be expressed as evaluation problems of appropriate DAGs. In theseappliations, a topologial ordering of the DAG is often easy to obtain by sortingthe verties of the DAG in a natural order indued by the onstrution of theDAG from the given undireted graph. In the next setion we study one suhappliation of the time-forward proessing tehnique to solve a lassial problemon undireted graphs.Remark. Zeh [32℄ observed that the I/O-omplexity of time-forward proessingan be redued toO(san(jEj)) ifG is a tree and its verties are stored in preorderor postorder. The idea is to use a stak instead of a priority queue to simulatethe sending of information along the edges of G.4.2 Maximal Independent SetThe problem of omputing a maximal independent set of an undireted graphis one representative of a number of problems that an be solved by greedyalgorithms of a suÆiently simple struture that they an be simulated using thetime-forward proessing tehnique [32℄. Reall that an independent set of a graphG = (V;E) is a set I � V of verties so that no two verties in I are adjaent.Set I is maximal if there is no vertex in V n I that does not have at least oneneighbor in I . Proedure MaximalIndependentSet shown in Algorithm 4.2omputes suh a set I I/O-eÆiently, assuming that every vertex has a uniquenumerial ID: Lines 2 and 3 of the algorithm learly take O(sort(jV j+jEj)) I/Os.The omputation of Lines 4{8 an be simulated using time-forward proessing:After deiding whether or not a vertex v should be added to set I , vertex vsends a ag to eah of its out-neighbors to inform them whether or not v is in I .This way every vertex an deide whether it should be added to I based onlyon the ags it reeives from its in-neighbors. Hene, the whole algorithm takesO(sort(jV j+ jEj)) I/Os.Theorem 4.2. A maximal independent set of a graph G = (V;E) an be om-puted in O(sort(jV j+ jEj)) I/Os.



Proedure MaximalIndependentSet1: I  ;2: Diret the edges of G from verties with lower numbers to verties with highernumbers.3: Sort the verties of G by their numbers and the edges by the numbers of theirsoures.4: for every vertex v 2 G, in sorted order do5: if no in-neighbor of v is in I then6: Add v to I.7: end if8: end forAlgorithm 4.2Computing a maximal independent set of a graph.Proof. We have already argued that the I/O-omplexity of proedure Maxi-malIndependentSet is O(sort(jV j + jEj)). The orretness of this proedurefollows from the following two observations: Set I as omputed by the algorithmis independent beause a vertex v is added to I only if none of its in-neighborsis in I . At this point none of its out-neighbors an be in I , and the insertion of vinto I prevents all of these out-neighbors from being added to I . Set I is maximalbeause otherwise there would be a vertex v 62 I none of whose in-neighbors isin I , whih implies that v would have been added to I . utUsing Theorem 4.2, we an now �ll in the last missing detail of the list rankingalgorithm of Setion 2. In the desription of the algorithm we assumed that anindependent set of size at least N=3 an be omputed in O(sort(N)) I/Os for alist of size N . This is shown by the following orollary of Theorem 4.2.Corollary 4.3. For a list L of size N , an independent set of size at least N=3an be omputed in O(sort(N)) I/Os.Proof. By Theorem 4.2, a maximal independent set of L an be omputed inO(sort(N)) I/Os. However, every maximal independent set of list L has size atleast N=3 beause the verties in L have degree at most two. utTwo more problems that an be solved using algorithms similar to Algo-rithm 4.2 are those of omputing a maximal mathing of a graph G and oloringa graph of degree � with at most �+1 olors. The latter problem an be solvedusing proedureMaximalIndependentSet, only sending di�erent informationalong the edges of G. The former an be expressed as a vertex-labelling problemof an auxiliary graph, so that an algorithm similar to Algorithm 4.2 an be ap-plied to ompute the desired labelling. For details the reader may refer to [32℄.It is interesting to observe that a maximal mathing orresponds to a maximalindependent set of the edge-inidene graph G0 of G. The verties in G0 orre-spond to the edges of G. Two verties in G0 are adjaent if and only if the twoorresponding edges in G share an endpoint. Unfortunately graph G0 may have



size 
�N2� even if G is a tree. Thus, this redution of the maximal mathingproblem to that of omputing a maximal independent set does not lead to anI/O-eÆient maximal mathing algorithm.5 Connetivity ProblemsIn the rest of this lass we study fundamental problems on undireted graphs.We begin in this setion with a disussion of onnetivity problems suh as om-puting the onneted and bionneted omponents or a minimum spanning treeof a graph. The algorithms for these problems demonstrate the power of an im-portant tehnique that is applied in a number of I/O-eÆient graph algorithms:graph ontration. We disuss this tehnique in Setion 5.1 and turn to onreteappliations in Setions 5.2 through 5.4. In Setion 5.5 we disuss a speial lassof graphs for whih graph ontration often leads to I/O-optimal algorithms.5.1 The Graph Contration ParadigmGraph ontration is a useful tehnique that was �rst applied in parallel algo-rithms. The idea of this tehnique is simple: Given a graph G and a problem P tobe solved on G, identify (edge-)disjoint subgraphs of G and replae eah of themwith a smaller subgraph so that a solution of problem P on G an be derivedfrom a solution of P on the resulting graph G0. Reursively solve P on G0 andthen ompute a solution of P on G from the omputed solution on G0.Of ourse the reursion annot ontinue inde�nitely. That is, at some pointthe algorithm has to stop alling itself reursively and solve problem P diretly.Thus, a ontration-based algorithm A an be divided into two parts: (1) analgorithm A1 that onstruts graph G0 from graph G, alls algorithm A reur-sively to solve problem P on graph G0, and then omputes a solution of P on Gfrom the omputed solution on G0; (2) an algorithm A2 that solves problem Pwithout alling algorithm A. Algorithm A itself is merely a wrapper that deideswhih of the two algorithms, A1 or A2, to apply to the urrent input graph. Forlarge inputs, it alls algorithm A1. For small inputs, it invokes algorithm A2,thereby stopping the reursion.The eÆieny of the algorithm depends on a number of fators. Clearly theI/O-omplexities of algorithms A1 and A2 have a strong inuene on the I/O-omplexity of algorithm A. The seond important question is how many levelsof reursion are needed before algorithm A stops the reursion by alling algo-rithm A2 instead of algorithm A1. The answer to this question is determined by(1) the ratio between the sizes of graphs G0 and G and (2) the largest possiblesize of graph G so that applying algorithm A2 to graph G is more eÆient thanadding another level of reursion by alling algorithm A1 again. If graph G0 hasonly a onstant fration of the verties or edges of G, a logarithmi number ofreursive alls are suÆient to redue the size of the graph to a onstant, so thatalgorithm A2 an solve problem P in O(1) I/Os at that point. If algorithm A2is more eÆient than algorithm A1 for graphs of more than onstant size, thereursion an stop muh earlier.



Proedure SemiExternalConnetivity1: Load all verties of G into main memory and mark eah of them as being in itsown onneted omponent (i.e., G(v)  v, where G(v) is a label that identi�esthe onneted omponent of G that ontains v).2: for every edge e 2 E do3: if the two endpoints v and w of e are in di�erent onneted omponents then4: Let (v) and (w) be the omponent labels of v and w.5: for every u 2 V do6: if (u) = (v) or (u) = (w) then7: (u) min((v); (w))8: end if9: end for10: end if11: end forAlgorithm 5.1A semi-external algorithm for onnetivity.5.2 ConnetivityIn this setion we disuss three di�erent algorithms for omputing the onnetedomponents of a graph G. Reall that a graph is onneted if for any two vertiesv; w 2 G, there is a path from v to w in G. The onneted omponents of agraph G are its maximal onneted subgraphs. The algorithms in this setionompute a labelling of the verties of G so that two verties have the same labelif and only if they belong to the same onneted omponent of G.The �rst algorithm we disuss omputes the onneted omponents of GI/O-eÆiently under the assumption that the verties, but not the edges, of G�t into main memory. Suh an algorithm is often referred to as a semi-externalalgorithm as opposed to a fully external algorithm, whih assumes that neitherthe vertex nor the edge set of G �ts into main memory.The seond algorithm we disuss is fully external and uses graph ontrationto redue the size of the vertex set of the graph by a fator of two from one level ofreursion to the next. As soon as jV j �M , it alls the semi-external onnetivityalgorithm to ompute the onneted omponents of G without reursing anyfurther.Finally, the third algorithm is a variation on the seond algorithm wherethe semi-external onnetivity algorithm is replaed with an I/O-eÆient BFS-algorithm. This allows the reursion to stop muh earlier and therefore leads toa more eÆient algorithm.A semi-external onnetivity algorithm. If jV j � M , the onneted om-ponents of graph G an be omputed in O(san(jV j + jEj)) I/Os using Algo-rithm 5.1. The orretness of this algorithm is obvious. To see that the algorithmtakes a linear number of I/Os, observe that the verties of G an be loaded intomain memory in O(san(jV j)) I/Os. After that, the outer loop requires a san



Proedure ExternalConnetivity1: if jV j �M then2: Apply proedure SemiExternalConnetivity to ompute the onneted om-ponents of G.3: else4: Compute the smallest neighbor wv for every vertex v 2 G.5: Compute the onneted omponents of the subgraph H of G indued byedges fv; wvg, v 2 V .6: Compress eah of these onneted omponents into a single vertex. Remove allisolated verties. Let G0 be the resulting graph.7: Reursively ompute the onneted omponents of G0 using proedure Exter-nalConnetivity.8: Re-integrate the isolated verties into G0 and assign a unique label to eah suhvertex.9: For every vertex v0 2 G0 and every vertex v in the onneted omponent of Hrepresented by v0, let G(v) = G0(v0).10: end ifAlgorithm 5.2A fully external algorithm for graph onnetivity.of the edge set of G (i.e., O(san(jEj)) I/Os), and the inner loop is performed inmain memory without inurring any I/Os. Note that the algorithm as presentedhere is ineÆient in terms of the omputation it performs in internal memory;but it an easily be made eÆient by representing the onneted omponentsof G using a union-�nd data struture [13, Chapter 22℄ and labelling the vertiesonly after all onneted omponents have been identi�ed.A fully external onnetivity algorithm. The �rst fully external onnetiv-ity algorithm was proposed by Chiang et al. [12℄ and is shown in Algorithm 5.2.If jV j � M , the algorithm delegates the problem of omputing the onnetedomponents of G to proedure SemiExternalConnetivity. Otherwise it ap-plies graph ontration to produe a graph G0 with at most half as many vertiesas G, reursively omputes the onneted omponents of G0, and derives a la-belling of the verties of G that identi�es the onneted omponents of G fromthe omputed labelling of the verties of G0. Before analyzing the I/O-omplexityof proedure ExternalConnetivity, we show that it is orret.Lemma 5.1. Let G : V ! N be the omponent labelling omputed by proedureExternalConnetivity. Then for any two verties v; w 2 G, G(v) = G(w)if and only if v and w are in the same onneted omponent of G.Proof. We prove the lemma by indution on jV j. If jV j �M , the orretness ofproedure ExternalConnetivity follows from the orretness of proedureSemiExternalConnetivity. So assume that jV j = k > M and that the algo-rithm is orret for jV j < k. Let C1; : : : ; Cq be the onneted omponents of H ,and let G00 be the graph obtained from G by ontrating eah omponent Ci



into a single vertex vi. That is, graph G0 is obtained from G00 by removing allisolated verties. Sine jV (G0)j < jV j, the reursive invoation of proedure Ex-ternalConnetivity on graph G0 produes a labelling of the verties of G0that identi�es the onneted omponents of G0 orretly. Thus, sine every iso-lated vertex of G00 is assigned a unique label in Line 8 of the algorithm, thelabelling of the verties of G00 obtained in Line 8 identi�es the onneted om-ponents of G00 orretly. We have to show that the labelling of G omputed inLine 9 is orret.So let v; w 2 G, and assume �rst that v and w belong to the same onnetedomponent of G. Then there exists a path P = (v = x0; x1; : : : ; xk = w) from vto w in G. It suÆes to show that for every edge fxi; xi+1g 2 P , G(xi) =G(xi+1) beause then G(v) = G(x0) = G(x1) = � � � = G(xk) = G(w). Ifverties xi and xi+1 belong to the same onneted omponent of H , G(xi) =G(xi+1) beause xi and xi+1 reeive their labels from the same vertex in G00.Otherwise let xi 2 Ch and xi+1 2 Cj , h 6= j. Sine edge fxi; xi+1g 2 G, graphG00ontains edge fvh; vjg. Thus, verties vh and vj belong to the same onnetedomponent of G00, so that G00(vh) = G00(vj) and hene G(xi) = G(xi+1).Now assume that G(v) = G(w), and let v 2 Ch and w 2 Cj . If Ch = Cj ,there exists a path from v to w in Ch � H � G. If Ch 6= Cj , G00(vh) = G(v) =G(w) = G00(vj). That is, verties vh and vj belong to the same onnetedomponent of G00. In partiular, there exists a path P 00 = (vh = y0; y1; : : : ; yk =vj) from vh to vj in G00. Let j0; : : : ; jk be indies so that for 0 � i � k, vertex yirepresents omponent Cji of H . Sine edge fyi; yi+1g 2 G00, for 0 � i < k,graph G ontains edges ei = fai; big, ai 2 Cji and bi 2 Cji+1 . Sine verties biand ai+1 are in the same onneted omponent Cji+1 of H , for 0 � i < k � 1,there exists a path Pi+1 from bi to ai+1 in Cji+1 . Similarly, there exist paths P0and Pk from v to a0 in Cj0 and from bk�1 to w in Cjk . Hene, there exists apath P = P0 Æ e0 Æ P1 Æ e1 Æ � � � Æ Pk�1 Æ ek�1 Æ Pk from v to w in G, so that vand w belong to the same onneted omponent of G. utIf jV j � M , proedure ExternalConnetivity omputes the onnetedomponents of G in O(san(jV j+ jEj)) I/Os by invoking proedure SemiExter-nalConnetivity. Otherwise Lines 4{9 of the algorithm are exeuted, whoseI/O-omplexity we analyze next.To �nd the smallest neighbor wv of every vertex v, san the edge set of G,replae every edge fv; wg 2 E with two direted edges (v; w) and (w; v), andsort the resulting set of direted edges lexiographially. The result is a olletionof sorted adjaeny lists of the verties of G. San this olletion of adjaenylists and selet vertex wv for every vertex v 2 G as the �rst vertex in theadjaeny list of v. Computing the smallest neighbors of all verties of G in thismanner takes O(sort(jEj)) I/Os. To produe the edge set of graph H , sort andsan the set of edges fv; wvg, v 2 G, to remove dupliates. This takes anotherO(sort(jV j)) I/Os.The most interesting part of the algorithm is the omputation of the on-neted omponents of graphH beause it has to be done without using proedure
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13 1415163(a) (b) ()Figure 5.1(a) A graph G with its verties numbered. (b) The graph H indued by this numbering.() The graph H 0 whose onneted omponents are yles and represent the onnetedomponents of H. Every vertex in H 0 is labelled with the number of its orrespondingvertex in H.ExternalConnetivity. To do this, the algorithm makes use of the followingfat.Lemma 5.2. The onneted omponents of graph H are trees. That is, graph His a forest.Proof. Assume for the sake of ontradition that graph H ontains a yle C =(x0; x1; : : : ; xk = x0). Sine graph H ontains no parallel edges, k � 3. Sineevery vertex v 2 G has at most one inident edge fv; wvg in H , w.l.o.g. xi+1 =wxi , for 0 � i < k. Then the existene of edge fxi�1; xig, for 0 < i < k � 1,implies that xi�1 > xi+1. Similarly, xk�1 > x1. If k is even, this implies thatx0 > x2 > � � � > xk = x0, whih leads to the desired ontradition. If k is odd,we arrive at a ontradition by observing that x0 > x2 > � � � > xk�1 > x1 >x3 > � � � > xk = x0. Hene, graph H ontains no yles, and all its onnetedomponents are trees. utUsing Lemma 5.2, the onneted omponents of H an be found as follows:Apply the Euler tour tehnique to H , in order to transform eah tree T in H intoa yle CT (see Figure 5.1). Let H 0 be the resulting graph. Every vertex v0 in ayle CT orresponds to a vertex v in T . During the onstrution of H 0 from H ,vertex v0 an easily be labelled with the ID of vertex v. Cyles CT are theonneted omponents of H 0, so that a labelling of the onneted omponentsof H an be obtained from a labelling of the onneted omponents of H 0 asfollows: San the set of vertex-label pairs (v0; H0 (v0)) and replae eah suh pairwith the pair (v; H(v) = H0(v0)), where v is the vertex in H represented by v0.Now sort and san the resulting list of vertex-label pairs to remove dupliates.To ompute the onneted omponents of H 0, a proedure similar to thelist ranking algorithm from Setion 2 an be used: If jH 0j � M , load H 0 intomain memory and ompute its onneted omponents using an eÆient internalmemory algorithm. Otherwise �nd a large independent set I of H 0 and remove



the verties in I from H 0, where removing a vertex v with inident edges fv; xgand fv; yg means to remove vertex v from the vertex set of H 0 and replaeedges fv; xg and fv; yg with an edge fx; yg onneting the neighbors of v. Theremoval of the verties in I from H 0 then results in a olletion of smaller yles.Reursively �nd the onneted omponents of this ompressed graph and re-integrate the verties in I , assigning to every vertex in I the omponent labelof one of its neighbors. The details of this proedure are similar to those ofAlgorithm 2.2, so that it takes O(sort(jH 0j)) = O(sort(jV j)) I/Os.Given a labelling of the onneted omponents of H , graph G0 is now on-struted in two phases: First san the vertex set of G and reate a list V 0 =fH(v) : v 2 Gg. Sort and san this list to remove dupliates. The result is thevertex set of G0. Now sort the verties of G by their IDs and the edges of G bytheir �rst endpoints. San the two sorted lists to replae the �rst endpoint v ofeah edge fv; wg with its omponent label H(v). Repeat this proedure, sortingthe edges by their seond endpoints to replae these endpoints with their om-ponent labels. Finally sort and san the resulting list of edges fH(v); H(w)gto remove dupliates and loops. This �rst phase of the onstrution of G0 takesO(sort(jV j+ jEj)) I/Os and produes graph G0 with its isolated verties present(i.e., graph G00 in the proof of Lemma 5.1).To remove all isolated verties from G0, san the edge set of G0 and appendverties v and w to a list X , for every edge fv; wg 2 E(G0). Sort the vertex setof G0 and list X and san the two sorted lists to remove every vertex from V (G0)that does not appear in X . This takes another O(sort(jV j+ jEj)) I/Os. In total,the onstrution of G0 from G takes O(sort(jV j+ jEj)) I/Os.After reursively omputing the onneted omponents of G0, the algorithmhas to assign unique labels to the isolated verties that were removed fromG0 andthen derive a omponent labelling of G from the resulting labelling of graph G00.To label the isolated verties of G00, sort the verties of G0 by their omponentlabels and then san the vertex set of G0 and the set of isolated verties to assignto eah isolated vertex a label that has not been assigned to any other vertex.Sine the ID of a vertex in G00 is in fat the label of a onneted omponentin H , the resulting set of vertex-label pairs an be interpreted as pairs (H ; G)mapping a omponent label in H to a omponent label in G. Now sort theverties of G by their omponent labels in H , sort the list of pairs (H ; G) bytheir �rst omponents, and �nally san both lists to replae the omponent labelH(v) of every vertex v 2 G with the orresponding omponent label in G. Thiswhole proedure takes O(sort(jV j+jEj)) I/Os and derives a omponent labellingof G from the given omponent labellings of H and G0.From this disussion we obtain the following reurrene desribing the I/O-omplexity of proedure ExternalConnetivity:I(jV j; jEj) = (O(san(jV j+ jEj)) if jV j �MO(sort(jV j+ jEj)) + I(jV (G0)j; jE(G0)j) if jV j > MUsing this reurrene, we an show the following lemma.



Lemma 5.3. The I/O-omplexity of proedure ExternalConnetivity isI(jV j; jEj) = O(sort(jV j) + sort(jEj) log2(jV j=M)).Proof. If we an show that jV (G0)j � jV j=2, the lemma follows from the abovereurrene. To prove that the former is true, observe that every vertex in G0represents a onneted omponent of H that ontains at least two verties. Thisis true beause every vertex in G that is not isolated inG has at least one inidentedge in H ; an isolated vertex in G is also isolated in G0 and is hene removedbefore reursively invoking proedure ExternalConnetivity on G0. Sinethe onneted omponents of H de�ne a partition of the vertex set of G, it nowfollows immediately that jV (G0)j � jV j=2. utThe following theorem is an immediate onsequene of Lemmas 5.1 and 5.3.Theorem 5.4. The onneted omponents of an undireted graph G = (V;E)an be omputed in O(sort(jV j) + sort(jEj) log2(jV j=M)) I/Os.An improved onnetivity algorithm. In internal memory, the onnetedomponents of a graph an be omputed in linear time using breadth-�rstsearh (BFS). Sine the best known BFS-algorithm for undireted graphs isless eÆient than proedure ExternalConnetivity, exept for dense graphs,this idea does not diretly lead to an improved onnetivity algorithm. How-ever, Munagala and Ranade [28℄ observed that the I/O-omplexity of proe-dure ExternalConnetivity an be improved by using an I/O-eÆient BFS-algorithm instead of proedure SemiExternalConnetivity to stop the re-ursion of proedure ExternalConnetivity. In partiular, they present aBFS-algorithm for undireted graphs that takes O(jV j + sort(jEj)) I/Os. Wedisuss this algorithm in Setion 6.2. For jV j � jEj=B, the I/O-omplexityof the algorithm is O(sort(jEj)). In order to redue the size of the vertex setof G to jEj=B, log2(jV jB=jEj) reursive invoations of proedure External-Connetivity suÆe, so that the improved algorithm takes O(sort(jV j) +sort(jEj) log2(jV jB=jEj)) I/Os.Theorem 5.5. The onneted omponents of an undireted graph G = (V;E)an be omputed in O(sort(jV j) + sort(jEj) log2(jV jB=jEj)) I/Os.Remark. Munagala and Ranade improve the I/O-omplexity of their onne-tivity algorithm even further, to O(sort(jV j) + sort(jEj) log2 log2(jV jB=jEj)).The idea is to group the ontration steps into superphases. Eah superphaseahieves a ontration of the vertex set of G by a fator greater than two andtakes O(sort(jEj)) I/Os. To ahieve the latter, the ontration steps in eahsuperphase operate on a well-hosen subset of the edges of the graph. The inter-ested reader may refer to [28℄ for details.5.3 BionnetivityTarjan and Vishkin [30℄ propose a parallel algorithm for omputing the bion-neted omponents of a graph G = (V;E). The algorithm onstruts an auxiliary



graph H with jEj verties and O(jEj) edges so that the onneted omponentsof H orrespond to the bionneted omponents of G and then omputes theonneted omponents of H . Chiang et al. [12℄ show that the onstrution of theauxiliary graph H an be arried out in O(sort(jV j + jEj)) I/Os. This leads tothe following orollary of Theorem 5.5. For details see [12, 30℄.Theorem 5.6. The bionneted omponents of an undireted graph G = (V;E)an be omputed in O(sort(jV j) + sort(jEj) log2B) I/Os.5.4 Minimum Spanning TreeNow let us turn to another problem that an be solved by re�ning the ideasfrom Setion 5.2: omputing a minimum spanning tree of a onneted undiretedgraph G = (V;E). A spanning tree of G is a tree T = (V;E0), E0 � E. That is,tree T ontains all verties of G; its edge set is a subset of the edges of G. Givenan assignment ! : E ! R of weights to the edges of G, tree T is a minimumspanning tree (MST) of G if there is no spanning tree of G whose total edgeweight is less than that of T .The �rst step towards omputing an MST of G is to observe that Algorithms5.1 and 5.2 an easily be augmented to obtain proedures SemiExternalSTand ExternalST that ompute a spanning tree of G. The omputed spanningtree is not neessarily a minimum spanning tree. The required modi�ations arethe following:In addition to relabelling the verties in G, proedure SemiExternalSTadds edge fv; wg to the spanning tree whenever it �nds that the endpoints vand w of the urrent edge fv; wg are in di�erent onneted omponents.Proedure ExternalST onstruts a spanning tree T of G from graph Hand the spanning tree T 0 produed by the reursive invoation of the algorithmon G0. The edge set of T ontains all edges of graph H as well as one edge fv; wgper edge fv;0 ; w0g 2 T 0, where v and w are in the onneted omponents of Hrepresented by verties v0 and w0.We leave the proof that proedure SemiExternalST omputes a spanningtree of T as an exerise and show the following lemma.Lemma 5.7. Let T be the graph omputed by proedure ExternalST. ThenT is a spanning tree of G.Proof. We prove the lemma by indution on jV j. If jV j � M , graph T is om-puted using proedure SemiExternalST. Graph T is a spanning tree of G, bythe orretness of proedure SemiExternalST. So assume that jV j = k > Mand that proedure ExternalST omputes a spanning tree for every graphG0 = (V 0; E0) with jV 0j < k.We have to show that the graph T omputed for graph G is onneted anddoes not ontain yles. So let v and w be two verties of G, let C1; : : : ; Cq be theonneted omponents of graph H , and let v 2 Ch and w 2 Cj . If Ch = Cj , thereexists a path from v to w in Ch � H � T . If Ch 6= Cj , onsider the graph T 0



omputed by reursively invoking proedure ExternalST on the ompressedgraph G0. By the indution hypothesis and beause jV (G0)j < jV j, graph T 0 isa spanning tree of G0. Hene, there exists a path P 0 = (vh = x0; x1; : : : ; xk =vj) from vh to vj in T 0. Let j0; : : : ; jk be indies so that vertex xi representsomponent Cji of H , for 0 � i � k. Sine graph T 0 ontains edges fxi; xi+1g,for 0 � i < k, graph T as onstruted by proedure ExternalST ontainsan edge ei = fai; big, where ai 2 Cji and bi 2 Cji+1 , for 0 � i < k. LetP0 be a path from v to a0 in Cj0 , Pk be a path from bk�1 to w in Cjk , andPi be a path from bi�1 to ai, for 0 < i < k. Sine H � T , the path P =P0 Æ e0 ÆP1 Æ e1 Æ � � � ÆPk�1 Æ ek�1 ÆPk is a path from v to w in T . As this is truefor every pair of verties v; w 2 G, graph T is onneted.Now assume for the sake of ontradition that graph T ontains a yleC = (x0; x1; : : : ; xk = x0). Cyle C an be split into maximal subpaths P1; : : : ; Plso that the verties of eah subpath Pi belong to the same onneted ompo-nent Cji of H . By Lemma 5.2, the onneted omponents of H are trees, so thatthe partition of yle C ontains at least two paths P1 and P2. An edge in C on-neting two verties in di�erent subpaths Pi and Pi+1 (or Pl and P1) has its twoendpoints in Cji and Cji+1 (or Cjl and Cj1). By the onstrution of T and sineC � T , this implies that graph T 0 ontains a yle C 0 = (vj1 ; vj2 ; : : : ; vjl ; vj1 ).However, by the indution hypothesis, graph T 0 is a tree, and hene does notontain any yles. This leads to the desired ontradition, so that T is a tree.utOnly a few modi�ations to proedures SemiExternalST and Exter-nalST are required to make them ompute minimum spanning trees of theirinput graphs. We desribe these modi�ations below and refer to the resultingalgorithms as proedures SemiExternalMST and ExternalMST.Instead of inspeting the edges ofG in an arbitrary order, proedure SemiEx-ternalMST inspets the edges sorted by inreasing weights. This inreasesthe I/O-omplexity of the algorithm to O(san(jV j) + sort(jEj)) beause theedges have to be sorted before sanning the edge set. With this modi�ation,proedure SemiExternalMST beomes a semi-external version of Kruskal'salgorithm [13, Setion 24.2℄ and hene omputes an MST of G.Proedure ExternalMST di�ers from proedure ExternalST in a num-ber of plaes; but all modi�ations are simple:(1) During the onstrution of H from G, edge fv; wvg is hosen as theminimum-weight edge inident to v instead of the edge onneting v to its small-est neighbor. It is easy to verify that this modi�ation maintains the invariantthat H is a forest.(2) Every edge fv0; w0g 2 G0 represents a set of edges in G between the twoonneted omponents ofH represented by v0 and w0. The weight of edge fv0; w0gis hosen as the minimum weight of all edges in this set.(3) When adding an edge fv; wg to T for an edge fv0; w0g 2 T , then fv; wgis hosen as an edge of minimum weight so that verties v and w belong to theonneted omponents of H represented by v0 and w0. In partiular, edges fv; wgand fv0; w0g have the same weight.



We leave it as an exerise to verify that these modi�ations do not inreasethe I/O-omplexity of proedure ExternalMST. By Lemma 5.2, the graph Tomputed by the algorithm is a spanning tree of G. Next we show that it is aminimum spanning tree.Lemma 5.8. The graph T omputed by proedure ExternalMST is a mini-mum spanning tree of G.Proof. We prove the lemma by indution on jV j. If jV j �M , the orretness ofproedure ExternalMST follows from that of proedure SemiExternalMSTbeause it uses this proedure to ompute T . So assume that jV j = k > M andthat proedure ExternalMST omputes an MST for any graph with less thank verties.First we show that graph G has an MST T so that H � T . Assume theontrary, and let T be an MST of G that ontains a maximal number of edgesof H . Sine H 6� T , there exists an edge fv; wvg 2 H that is not in T . Addingedge fv; wvg to T reates a yle C in T . Sine graph H is a forest, yle Contains an edge fx; yg 62 H . Assume w.l.o.g. that y is on the path from x to vin T , and hoose edge fx; yg so that the path P = (y = x0; x1; : : : ; xk = v)from y to v in T ontains only edges of H . Sine fv; wvg is the edge of minimumweight inident to v hosen during the onstrution of graph H , edge fxk�1; xkghas weight at least that of edge fv; wvg. Moreover, edge fxk�1; xkg an only behosen by its two endpoints as a minimum weight edge to be added to H , andvertex xk = v hose edge fv; wvg. Hene, edge fxk�1; xkg is the minimum weightedge hosen for vertex xk�1. Using indution, we obtain that for 0 � i < k, edgefxi; xi+1g is the minimum weight edge hosen for vertex xi and that the weightof this edge is no less than that of edge fv; wvg. Sine edge fx; yg is inident tovertex y = x0, its weight is no less than that of edge fx0; x1g, whih is no lessthan that of edge fv; wvg. Thus, replaing edge fx; yg with edge fv; wvg in Tprodues a spanning tree T0 of weight no more than that of T and ontainingone more edge of H than T . This ontradits the hoie of T , so that H � T .It remains to show that the algorithm adds the orret edges to H in order toonstrut tree T . So assume that T is not an MST, and let T0 be an MST of G sothat H � T0. Contrating every onneted omponent of H into a single vertextransforms T into the tree T 0 omputed for G0 by the reursive invoation ofproedure ExternalMST. Tree T0 is transformed into another spanning tree T 00of G0. All edges in T 00 and T 0 have the same weights as their orresponding edgesin T0 and T , and the edges in H are shared by T0 and T . Hene, the di�erenebetween the weights of T0 and T is the same as the di�erene between the weightsof T 00 and T 0. By the indution hypothesis, T 0 is an MST of G0. Thus, T 00 hasa weight no less than that of T 0, so that the weight of T0 is at least that of T .Hene, T is an MST of G. utSine the I/O-omplexity of proedure ExternalMST is the same as thatof proedure ExternalConnetivity, the following theorem now follows fromTheorem 5.4 and Lemma 5.8.



Theorem 5.9. A minimum spanning tree of a onneted undireted graph G =(V;E) an be omputed in O(sort(jV j) + sort(jEj) log2(jV j=M)) I/Os.Now it would be nie if the same trik as for the onnetivity algorithmould be applied to stop the reursion in proedure ExternalMST alreadyafter log2(jV jB=jEj) reursive alls. That is, we are looking for an algorithmthat omputes a minimum spanning tree of a graph G = (V;E) in O(jV j +sort(jEj)) I/Os. The BFS-algorithm of Munagala and Ranade [28℄ annot beused beause a BFS-tree of G is most likely not an MST.Arge et al. [4℄ present an I/O-eÆient version of Prim's algorithm [13, Se-tion 24.2℄ that omputes an MST of G in the desired number of I/Os. As Prim'salgorithm, the algorithm of [4℄ maintains the invariant that the urrent set ofedges de�nes a spanning tree of a subset of the verties of G and that thisspanning tree is a subgraph of a minimum spanning tree of G. To extend thespanning tree, the edge of lowest weight onneting a vertex in the spanningtree to a vertex not in the spanning tree is added to the tree. This operation isrepeated until a minimum spanning tree of G is obtained.More preisely, the algorithm starts by hoosing one vertex r to be in thespanning tree, while all other verties are not in the spanning tree. Then the ad-jaeny list of r is retrieved, and for every edge fr; xg inident to r, an edge (r; x)is inserted into a priority queue Q storing edges (v; w) so that v 2 T . The priorityof an edge (v; w) 2 Q is the same as the weight of edge fv; wg in G.To �nd the next edge to be added to the urrent spanning tree T , theedge (u; v) of lowest weight is retrieved from Q. If this edge onnets two vertiesin the spanning tree, it is disarded, and the next edge is retrieved. Otherwiseedge fu; vg is added to T . Sine u 2 T , vertex v was not in T before addingedge fu; vg to T . To update Q, the adjaeny list of v is retrieved, and for everyedge fv; wg, u 6= w, inident to v, an edge (v; w) is inserted into priority queue Q.The orretness of the algorithm follows from that of Prim's algorithm be-ause it maintains the invariant that priority queue Q stores all edges onnetingverties in T to verties not in T . The main diÆulty is to �nd an I/O-eÆientmethod to test whether an inspeted edge onnets two verties in T or a vertexin T with a vertex not in T . Under the assumption that no two edges have equalweight4 this test an be arried out using priority queue Q: Observe that if thetwo endpoints u and v of an inspeted edge (u; v) are in T , but fu; vg 62 T ,vertex u has inserted edge (u; v) into Q, and vertex v has inserted edge (v; u)into Q. Hene, if u and v are both in T , and the urrent DeleteMin opera-tion retrieves edge (u; v), the edge retrieved by the next DeleteMin operationis (v; u). Thus, it suÆes to perform two DeleteMin operations. If these twooperations retrieve two edges with the same endpoints, both edges are disarded.Otherwise the �rst edge is added to the spanning tree, and the seond edge isre-inserted into Q.An important detail to be observed is the fat that when edge fu; vg is addedto the spanning tree, edge (v; u) is exluded from the set of edges in the adjaeny4 This an easily be ahieved by de�ning new edge weights !0(e) = (!(e); e) and takingthe lexiographial order as the natural order on these edge weights.



list of v that are inserted into Q. This is important beause edge (u; v) has justbeen retrieved from Q, so that the above test would fail when edge (v; u) isretrieved by a subsequent DeleteMin operation.To analyze the I/O-omplexity of the algorithm, observe that it takesO(jV j+san(jEj)) I/Os to retrieve the adjaeny lists of all verties of G. Besides retriev-ing the adjaeny lists, the algorithm performs O(jEj) priority queue operations:O(jEj) Insert operations are performed to insert every edge of G into Q for the�rst time. All other priority queue operations an be grouped into sequenes ofeither two DeleteMin operations or two DeleteMin operations followed bythe re-insertion of the edge retrieved by the last DeleteMin operation. Eahsuh sequene of priority queue operations redues the number of edges storedin Q by at least one, so that at most O(jEj) suh sequenes are exeuted. Sineeah sequene has length at most three, the total number of priority queue op-erations is O(jEj), whih take O(sort(jEj)) I/Os to be performed. Hene, thetotal I/O-omplexity of the algorithm is O(jV j+ sort(jEj)).Using the above algorithm instead of proedure SemiExternalMST in pro-edure ExternalMST, the reursion an stop after log2(jV jB=jEj) reursivealls, so that we obtain the following result.Theorem 5.10. A minimum spanning tree of a onneted undireted graph G =(V;E) an be omputed in O(sort(jV j) + sort(jEj) log2(jV jB=jEj)) I/Os.Remark. Similar to the onnetivity algorithm of [28℄, the omplexity of theMST-algorithm an be redued to O(sort(jV j) + sort(jEj) log2 log2(jV jB=jEj)).This improvement is ahieved using essentially the same approah as in [28℄;but a number of interesting new ideas are used. The interested reader may referto [4℄ for details.5.5 Graph Contration and Sparse GraphsObserve that the algorithms in Setions 5.2 and 5.4 are optimal in the num-ber of verties in the graph, but not in the number of edges. This is due tothe fat that graph G0 has at most half as many verties as graph G, whileno suÆiently good upper bounds on the number of edges in G0 an be given.However, if graph G is sparse, the I/O-omplexity of proedures External-Connetivity and ExternalMST is redued to O(sort(jV j)). In partiular,we say that graph G is sparse if jE(H)j = O(jV (H)j) for every graph H thatan be obtained from G through a series of edge ontrations. Important lassesof sparse graphs inlude planar graphs, grid graphs, and graphs of boundedtreewidth. Sine graph G0 is obtained from graph G through a series of edgeontrations, the sparseness of G implies that jE(G0)j = O(jV (G0)j), so that theI/O-omplexity of proedures ExternalConnetivity and ExternalMSTis now O(sort(jV j) + sort(jV j=2) + sort(jV j=4) + : : : ) = O(sort(jV j)). Hene, weobtain the following result.Theorem 5.11. For every sparse graph G = (V;E), the onneted omponentsor a minimum spanning tree of G an be omputed in O(sort(jV j)) I/Os. Thelatter exists only if G is onneted.



6 Breadth-First Searh and Depth-First SearhBreadth-�rst searh (BFS) and depth-�rst searh (DFS) are probably amongthe most fundamental primitives used to study the struture of a given graph.Sequential algorithms for �nding the bionneted omponents [29℄ and trion-neted omponents [18℄ of a graph and the �rst linear-time algorithm for pla-narity testing [19℄ are based on depth-�rst searh. Breadth-�rst searh an beseen as an unweighted version of the single soure shortest path problem andbesides that has been employed for example in algorithms for omputing planarseparators [23, and many more℄. The popularity of BFS and DFS in sequentialgraph algorithms is not surprising, as these proedures an be arried out inlinear time using extremely simple algorithms; yet their output provides valu-able information about the struture of the graph. If it is possible to designI/O-eÆient algorithms for BFS and DFS, then there is hope to obtain I/O-eÆient versions of many sequential graph algorithms based on BFS and DFS.Unfortunately no generally I/O-eÆient BFS or DFS-algorithms are known. Be-fore disussing what an be done, let us see what we an establish using rathersimple observations.First, we should not hope to obtain a linear-I/O algorithm for either BFS orDFS beause the list ranking problem an be solved by performing BFS or DFSfrom the head of the list. That is, BFS and DFS require 
(perm(N)) I/Os. Westate this as a orollary in Setion 11, whih deals with lower bounds.Seond, the internal memory algorithms are not I/O-eÆient. In partiular,they perform O(jV j+ jEj) I/Os in the worst ase: At least one I/O is requiredto aess the adjaeny list of eah vertex. Every edge to be explored requiresto hek whether the other endpoint of the edge has been visited before. Thisrequires one I/O in the worst ase, so that the algorithm performs one I/O peredge.6.1 Direted BFS and DFSThe �rst I/O-eÆient algorithms for BFS and DFS we disuss work for diretedgraphs. While no better DFS-algorithm is known for undireted graphs, sim-pler and faster BFS-algorithms for undireted graphs exist. We disuss thesealgorithms in Setions 6.2 and 6.3.The bu�ered repository tree. The bu�ered repository tree (BRT) [11℄ is thekey data struture used to obtain I/O-eÆient algorithms for BFS and DFS indireted graphs. A BRT stores key-value pairs (k; v) and supports two operations:Insert((k; v)) and Extrat(k). Operation Insert inserts the given key-valuepair into the BRT and takes O� 1B log2 NB � I/Os. Operation Extrat removesall key-value pairs with key k from the BRT and returns them. This operationtakes O(log2(N=B)) I/Os. The I/O-bounds of both operations are amortized.The BRT is a (2; 4)-tree T that stores bloks of key-value pairs at its leaves,sorted by inreasing keys. Every internal node of T has a bu�er of size B. Theroot of T is held in main memory. All other nodes are stored on disk.



An Insert operation inserts the new pair into the root bu�er. If there is roomfor the new pair in the root bu�er, this ompletes the operation and does notinur any I/Os. Otherwise the root bu�er is emptied after inserting the new pair.To do this, the elements in the bu�er are distributed to the appropriate hildrenof the root and inserted into their bu�ers. This takes O(1) I/Os. But it may alsoause the bu�ers of some of the hildren to overow. If this happens, these bu�ersare emptied reursively. One this reursive bu�er-emptying proess reahes theleaf level, it may be neessary to rebalane the tree. We disuss rebalaningbelow.An Extrat operation traverses the whole subtree of T between the twopaths to the leftmost and rightmost leaves of T storing elements with key k,inluding these two paths. At every visited leaf, the elements with key k areextrated. At every visited internal node, the bu�er of the node is inspeted,and all elements with key k are extrated. Then the empty leaves and all theiranestors having only empty leaves as desendants are removed from T , and Tis rebalaned.The following two lemmas state the I/O-omplexities of Insert and Ex-trat operations if the I/Os spent on rebalaning T are ignored. We analyzethe ost of rebalaning below.Lemma 6.1. An Insert operation on a BRT that stores N elements takesO� 1B log2 NB � I/Os amortized, exluding the I/Os required for rebalaning.Proof. Sine the I/Os required for rebalaning are exluded from the analysis, itsuÆes to observe that the height of a BRT storing N elements is O(log2(N=B))and that emptying a bu�er of size X � B takes O(X=B) I/Os. Thus, the ost ofthe bu�er emptying operation an be harged to the X elements in the bu�er,harging every element for O(1=B) I/Os. Every inserted element is harged forO(1=B) I/Os per level, so that the I/O-bound follows. utLemma 6.2. An Extrat operation on a BRT that stores N elements takesO�log2 NB + KB � I/Os, exluding the I/Os required for rebalaning. K denotes thenumber of reported key-value pairs.Proof. An Extrat operation traverses O�log2 NB + KB � nodes in the BRT:O(log2(N=B)) nodes on the leftmost and rightmost paths bounding the range ofelements with key k, and O(K=B) nodes between those paths. It is easy to seethat visiting a single node osts O(1) I/Os, so that the I/O-bound follows. utIn order to �nish the analysis of the bu�ered repository tree, we have to ountthe I/Os spent on rebalaning T . The rebalaning after an Insert operation isdone in the same manner as on a bu�er tree [2℄ (see the hapter by Lars Arge).The rebalaning after an Extrat operation has to be done more arefullybeause it seems diÆult to rebalane T after the whole subtree of extratedelements has been removed. Therefore, instead of removing all leaves in thesubtree immediately, the leaves that beome empty after an Extrat operationare marked for deletion. Then the marked leaves are deleted one by one, and the



tree is rebalaned after every deletion. Sine the reation or deletion of a leaf istriggered by the insertion or deletion of 
(B) elements, the total number of leafreations and deletions is O(N=B). As shown in [20℄, this implies that the totalnumber of node splits, merges and fusions is bounded by O(N=B). Sine eahsuh operation an be performed in O(1) I/Os, the total number of I/Os spenton rebalaning T is O(N=B), and we obtain the following lemma.Lemma 6.3. The number of I/Os spent on rebalaning an initially empty BRTduring a sequene of N Insert and Extrat operations is O(N=B).Now the following theorem is an immediate onsequene of Lemmas 6.1, 6.2,and 6.3, after observing that the O(K=B) I/Os spent by an Extrat operationon reporting K key-value pairs an be harged to the K Insert operations thatinserted the reported key-value pairs into T . This does not inreate the amortizedI/O-omplexity of Insert operations by more than a onstant fator.Theorem 6.4. An initially empty BRT supports Insert and Extrat opera-tions in O � 1B log2 NB � and O(log2(N=B)) I/Os amortized, where N is the totalnumber of Insert operations performed on T .Direted DFS. Having the BRT at our disposal, we an now proeed to thedisussion of an I/O-eÆient DFS-algorithm for direted graphs by Buhsbaumet al. [11℄. The algorithm proeeds in the same manner as the internal memoryalgorithm: It maintains a stak storing the verties on the path from the soure sof the searh to the urrent vertex v in the onstruted DFS-tree. When visit-ing v, it explores the previously unexplored out-edges of v and tests whetherthe other endpoint w of suh an edge (v; w) has been visited before. If not, v isdelared to be w's parent in the onstruted DFS-tree, w is pushed on the stak,and the same proedure is applied to w. If w has been visited before, the nextout-edge of v is explored. If no unexplored out-edges remain, vertex v is removedfrom the stak, and the proedure baktraks to v's parent.As pointed out earlier, this algorithm spends one I/O per vertex and oneI/O per edge. In general, it is not known how to amend the former; but thefollowing solution redues the amortized ost per edge to O � 1B log2 jV j� I/Os,at the expense of paying O(log2 jV j) I/Os per vertex, whih results in a DFS-algorithm that takes O((jV j+ jEj=B) log2 jV j) I/Os.The algorithm makes use of the following data strutures:{ A BRT T storing edges of G. Eah edge has its soure vertex as its key.Tree T is initially empty.{ A priority queue P (v) per vertex v 2 G, whih stores the out-edges of v thathave not been explored yet and whose other endpoints have not been visitedbefore the last visit to v.An important invariant maintained by the algorithm is that at any time, for anyvertex v, the edges that are stored in P (v) and are not stored in T are the edgesfrom v to unvisited verties. When vertex v is visited either for the �rst time



or by baktraking from a desendant of v, an Extrat operation is performedon T to extrat all edges with key v. These edges are deleted from P (v) usingDelete operations. After that, priority queue P (v) stores only edges from v tounvisited out-neighbors. If P (v) is empty, v has no unvisited out-neighbors left,and the searh baktraks. Otherwise the next edge to be explored is extratedusing a DeleteMin operation. Let this edge be (v; w). Then vertex w is pushedon the stak, the set of in-edges of w are retrieved, and every edge (x;w) inthis set is inserted into T with key x. This maintains the invariant for everyin-neighbor x of w and prevents the algorithm from exploring edge (x;w) whenvertex x is visited.The orretness of the algorithm is obvious, as it explores an edge if andonly if the other endpoint of the edge has not been visited before. We split theanalysis of the I/O-omplexity of the algorithm into I/Os spent on updates ofthe BRT, priority queue operations and aessing adjaeny lists.Aessing the adjaeny lists of all verties of G takes O(jV j+ jEj=B) I/Osbeause the adjaeny list of every vertex is aessed exatly one. The number ofpriority queue operations performed by the algorithm is O(jEj): Initially, everyedge (v; w) of G is inserted into exatly one priority queue, namely P (v). Afterthis initialization, only DeleteMin and Delete operations are performed onany priority queue, so that only jEj of these operations an be performed beforeall priority queues are empty. Hene, using bu�er trees [2℄ to implement thepriority queues, the algorithm would spend O(sort(jEj)) I/Os on all priorityqueue operations it performs, if there were room to keep a bu�er of size B perpriority queue in main memory. However, there are jV j di�erent priority queues,and in general we have to assume that jV jB > M . Therefore, the algorithmreates a bu�er of size B only for the priority queue P (v) of the urrent vertex v.Before making another vertex the ative vertex, the bu�er of priority queue P (v)is emptied, even if it ontains only few elements. This osts O(1) I/Os pervisit to vertex v. Fortunately the DFS-algorithm performs an inorder traversalof the onstruted DFS-tree, so that the number of visits to di�erent vertiesis O(jV j). Hene, the total number of I/Os spent on priority queue operationsis O(jV j+ sort(jEj)).Finally, the algorithm performs O(jEj) Insert operations and O(jV j) Ex-trat operations on the BRT. Eah Insert operation takes O� 1B log2 jEjB � =O� 1B log2 jV j� I/Os amortized. Eah Extrat operation takes O(log2 jV j) I/Osamortized. Hene, the total number of I/Os spent on updating the BRT isO((jV j+ jEj=B) log2 jV j). We obtain the following result.Theorem 6.5. A DFS-tree of a direted graph G = (V;E) an be omputed inO((jV j+ jEj=B) log2 jV j) I/Os.Direted BFS. In order to obtain an I/O-eÆient BFS-algorithm for diretedgraphs, it suÆes to modify the above algorithm so that it uses a queue insteadof a stak to determine the order in whih the verties of G are visited. That is,when visiting a vertex v, the out-edges of v leading to visited neighbors of v are



extrated from T and deleted from P (v). The remaining edges in P (v) are re-trieved using a series of DeleteMin operations. For every retrieved edge (v; w),vertex v is delared to be the parent of w, vertex w is appended to the end of thequeue, and all in-edges of w are inserted into the BRT. One priority queue P (v)has been emptied in this manner, the next vertex to be visited is retrieved fromthe head of the queue.The analysis of the algorithm is the same as for DFS after observing that thenumber of visits to di�erent verties is again O(N) beause now every vertex isvisited exatly one. (The algorithm does not baktrak.) Hene, we obtain thefollowing result.Theorem 6.6. A BFS-tree of a direted graph G = (V;E) an be omputed inO((jV j+ jEj=B) log2 jV j) I/Os.Remark. We leave it as an exerise to verify that for BFS, the use of priorityqueues P (v), v 2 V , an be avoided altogether beause every vertex is visitedexatly one.6.2 Undireted BFSThe algorithms for BFS and DFS in direted graphs follow the framework ofthe internal memory algorithms for these problems, but spend a lot of e�ort oneÆiently maintaining the set of verties they have visited so far. For BFS inundireted graphs, Munagala and Ranade [28℄ exploit the partiularly simplestruture of BFS-trees of these graphs in order to design a BFS-algorithm thattakes O(jV j+ sort(jEj)) I/Os.This \partiularly simple struture" of BFS-trees of undireted graphs isharaterized as follows: Let v be a vertex at distane d from the root of a BFS-tree of the graph. Then all neighbors of v are at distane d�1, d, or d+1 from theroot. Hene, when the algorithm visits vertex v, only the nodes at distanes d�1and d have to be inspeted to �nd out whih neighbors of v have been visitedbefore. All other nodes are either hildren of v or of another node at level d inthe BFS-tree. This eliminates the need for a ompliated data struture to keeptrak of the verties the algorithm has already visited.Given the root r of the BFS-tree T to be omputed, the algorithm omputes apartition of the verties of G into disjoint sets L(0); L(1); : : : so that the vertiesin set L(i) are at distane i from r. That is, set L(0) ontains only the root r of T ,set L(1) ontains all neighbors of r, and so on. We all sets L(0); L(1); : : : thelevels of tree T . The algorithm omputes these levels iteratively, starting withL(0) = frg. Given levels L(0); : : : ; L(i), the next level L(i+ 1) is omputed asthe di�erene between the set of neighbors of all verties in L(i) and the union ofsets L(i�1) and L(i). This proess is repeated until the most reently omputedlevel L(i) is empty. The pseudo-ode of the algorithm is shown in Algorithm 6.1.The orretness of this proedure follows from the above observation. Toanalyze the I/O-omplexity of the algorithm, we bound the number of I/Osspent on aessing the adjaeny lists of the verties in G and the number of



Proedure UndiretedBFS1: L(�1) ;2: L(0) frg3: i 04: while L(i) 6= ; do5: Let X(i) be the union of the adjaeny lists of all verties in L(i).6: Remove dupliates from X(i).7: Remove all verties in L(i� 1) [ L(i) from X(i).8: L(i+ 1) X(i)9: i i+ 110: end whileAlgorithm 6.1An I/O-eÆient BFS-algorithm for undireted graphs.I/Os spent on omputing L(i+1) from sets L(i�1), L(i) and X(i). The numberof I/Os spent on aessing adjaeny lists is easily bounded byO(jV j+san(jEj)).The omputation of set L(i + 1) from sets L(i� 1), L(i) and X(i) requiressorting L(i�1), L(i) and X(i). One these lists are sorted, a single san of theselists is suÆient to remove dupliates as well as all elements in L(i� 1) [ L(i)from X(i). Sine sets L(0); L(1); : : : form a partition of the vertex set of G intodisjoint sets, the total size of sets L(0); L(1); : : : is jV j. Eah set L(i) is involvedin the omputation of sets L(i + 1) and L(i + 2), so that the total numberof I/Os spent on sorting and sanning sets L(0); L(1); : : : is O(sort(jV j)) =O(sort(jEj)). The total size of all sets X(0); X(1); : : : is O(jEj). To see this,observe that a vertex v is added to a set X(i) beause of an edge fu; vg inidentto v and so that u 2 L(i). Every edge auses eah of its endpoints to be insertedinto exatly one set X(i), so that the total size of sets X(0); X(1); : : : is 2jEj.Therefore the number of I/Os spent on sorting and sanning sets X(0); X(1); : : :is O(sort(jEj)). This proves the following result.Theorem 6.7. A BFS-tree of an undireted graph G = (V;E) an be omputedin O(jV j+ sort(jEj)) I/Os.Remark. The BFS-algorithm as desribed in Algorithm 6.1 only omputes thedistane of every vertex from the root r of the BFS-tree. In order to make thealgorithm ompute the parent of eah vertex in the BFS-tree, observe that avertex ends up in L(i + 1) beause it is in X(i), but not in L(i � 1) or L(i).A vertex v is inX(i) beause there is a vertex in L(i) that is adjaent to v. Hene,instead of adding only vertex v to X(i), a pair (v; u) an be added to X(i), whereu is the vertex in L(i) that aused this opy of v to be inserted into X(i). Forevery pair (v; u) that remains in L(i+1) after removing dupliate pairs with thesame �rst omponent, vertex u is a vertex in L(i) adjaent to v, so that it anbe made the parent of v in T .



6.3 A Faster Undireted BFS-AlgorithmWhile proedure UndiretedBFS is eÆient for dense graphs, i.e., for graphwith jEj = 
(BjV j), it is no more eÆient than the internal memory algorithmfor graphs with jEj = O(jV j). In partiular, the algorithm spends O(jV j) I/Osin this ase, while the lower bound for BFS is only 
(perm(jV j)). In the lastfew years, one of the main hallenges has been to develop BFS-algorithms thatperform well on sparse graphs. A number of I/O-optimal algorithms for spe-ial lasses of sparse graphs have been developed [4, 6, 24, 25℄; but 
(jV j) I/Osseemed to be a lower bound for BFS if no additional strutural informationabout the graph is available.Mehlhorn and Meyer [27℄ disproved this onjeture and made a major step to-wards losing the gap between the lower and upper bounds for BFS by developinga BFS-algorithm that takes O�pjV jjEj=B+sort(jEj)� I/Os. For sparse graphs,for example, the algorithm takes O�jV j=pB� I/Os as opposed to O(jV j) I/Osspent by proedure UndiretedBFS.We �rst disuss a randomized version of the algorithm beause it provides theright intuition. Given the randomized algorithm, a simple observation suÆes tomake the algorithm deterministi.The idea of the algorithm is to group the verties of G into disjoint lustersof small diameter and then run proedure UndiretedBFS with a few modi-�ations. First the algorithm makes sure that the adjaeny lists of all vertiesin the same luster are stored onseutively. We refer to suh a onatenationof adjaeny lists as the �le of the respetive luster. Whenever a vertex is �rstdisovered, the algorithm does not only retrieve the adjaeny list of the dis-overed vertex, but the whole �le of the luster ontaining that vertex. Thus, ifthe number of lusters is muh smaller than the number of verties, the numberof random aesses spent on loading adjaeny lists is muh smaller than jV j.On the other hand, by inorporating all edges in a �le into the omputationalready when the �rst vertex in the luster is disovered, many edges may beinvolved in the omputation of more than one level of the BFS-tree, whih in-reases the number of I/Os spent on omputing the levels from the retrieved�les. That is, the algorithm trades o� random aesses against spending moreI/Os to perform the atual omputation of the algorithm. As we will see, thetrade-o� balanes at the above I/O-omplexity. This trade-o� is also the reasonwhy it seems that this idea annot be pushed further to obtain a BFS-algorithmthat takes O(sort(jV j+ jEj)) I/Os.The algorithm proeeds in two stages. The �rst stage forms lusters of smalldiameter. The seond stage applies proedure UndiretedBFS after groupingthe adjaeny lists into �les.Forming lusters. First we desribe the randomized lustering algorithm, as itprovides some intuition about how the algorithm works and how a parameter �to be spei�ed later dereases the I/O-omplexity of one part of the algorithm,while inreasing the omplexity of the other part of the algorithm.



So let 0 < � < 1. Then the algorithm hooses a subset V 0 � V of verties byipping a oin for every vertex in V n frg, where r is the root of the BFS tree tobe omputed. The oin omes up head with probability �. Vertex v is inludedin set V 0 if its oin omes up head. Vertex r is always inluded in set V 0. Theverties in V 0 are alled masters, eah being the enter of a separate luster.That is, the number of lusters formed by the algorithm is jV 0j. Let the vertiesin V 0 be r = r1; : : : ; rq . Then vertex ri is the master of luster Ci.Observation 6.1. The expeted size of vertex set V 0 is E[jV 0j℄ � 1 + �jV j.The lusters are now formed by running proedure UndiretedBFS fromall masters simultaneously. That is, level L(0) ontains all masters. Then thealgorithm is run as before until all verties of G are disovered. Now observethat the algorithm assigns a parent to every vertex exept to those in level L(0).Hene, every vertex is a desendant of exatly one master in L(0). Cluster Cionsists of all verties having some vertex ri 2 V 0 as an anestor. The followinglemma is the key to the eÆieny of the algorithm.Lemma 6.8. The expeted diameter of any luster Ci is 2=�.Proof. Consider any path P = (r = xk ; xk�1; : : : ; x1; v) from r to a vertex v 2 Ci.Sine G is onneted, path P exists. This guarantees that every vertex will be\aptured" by some master. Hene, there is no vertex in G that is not ontainedin any luster. Now let 1 � j � k be the smallest index so that xj is a master.Sine every vertex is hosen to be a master with probability �, E[j℄ = 1=�.Hene, the expeted distane of vertex v from the master of luster Ci is atmost 1=�. Sine this is true for any vertex in Ci, the lemma follows. utWe onlude the disussion of this �rst part of the algorithm with the analysisof its I/O-omplexity.Lemma 6.9. A partition of the vertex set of a graph G = (V;E) into dis-joint lusters of expeted diameter 2=� an be obtained in expeted O(sort(jEj)+san(jEj)=�) I/Os. The expeted number of lusters is at most 1 + �jV j.Proof. Choosing the masters and onstruting set L(0) takes O(san(jV j)) =O(san(jEj)) I/Os. By the proof of Lemma 6.8, every remaining vertex is ex-peted to be \aptured" by some master after 1=� iterations. Hene, the expetednumber of iterations performed by the proedure UndiretedDFS is 1=�. Iter-ation i takes O(sort(jEij)+san(jEj)) I/Os, where Ei is the set of edges adjaentto the verties in L(i), if proedure UndiretedBFS is modi�ed as follows: In-stead of retrieving the adjaeny list of every vertex in L(i) using a random diskaess, san all adjaeny lists and retrieve the ontents of the adjaeny lists ofthe verties in L(i). Sine every edge of G appears in exatly two adjaeny lists,the I/O-bound follows. The bound on the number of lusters is an immediateonsequene of Observation 6.1. The bound on the expeted diameter of eahluster is shown in Lemma 6.8. ut



Breadth-�rst searh. To onstrut a BFS-tree of G rooted at vertex r, thealgorithm now applies proedure UndiretedBFS again. Before doing so, how-ever, the representation of graph G is modi�ed as follows: (1) The adjaeny listsof all verties in a luster Ci are onatenated to form �le Fi. In partiular, theedges in eah �le Fi are stored onseutively. (2) Every edge (v; w) 2 Fi is rep-resented as the triple (v; w; pj), where w 2 Cj and pj is the disk address of the�rst edge in Fj .In order to use this preproessed representation of G e�etively, proedureUndiretedBFS is modi�ed as follows: The algorithm maintains a pool H thatis guaranteed to ontain all edges onneting verties in the urrent level L(i)with verties in the next level L(i+1) to be onstruted; but H may also ontainedges onneting verties at levels greater than i. The edges in H are sorted bytheir soure verties. Also, as we will see, every level is produed in sorted orderby the algorithm, so that in partiular the urrent level L(i) has been produedin sorted order by the previous iteration. The algorithm sans lists L(i) and Hto identify all verties in L(i) whose adjaeny lists are not ontained in H. Foreah suh vertex v, let Cj be the luster ontaining vertex v. Then the addressof �le Fj is appended to a list Q. One list Q has been produed, this list issorted and dupliates are removed in a single san. For every remaining entryin Q, the orresponding �le Fj is appended to a list H0. Then the edges in H0are sorted by their soure verties, and H and H0 are merged. This ensures thatpool H now ontains the adjaeny lists of all verties in L(i). Hene, a singlesan of lists L(i) and H suÆes to extrat these adjaeny lists from H andreate the list X(i) of verties adjaent to verties in L(i). Then list X(i) issorted and sanned to remove dupliates. Level L(i+1) is now onstruted fromlists L(i� 1), L(i) and X(i) as before.To analyze the I/O-omplexity of this modi�ed version of proedure Undi-retedBFS, we split the ost into three parts: (1) I/Os spent on retrieving andsorting all �les F1; : : : ;Fq . (2) I/Os spent on merging H and H0. (3) I/Os spenton onstruting list L(i+ 1) from lists L(i� 1), L(i) and H.The I/O-omplexity for retrieving and sorting all �les is O(jV 0j+ sort(jEj))beause there are jV 0j �les of total size 2jEj. Sine E[jV 0j℄ = �jV j, the expetedost of retrieving and sorting all �les is hene O(�jV j + sort(jEj)). The ost ofmergingH andH0 is O(san(jHj+jH0j)). Sine every edge is ontained inH0 onlyone, the edges in H0 ontribute O(san(jEj)) to the total ost of this operation,summed over all iterations. To bound the total ost ontributed by the edgesin H, we use Lemma 6.8. In partiular, sine the expeted diameter of a lusteris 2=�, we expet the algorithm to take at most 2=� iterations after disoveringthe �rst vertex in a luster before all verties in the luster are disovered. Hene,one the orresponding �le Fi has been inorporated into H, all edges in Fi areexpeted to be removed from H after at most 2=� iterations. That is, the totalsize of H, summed over all iterations, is expeted to be 4jEj=�, so that theexpeted ost of merging lists H and H0 for all iterations is O(san(jEj)=�).The ost of omputing list L(i + 1) from lists L(i � 1), L(i) and H isO(sort(jEij) + san(jL(i� 1)j+ jL(i)j+ jHj)), where Ei is the set of edges ini-



dent to the verties in L(i). The total size of sets E0; E1; : : : is 2jEj; the totalsize of sets L(0); L(1); : : : is jV j; and as argued above, the total size of list H,summed over all iterations, is O(jEj=�). Hene, the ost for omputing all levelsis O(sort(jEj) + san(jEj)=�), and we obtain the following lemma.Lemma 6.10. Given the preproessing performed by the �rst phase of the al-gorithm, a BFS-tree of G an be omputed in expeted O(�jV j + sort(jEj) +san(jEj)=�) I/Os.By Lemmas 6.9 and 6.10, the I/O-omplexity of the improved BFS-algorithmis O(�jV j + sort(jEj) + san(jEj)=�). By hoosing � = min�1;pjV jB=jEj�, weobtain the desired result.Theorem 6.11. A BFS-tree of an undireted graph G = (V;E) an be omputedin expeted O�pjV jjEj=B + sort(jEj)� I/Os.A deterministi lustering algorithm. It is not lear how to make therandomized lustering algorithm of Setion 6.3 ahieve its I/O-omplexity withhigh probability. Instead, the algorithm an be made deterministi rather easily.All that is required is a deterministi method for partitioning G into O(�jV j)disjoint lusters of diameter O(1=�). Suh a partition an be obtained usingan Euler tour of an arbitrary spanning tree T of G. More preisely, observethat an Euler tour of T has length 2jV j � 2 and an hene be partitioned into2�(jV j�1) = O(�jV j) segments of length 1=�. Eah segment de�nes a luster Ci.A vertex v of G may be in more than one segment. Then w.l.o.g. v is hosen to bein the luster Ci with smallest index that orresponds to a segment ontaining v.The ruial observation is that the BFS-phase of the randomized algorithmdoes not require the lusters to be onneted. The only property that is used isthat the expeted distane in G between any two verties in the same lusteris O(1=�). Sine two verties in the same luster formed by the above determin-isti proedure have distane at most 1=� from eah other, it is now guaranteedthat one a vertex in a luster is disovered, all verties in the luster are dis-overed within the next 1=� iterations.By Lemma 5.7 and the remark on Page 19, a spanning tree of G an beomputed in O(sort(jEj) log2 log2(jV jB=jEj)) I/Os. Given a spanning tree of G,the Euler tour an be omputed in O(sort(jV j)) = O(sort(jEj)) I/Os. The om-putation of lusters from the Euler tour requires a onstant number of sortsand sans. Hene, the lustering phase of the algorithm takes O�pjV jjEj=B +sort(jEj) log2 log2(jV jB=jEj)� I/Os, as does the BFS-phase.Theorem 6.12. A BFS-tree of an undireted graph G = (V;E) an be omputedin O�pjV jjEj=B + sort(jEj) log2 log2(jV jB=jEj)� I/Os.7 Single Soure Shortest PathsIn this setion we disuss an algorithm for the single soure shortest path problemon undireted graphs due to Kumar and Shwabe [22℄. The algorithm is an



I/O-eÆient version of Dijkstra's algorithm. In order for Dijkstra's algorithmto be I/O-eÆient, an I/O-eÆient priority queue and an I/O-eÆient methodfor testing for previously visited verties are needed. Ideally it would also bedesirable to have an I/O-eÆient data struture for retrieving the adjaeny listsof the verties in the graph. For BFS we have seen in the previous setion thata lustering approah an be applied to at least redue the number of randomaesses performed while retrieving adjaeny lists. For the single soure shortestpath problem this approah does not seem to work beause there is no guaranteeany more how long an adjaeny list would remain in the pool H before it isremoved. More importantly, a shortest path tree annot easily be built level bylevel, as algorithm UndiretedBFS does for a BFS-tree. Hene, we shall beontent with spending one I/O per vertex, as long as the number of I/Os spentper edge an be kept small.In Setion 7.1 we disuss the I/O-eÆient priority queue used in the algo-rithm. In Setion 7.2 we disuss the shortest path algorithm and show how itmakes use of a seond priority queue to avoid having to hek for visited verties.7.1 The Tournament TreeAs disussed in the hapter by Lars Arge, the bu�er tree [2℄ an be used as a pri-ority queue that an proess a sequene of N Insert, Delete, and DeleteMinoperations in O(sort(N)) I/Os. Unfortunately this priority queue does not sup-port a DereaseKey operation, whih is required by Dijkstra's algorithm, un-less this operation an be simulated by a Delete operation followed by aninsertion. The latter is possible only if the previous priority of the element isknown, whih in general is hard to ahieve in Dijkstra's algorithm.In this setion we disuss the external tournament tree proposed by Ku-mar and Shwabe [22℄, whih supports Insert, Delete, DeleteMin and De-reaseKey operations at an amortized ost of O� 1B log2 NB � I/Os per operationand uses O(N=B) bloks of external memory. In these bounds N denotes thetotal number of elements that may potentially be stored in the priority queue.In partiular, N may be muh larger than the atual number of elements storedin the priority queue, whih ould a�et the eÆieny of the data struture.However, in most graph algorithms, N = O(jV j) or N = O(jEj), so that thetournament tree pays only a log2(M=B) fator in performane ompared to thebu�er tree, for the added bene�t of supporting the DereaseKey operation.The data struture. So let X be the set of elements potentially stored inthe priority queue, and assume that the elements in X are numbered 1 throughN = jX j. The numbering is required to establish a total order on the elementsof X and to ompare two elements quikly w.r.t. this total order. For the sakeof simplifying the desription of the data struture, we also assume that N is amultiple of M .The tournament tree is a stati binary tree T with the following properties:(i) Tree T has N=M leaves.



(ii) All leaves of T are at level d = blog2(N=M) or d� 1.(iii) Let the leaves of T be numbered from left to right. Then the elements of Xnumbered (i�1)M+1 through iM map to the i-th leaf of T . An element xof X is stored either at the leaf l(x) it maps to or at an anestor thereof.(iv) A node stores betweenM=2 andM elements. The priorities of the elementsstored at any node are smaller than the priorities of the elements stored atits desendants.(v) Eah internal node has an assoiated signal bu�er of size M . This bu�erstores update signals that are used to propagate updates of T down thetree towards the leaves.(vi) The root of T is held in main memory.Sine T stores all elements of X at all times, we need a riterion to deidewhen an element stored in T is not in the subset of X urrently representedby T . The adopted onvention is that an element is in this subset if and onlyif its priority is �nite. Hene, by initializing all elements in T to have in�nitepriority, tree T initially represents the empty set.Priority queue operations. Given a tournament tree T , the only operationthat requires immediate proessing is the DeleteMin operation. By Prop-erty (iv), the element with minimum priority in T is stored at the root. ByProperty (vi), the root of T is held in main memory. Hene, a DeleteMin op-eration an be performed without inurring any I/Os by extrating the elementwith minimum priority stored at the root of T . To maintain the invariant thatan element that is \not stored" in T is stored in T with in�nite priority, theretrieved element has to be inserted into T with priority 1. This is ahievedby sending signal Update(x;1) to the root of T (see the disussion on signalsbelow).Operations Insert, Delete, and DereaseKey are realized using signalsthat are sent to the root and then propagate down the tree towards the leaves.When a signal reahes a node v 2 T , it is �rst applied to v | that is, it e�etsertain hanges to the set of elements stored at v | and then the signal itselfor another, newly generated, signal is sent to one or both of the hildren of v.To perform a Delete operation, a Delete signal is sent to the root of T .Operations Insert and DereaseKey are both realized using an Update sig-nal. Next we desribe the e�ets of sending these signals to a node v 2 T .Delete(x): If element x is stored at node v, it is deleted, and signal Up-date(x;1) is sent to the next node w on the path to leaf l(x). If x isnot stored at v, signal Delete(x) is sent to w.Update(x; p): If element x is stored at v, its priority is updated to min(p; p0),where p0 is its urrent priority. If x is not stored at v, and all elements storedat v have priority less than p, signal Update(x; p) is propagated to the nextnode w on the path to leaf l(x). Finally, if there is an element with priorityp0 � p stored at v, element x is added to the set of elements stored at v.After this update, any other opy of x with �nite priority p00 � p possibly



stored at a desendant of v has to be removed from T . This is ahieved bysending signal Delete(x) to w.The insertion of element x into the set of elements stored at node v mayause this set to overow beause it already ontains M elements. If thishappens, the element z with maximal priority pz in this set is moved to thehild of v on the path to leaf l(z) by sending signal Push(z; pz) to this hild.Finally, a signal Update(x;1) is handled in a speial way when it reahesleaf l(x). When this happens, the signal makes sure that element x is storedwith priority 1 at this leaf by inserting element x if neessary.Push(x; p): This signal inserts element x into the set of elements stored atnode v. If this set already ontains M elements, the element z with maxi-mum priority pz in this set is moved to the hild of v on the path to leaf l(z)by sending signal Push(z; pz) to this hild.We leave it as an exerise to verify that the implementation of all priorityqueue operations using the above signals updates the set of elements stored in Tand their priorities orretly. Moreover, Properties (i)-(vi) are maintained, exeptfor the possible underow of a node after applying a DeleteMin or Deleteoperation to it. We show how to deal with these underows below.Lazy signal propagation. So far we have assumed that all signals are sent allthe way down to the leaves when generated by an update operation. However,this is not neessary, as long as the root of T always stores the elements withsmallest priority in the set tree T is supposed to represent. Hene, after applyingan update signal to the root, the sending of signals to its hildren an be delayeduntil either enough of them have been olleted to guarantee that they anbe applied I/O-eÆiently to the hildren of the root or an underow of theroot requires to move elements from the hildren of the root to the root. Whenapplying signals to any node v 2 T , the same strategy an be applied to delay thesending of signals to its hildren. Intuitively, whenever a subtree of T is a�etedby an update, it suÆes to update its root and delay updates of its desendantsuntil the updates of the root annot be performed without fething data fromits hildren.This delayed propagation of signals down the tree is realized using the signalbu�ers of the nodes in T . After a signal has been applied to a node v 2 T , thesignals to be sent to v's hildren of v are appended to v's signal bu�er instead ofsending them to v's hildren immediately. As soon as v's signal bu�er ontainsat least M elements, it is emptied. This operation is performed as follows: Santhe set S of signals in the bu�er and partition them into two sets Su and Sw forthe two hildren, u and w, of v. Load the set of elements stored at node u intomain memory, san set Su, and apply the signals in Su to this set of elements.Append the signals generated during this update of node u to u's signal bu�er.Now repeat the whole proedure to apply the signals in Sw to w. As a result ofthese updates, the signal bu�ers of nodes u and w may overow. If this happens,these bu�ers are emptied reursively.



Exluding the reursive emptying of the signal bu�ers of v's hildren, emp-tying the bu�er of node v takes O(san(jSj+M)) = O(san(jSj)) I/Os beausenodes u and w store O(M) elements and jSj �M . Hene, every signal involvedin a bu�er-emptying proess osts O(1=B) I/Os amortized. Sine every signalis involved in at most O(log2(N=B)) bu�er-emptying proesses, one per level,the amortized ost per signal is O� 1B log2 NB �. Next we argue that every priorityqueue operation generates O(1) signals, so that the ost for propagating signalsdown the tree is O� 1B log2 NB � amortized per priority queue operation.Every priority queue operation sends one signal to the root of T . A Deletesignal propagates down the tree until it �nds the element to be deleted, at whihpoint it is replaed by an Update signal. An Update signal travels down thetree until it either terminates following the update of the priority of the targetedelement, or it is replaed by a Delete and possibly a Push signal when itauses the insertion of the targeted element into the set stored at some nodeof T . A Push signal propagates down the tree, possibly hanging the element it\arries", until it �nds a node where there is room to insert the urrent element.Hene, the only signal that an possibly split into two signals on its way downthe tree is an Update signal. The generated Push signal does not multiply. Wehave to argue that the generated Delete signal does not multiply either. To dothis, we show that the Update signal generated by a Delete stays an Updatesignal, i.e., does not split. To see that this is true, observe that an Update signalis replaed by a Delete and a Push signal only if it enounters a node thatstores an element with higher priority than its own; but this is impossible for anUpdate signal generated by a Delete signal beause its priority is 1. Hene,every priority queue operation sends at most two signals down the tree.Filling underfull nodes. So far we have onveniently ignored what happenswhen a node v stores less than M=2 elements as the result of a DeleteMin orDelete operation. When this happens, elements stored at v's hildren have tobe moved to v. This in turn may ause v's hildren to underow, so that theyhave to be �lled with elements from their hildren, and so on. Hene, even aDeleteMin operation, whih otherwise does not inur any I/Os, may ause aonsiderable number of I/Os to be performed. However, we show next that theamortized ost for �lling underfull nodes in this manner is only O� 1B log2 NB � peroperation.What preisely happens when a node v underows is that the M=2 elementswith smallest priority stored at v's hildren are moved to v. To guarantee thatthe sets of elements stored at v's hildren are up-to-date, v's signal bu�er hasto be emptied before moving elements from v's hildren to v. The emptying ofv's signal bu�er osts O(san(M)) I/Os, whih follows from the disussion ofthe bu�er-emptying proess above and the fat that v's signal bu�er ontainsat most M elements beause otherwise it would have been emptied already. Tomove the M=2 elements with smallest priority from v's hildren to v, it suÆesto san the two sets stored at v's hildren, whih takes O(san(M)) I/Os. Hene,the total ost of �lling v's signal bu�er with M=2 elements from its hildren is



O(san(M)), O(1=B) I/Os amortized per element. The moving of elements fromv's hildren to v may leave v's hildren underfull, so that they have to be �lledreursively. However, the I/Os required to do this an be harged to the elementsthat are moved to v's hildren. We observe that every level an element travelsup the tree osts O(1=B) I/Os amortized.Sine the tournament tree is initially empty, elements that move up the tree�rst have to be moved down the tree by means of signals. For every level anelement travels up the tree, we an hene harge the signal that moved theelement in the opposite diretion. This inreases the amortized ost per signalby only a onstant fator and hene hanges the amortized ost per priority queueoperation by only a onstant fator. Thus, we obtain the following theorem.Theorem 7.1. Using an I/O-eÆient tournament tree, a sequene of K In-sert, Delete, DeleteMin, and DereaseKey operations an be proessedin O�KB log2 NB � I/Os.7.2 An I/O-EÆient Version of Dijkstra's AlgorithmDijkstra's algorithm [14℄ an be made I/O-eÆient using the tournament tree asthe priority queue that stores the verties of graph G = (V;E) sorted aordingto their tentative distanes from the soure s. However, replaing the internalmemory priority queue of hoie with the tournament tree is not suÆient toimmediately obtain an I/O-eÆient shortest path algorithm. The problem is thatDijkstra's algorithm tests every neighbor w of the urrent vertex v whether ithas already been �nished5 before trying to update its tentative distane using aDereaseKey operation. If there is no way to avoid these tests, the algorithmspends one I/O per edge of G, O(jEj) I/Os in total.To avoid performing these tests, the shortest path algorithm of [22℄ performsan Update operation for all neighbors of v, exluding its parent in the shortestpath tree, irrespetive of whether or not they are �nished. While this avoidsthe expensive test for �nished verties, it reates the following problem: Let ube a neighbor of v that has already been �nished, and let fu; vg be the edgeonneting u and v in G. Then the algorithm re-inserts u into priority queue Qwith priority dist(s; v)+!(fu; vg), where !(e) denotes the weight of edge e. Thiswill ultimately ause u to be visited for a seond time, whih is inorret. Weall suh a re-insertion of u a spurious update. Next we disuss a method thatguarantees that the opy of u inserted by a spurious update is deleted from Qusing a Delete operation before it an ause a seond visit to vertex u.The method to ahieve this is based on the observation that a neighbor uof v that is �nished before v performs an update of v before v is �nished. Byreording this update attempt of u on v in a seond priority queue Q0, thisinformation an later be used to prevent the spurious update of v on u fromdoing any harm. In partiular, when vertex u attempts to update v's tentative5 A vertex v is �nished when the algorithm has determined the �nal distane of vfrom s and has inserted v's neighbors into the priority queue.



distane, vertex u is inserted into Q0 with priority dist(s; u) + !(fu; vg). Thenext vertex to be visited by the algorithm is now determined from the outomeof two DeleteMin operations, one on Q and one on Q0.Let (v; pv) be the entry retrieved from Q, and let (w; pw) be the entry re-trieved from Q0. If pw < pv, entry (v; pv) is re-inserted into Q, vertex w is deletedfrom Q by applying a Delete(w) operation to Q, and then the whole proedureis iterated. If pv � pw, entry (w; pw) is re-inserted into Q0, and vertex v is visitedas normal. Let us show that this method ahieves the desired goal.Lemma 7.2. A spurious update is deleted before the targeted entry an be re-trieved using a DeleteMin operation.Proof. Consider a vertex v and a neighbor u of v that is �nished before v, sothat v performs a spurious update on u. Denote the spurious update as event A,the deletion of the re-inserted opy of u as event B, and the extration of there-inserted opy of u using a DeleteMin operation as event C. We have to showthat event B happens after event A, but before event C an our.Assume that all verties have di�erent distanes from s.6 Under this assump-tion dist(s; u) < dist(s; v) beause u is �nished before v. Moreover, dist(s; v) �dist(s; u) +!(fu; vg). The latter implies that event B happens after event A be-ause event A happens when vertex v is retrieved from Q with priority dist(s; v),and event B happens when the opy of u inserted into Q0 with priority dist(s; u)+!(fu; vg) is retrieved from Q0. The former implies that dist(s; u) + !(fu; vg) <dist(s; v) + !(fu; vg), so that event B happens before event C. This proves thelemma. utLemma 7.2 shows that the modi�ed version of Dijkstra's algorithm desribedabove is orret. It remains to analyze its I/O-omplexity. The algorithm spendsO(jV j+san(jEj)) I/Os to aess all adjaeny lists beause every adjaeny listis touhed one, namely when the orresponding vertex is �nished. The numberof priority queue operations performed by the algorithm is O(jEj): Every edgeof G auses two insertions into priority queue Q0 and two updates of priorityqueue Q, one eah per endpoint. All other priority queue operations an bepartitioned into sequenes of onstant length so that eah sequene dereases thetotal number of elements stored in Q and Q0 by at least one. Hene, only O(jEj)suh sequenes are exeuted. Using a tournament tree as priority queue Q and abu�er tree [2℄ as priority queue Q0, the total ost of all priority queue operationsis hene O � jEjB log2 jEjB �, and we obtain the following result.Theorem 7.3. The single soure shortest path problem on an undireted graphG = (V;E) an be solved in O �jV j+ jEjB log2 jEjB � I/Os.Remark. In the proof of Lemma 7.2 we assume that no two verties have thesame distane from s. It is not hard to see that the proof remains orret if no6 If this is not the ase, the algorithm needs to be modi�ed. See the remark at the endof this setion.



two verties with the same distane are adjaent. In order to handle adjaentverties with the same distane, the algorithm has to be modi�ed. In partiular,all verties with the same distane have to be proessed simultaneously, similarto the simultaneous onstrution of levels in the BFS-algorithm from Setion 6.2.The reason for this is that there seems to be no way to guarantee that for twoadjaent verties v and w at the same distane from s, non-spurious updates anddeletions of spurious updates are proessed in the orret order. By proessingall verties at the same distane from s at the same time, it an be guaranteedthat these verties do not update eah other's distanes at all. The problem withadjaent verties that have the same distane from s has been notied in [22℄;but the proposed solution is inorret.8 Shortest Paths in Planar GraphsGiven that all algorithms for graph searhing problems suh as BFS, DFS andSSSP spend onsiderably more I/Os than the lower bound if the graph is sparse,a number of researhers [4, 5, 21, 24{26, 32℄ have tried to exploit the struture ofspeial lasses of sparse graphs in order to solve these problems I/O-eÆientlyon graphs in these lasses. In the remainder of this ourse we fous on planargraphs and disuss how to solve the above three problems in O(sort(N)) I/Os.(From now on we use N to denote the size of the vertex set of the given graphG.)For the sake of simpliity we assume that an embedding of the graph is providedas part of the input. This is not a serious restrition beause suh an embeddingan be obtained in O(sort(N)) I/Os [26, 32℄.First we fous on shortest paths and BFS. More preisely, we disuss a short-est path algorithm by Arge et al. [4℄, whih of ourse an also be used to omputea BFS-tree of a planar graph. We assume that the given graph G has degreethree7 and that a regular B2-partition of G is given. Suh a partition is de�nedas follows: Given a planar graph G = (V;E), a regular h-partition of G is apair P = (S; fG1; : : : ; Gkg), where S is a subset of the verties of G and graphsG1; : : : ; Gk are disjoint subgraphs of G� S with the following properties:(i) G1 [ � � � [Gk = G� S.(ii) For every edge in G � S, the two endpoints are in the same graph Gi.(That is, eah graph Gi is the union of a number of onneted omponentsof G� S.)(iii) jSj = O�N=ph�.(iv) k = O(N=h).(v) Every graph Gi has at most h verties.(vi) Every graph Gi is adjaent to at most ph verties in S. This subset of Sis alled the boundary �Gi of Gi.(vii) Let S1; : : : ; St be a partition of S into subsets so that the verties in eahsubset are adjaent to the same set of subgraphs Gi. Then t = O(N=h).Sets S1; : : : ; St are alled the boundary sets of partition P . (See Figure 8.1.)7 The degree of a graph is the maximum degree of its verties.



(a) (b)Figure 8.1(a) A partition of a planar graph into the shaded subgraphs using the blak separatorverties. (b) The boundary sets of this partition.The vertex set S is also referred to as the separator that indues partition P . Wedisuss in Setion 9 how to obtain a partition satisfying Properties (i), (ii), (iii)and (v). The other properties an be ensured using fairly simple modi�ationsof the algorithm disussed in Setion 9. For details the reader may refer to [32℄.One additional assumption we make is that the amount of available mainmemory is large enough to hold a planar graph with B2 +B + 1 verties.Outline. The algorithm of [4℄ solves the SSSP problem in three steps (seeAlgorithm 8.1). The �rst step replaes eah subgraph ~Gi of G indued by theverties in V (Gi) [ �Gi with a omplete graph G0i over the verties in �Gi (seeFigure 8.2). Graph G0i has the property that for any two verties v; w 2 �Gi,their distanes from eah other in ~Gi and G0i are the same. As we show below,this implies the property stated as a omment of Step 2 of the algorithm, namelythat the distanes from s to all separator verties are preserved in the resultinggraph GR.8 Hene, their distanes from s in G an be omputed by solving thesingle soure shortest path problem on GR, as done in the seond step of thealgorithm. Finally, in the third step, the algorithm exploits the fat that for anyvertex v in Gi, the shortest path from s to v in G onsists of a shortest pathfrom s to a vertex x in �Gi followed by a shortest path from x to v in ~Gi.Corretness. The following two lemmas formally prove the two strutural prop-erties used by the algorithm and establish its orretness.Lemma 8.1. For any vertex v 2 S, distG(s; v) = distGR(s; v).8 For this to be true, s has to be in GR, whih is true only if s 2 S. The latter aneasily be enfored.



Proedure PlanarSSSP1: Construt a ompressed graph GR that aptures the distane between separatorverties:GR  (S; ;)for every graph Gi in partition P doLet ~Gi be the subgraph of G indued by all verties in V (Gi) [ �Gi.Compute the distane in ~Gi from every vertex in �Gi to every other vertexin �Gi.Add an edge fv; wg to GR for every pair v; w of verties in �Gi. The weightof edge fv; wg is the distane from v to w in ~Gi.end for2: Compute the distanes from s to all separator verties in GR.fEvery separator vertex v has the same distane from s in G and GR.g3: Compute the distanes from s to all verties in G:for every graph Gi in partition P doLet ~Gi be the subgraph of G indued by all verties in V (Gi) [ �Gi.Add vertex s to ~Gi and onnet s to every vertex in �Gi. The weight of edgefs; vg, v 2 �Gi, is the distane from s to v omputed in Step 2. Let theresulting graph be G00i .Compute the distane from s to all verties in G00i .end forAlgorithm 8.1A shortest path algorithm for planar graphs.Proof. Consider any path P = (s = x0; x1; : : : ; xk = v) from s to v in G, andlet 0 = i1 < i2 < � � � < iq = k be the indies so that verties xi1 ; : : : ; xiqare separator verties on this path. Then every subpath (xij ; : : : ; xij+1 ) staysompletely inside some graph ~Gi. Sine the weight of edge fxij ; xij+1g in GRequals the length of the shortest path from xij to xij+1 in ~Gi, replaing path(xij ; : : : ; xij+1 ) in P with edge fxij ; xij+1g results in a path P 0 whose length is atmost that of P . By doing this for all subpaths of P onneting two onseutiveseparator verties, we obtain a path PR in GR whose length is at most thatof P . Conversely, given a path PR from s to v in GR, every edge fv; wg in PRrepresents a path from v to w in G. Hene, replaing eah edge in PR by theorresponding path in G, we obtain a path P in G whose length is the same asthat of PR. utLemma 8.2. For any graph Gi, 1 � i � k, in partition P and any vertexv 2 Gi, distG(s; v) = distG0i(s; v).Proof. Consider any path P from s to some vertex v in Gi, and let x be the lastseparator vertex on this path. Assume that s 6= x. (If s = x, the proof beomessimpler.) Let P1 be the subpath of P from s to x, and let P2 be the subpath of Pfrom x to v. By Lemma 8.1, there exists a path from s to x in GR whose length isat most that of P1, so that edge fs; xg 2 G0i has length at most that of path P1.



(a) (b)Figure 8.2(a) The entral graph Gi in the partition of Figure 8.1a and its boundary verties.(b) The orresponding graph G0i.Path P2 exists also in G0i. Hene, by onatenating edge fs; xg with path P2, weobtain a path of length at most that of P from s to v in G0i. Conversely, given apath P 0 from s to v in G0i, the �rst edge fs; xg on the path an be replaed bya path of the same length in GR, whih in turn an be replaed by a path P1 ofthe same length in G, by Lemma 8.1. Hene, the onatenation of P1 with thesubpath P 02 of P 0 from x to v produes a path from s to v in G whose length isthe same as that of P 0. utComplexity. Given that the main memory is large enough to hold a planargraph with B2+B+1 verties, Steps 1 and 3 take O(sort(N)) I/Os beause therequired shortest path omputations an be arried out in main memory.To exeute Step 1 of the algorithm, the �rst thing that needs to be done isompute graphs ~G1; : : : ; ~Gk, i.e., store their vertex and edge sets onseutivelyon disk. The vertex set of graph ~Gi is the set of endpoints of all edges that haveat least one endpoint in Gi. The edge set of ~Gi ontains all those edges of G thathave both endpoints in V ( ~Gi). Assuming that partition P is represented by anappropriate labelling of the verties of G, it suÆes to sort and san the vertexand edge sets of G a onstant number of times to extrat graphs ~G1; : : : ; ~Gk. Wehave seen this type of omputation in previous setions and omit the details.One graphs ~G1; : : : ; ~Gk have been identi�ed, they an now be loaded intomain memory, one at a time, the shortest path omputation of Step 1 an bearried out in main memory beause eah graph ~Gi has at most B2+B verties,and the edges of GR an be written to disk in a linear number of I/Os. Hene,Step 1 takes O(sort(N)) I/Os.To exeute Step 3, the distanes of all verties in S from the soure s haveto be opied from their opies in GR to their opies in graphs ~G1; : : : ; ~Gk. Thisan again be done in O(sort(N)) I/Os. After that, eah graph ~Gi, 1 � i � k, isloaded into main memory for a seond time, and the shortest path omputationof Step 3 an be performed without inurring any further I/Os.



In the remainder of this setion we disuss a method to solve the SSSPproblem on graph GR in O(sort(N)) I/Os, so that the whole algorithm takesO(sort(N)) I/Os.Shortest paths in GR. One an ome lose to solving the SSSP problem ongraph GR in O(sort(N)) I/Os by observing that this graph has O(N=B) vertiesand O(N) edges. Indeed, its vertex set is S, and every edge in GR belongs tosome graph G0i. There are O�N=B2� suh graphs G01; : : : ; G0k, and eah of themhas at most B2 edges. From this observation it follows that the SSSP problemon GR an be solved in O�NB log2 NB � I/Os using the shortest path algorithmfrom Setion 7.The main obstale preventing the improvement of this bound to O(sort(N))is that Dijkstra's algorithm requires a priority queue that supports a Derease-Key operation; but no priority queue is known that supports this operation andproesses a sequene of N updates in O(sort(N)) I/Os. On the other hand, thereare priority queues that support Insert, Delete, and DeleteMin operationsand proess a sequene of N updates in O(sort(N)) I/Os [2, 10℄. The Deleteoperation of these priority queues takes the element to be deleted and its urrentpriority as an argument. That is, the priority of an element has to be known inorder to delete it.Arge et al. present a modi�ed version of Dijkstra's algorithm that avoids theuse of DereaseKey operations by exploiting the fat that graph GR is derivedfrom a regular B2-partition of a planar graph of bounded degree. The algorithmmaintains a list L storing the tentative distane of every vertex from s as wellas a priority queue Q that stores the un�nished verties of G. For every vertexin Q, its priority is the same as its tentative distane in L. Initially, all vertiesin GR, exept s, have tentative distane (and priority) 1.In eah step, the next vertex v to be �nished is retrieved from Q using aDeleteMin operation. Then the adjaeny list of v is loaded into main memory,and for eah vertex in the adjaeny list, its tentative distane is retrieved from L.For every neighbor w of v so that the sum d0 of dist(s; v) and the weight ofedge fv; wg is less than the urrent distane d from s to w, its distane in L ishanged to d0. Its priority in Q is dereased to d0 by �rst deleting the urrentopy of w with priority d from Q and then inserting a new opy with priority d0into Q. That is, the required DereaseKey operation is simulated using aDelete and an Insert operation, whih is possible beause w's old priority d isknown when performing the update. The algorithm repeats this proedure untilall verties of G are �nished.The I/O-omplexity of this proedure an be split into the osts of retriev-ing the adjaeny lists of all verties, performing priority queue operations andaesses to list L. Retrieving the adjaeny lists takes O(san(N)) I/Os beausethere are only O(N=B) verties in G and the total size of all adjaeny listsis O(N). The algorithm performs O(N) priority queue operations, two per edge,whih takes O(sort(N)) I/Os using a bu�er tree [2℄ as priority queue. Finally,observe that list L is aessed O(N) times, O(1) times per edge. If the entries



in L are not arranged arefully, the algorithm may spend one I/O per aess, sothat the proedure takes O(N + sort(N)) I/Os. By arranging the verties in Lin a arefully hosen order, the number of I/Os spent on aessing list L anbe redued to O(N=B), whih redues the I/O-omplexity of the algorithm toO(sort(N)).The order hosen for the verties in L is so that the verties in eah boundaryset of partition P are stored onseutively. The verties in eah boundary set Sjare on the boundary of the same subgraphs of G in partition P and hene havethe same neighbors in GR. That is, if one vertex in Sj needs to be retrieved fromlist L beause one of its neighbors is �nished, all other verties in Sj also needto be retrieved from L. Instead of spending one I/O per aess, these vertiesan now be loaded in a blokwise fashion. More preisely, every boundary set Sjan be retrieved from L in O(1) I/Os beause it is a subset of the boundary ofsome subgraph Gi in the partition and hene has size at most B. Sine everyvertex in G has degree at most three, it is on the boundary of at most threeregions in G, so that every boundary set Sj is on the boundary of at most threeregions. This implies that every vertex v 2 Sj has degree O(B) in GR beausethe neighbors of v in GR are the boundary verties of these regions. We haveargued above that boundary set Sj is aessed one for eah suh neighbor andthat eah aess osts O(1) I/Os. Hene, the algorithm spends O(B) I/Os onaesses to boundary set Sj . Sine there are O�N=B2� boundary sets, the totalnumber of I/Os spent on aessing list L is hene O�B �N=B2� = O(N=B).Proedure PlanarSSSP makes the assumption that M = 
�B2�. As wewill see in the next setion, the best known algorithm to obtain a regular B2-partition of a planar graph requires that M = 
�B2 log2B�, so that we obtainthe following result.Theorem 8.3. Provided that M = 
(B2 log2B), the single soure shortestpath problem on planar graphs with non-negative edge weights an be solved inO(sort(N)) I/Os.Remark. Similar to the BFS-algorithms in Setion 6, the SSSP-algorithm dis-ussed above only omputes the distane of every vertex from s. We leave itas an exerise to verify that one these distanes are given, an O(sort(N)) I/Opostproessing step is suÆient to extrat a shortest path tree of G.9 Planar Graph PartitionsPartitions of planar graphs using small separators are utilized in algorithmsfor problems suh as solving sparse systems of linear equations, approximatingsolutions to NP-hard problems on planar graphs and, as we have seen, shortestpaths in planar graphs. The main diÆulty with omputing a good partition ofa planar graph I/O-eÆiently is that all existing internal memory algorithms forthis problem use BFS to partition the graph into levels and then judiiously usethis partition to ompute a small set of verties whose removal partitions thegraph into small subgraphs. Sine the shortest path algorithm from Setion 8



is the only known algorithm that omputes a BFS-tree of a planar graph inO(sort(N)) I/Os, and it requires a separator of the graph to be given as partof the input, this leads to irular dependenies between BFS and the problemof omputing planar separators. In this setion we disuss a separator algorithmby Maheshwari and Zeh [26℄ that applies graph ontration in a non-trivial wayto obtain the desired partition without using BFS.At the ore of the algorithm is a graph hierarhy G = G0; G1; : : : ; Gr whoseproperties guarantee that omputing a partition of Gr using an internal memoryalgorithm does not ost too many I/Os and that a suÆiently good partition ofeah graph Gi an be derived I/O-eÆiently from a partition of Gi+1. The maindiÆulty of the algorithm is omputing this graph hierarhy.In Setion 9.1 we disuss the properties of graphs G = G0; G1; : : : ; Gr andshow how to exploit them to obtain an optimal partition ofG inO(sort(N)) I/Os.In Setion 9.2 we disuss how this graph hierarhy an be omputed in the samenumber of I/Os.9.1 Computing the PartitionLet G be an embedded planar graph, let h > 0 be an integer so that the algorithmis asked to ompute a set S of verties whose removal partitions G into subgraphsof size at most h, and let G = G0; G1; : : : ; Gr be a hierarhy of graphs with thefollowing properties:(i) r = logB,(ii) Graphs G0; : : : ; Gr are planar,(iii) For 1 � i � r, every vertex in Gi represents at most 56 verties in Gi�1,(iv) For 0 � i � r, every vertex in Gi represents at most 2i verties in G, and(v) For 0 � i � r, graph Gi has O�N=2i� verties.Also assume that M � 56h log2B. Then the desired partition of G an beobtained by omputing a separator Sr of Gr and then deriving a separator Sifor eah graph Gi, 0 � i < r, from separator Si+1. Eah separator Si has theproperty that it partitions graph Gi into subgraphs of size at most h log2B. Forgraph Gr, separator Sr = S00r is omputed using the linear-time internal memoryalgorithm of Aleksandrov and Djidjev [1℄. Given separator Si+1, the separator SiforGi is omputed as follows: Let S0i be the set of verties inGi represented by theverties in Si+1. Property (iii) of the graph hierarhy implies that no onnetedomponent of Gi � S0i has size exeeding 56h log2B. Sine we assume that themain memory is large enough to hold a planar graph of this size, a partitionof Gi into subgraphs of size at most h log2B an be obtained by loading eahonneted omponent of Gi � S0i into main memory and applying the algorithmof [1℄ again. Let S00i be the set of separator verties introdued by partitioningthe onneted omponents of Gi � S0i in this manner. Then separator Si is theunion of sets S0i and S00i .The separator S0 obtained in this manner partitions graph G into sub-graphs of size at most h log2B. The algorithm of [1℄ used to ompute separators



S000 ; : : : ; S00r guarantees that jS00i j = O�jGij=�ph logB��. Hene, by Property (iv)of the graph hierarhy, the size of separator S0 isjS0j � rXi=0 2ijS00i j= rXi=0 2iO �jGij=�ph logB��= rXi=0 2iO �N=�2iph logB��= O �N=ph� :In order to obtain the �nal separator S, the onneted omponents of G � S0are loaded into main memory and partitioned into subgraphs of size at most h,again using the algorithm of [1℄. This introdues at most O�N=ph� additionalseparator verties, so that S is a separator of size O�N=ph� that partitions Ginto subgraphs of size at most h.Now let us analyze the I/O-omplexity of this proedure. Computing the ini-tial separator Sr of Gr takes O(jGr j) = O(N=B) I/Os, by Properties (i) and (v)of the graph hierarhy. To ompute separator Si from separator Si+1, the al-gorithm has to identify the verties in S0i, ompute the onneted omponentsof Gi � S0i, and load eah of them into main memory, where it is partitionedinto subgraphs of size at most h log2B. The onstrution of the graph hier-arhy an easily ensure that every vertex v 2 Gi is labelled with the vertexin Gi+1 that represents v. Under this assumption vertex set S0i an be identi-�ed in O(sort(jGij)) I/Os by sorting and sanning the vertex set of Gi and theseparator Si+1 a onstant number of times. Computing the onneted ompo-nents of Gi�S0i takes O(sort(jGij)) I/Os, by Theorem 5.11. One the onnetedomponents of Gi � S0i have been omputed, loading eah of them into mainmemory to ompute separator S00i takes O(san(jGij)) I/Os. The omputationof separator S from separator S0 is arried out in the same manner as the om-putation of separator Si from separator S0i. Hene, this takes O(sort(N)) I/Os,and the total I/O-omplexity of omputing separator S from the graph hierar-hy is O�N=B+Pr�1i=0 sort(jGij)+sort(N)� = O�Pr�1i=0 sort(N=2i)+sort(N)� =O(sort(N)). This proves the following lemma.Lemma 9.1. Given a graph hierarhy G = G0; G1; : : : ; Gr with Properties (i){(v) above, a separator S of size O�N=ph� that partitions G into subgraphs of sizeat most h an be omputed in O(sort(N)) I/Os, provided that M � 56h log2B.9.2 Computing the Graph HierarhyWhat remains to be shown is how to ompute the graph hierarhy. Sine graph Gis planar, and edge ontrations preserve planarity, Property (ii) is guaranteed if



graphs G1; : : : ; Gr are onstruted using edge ontrations. The diÆult part isensuring Properties (iii){(v) simultaneously. We �rst outline the basi approahtaken and then argue how to perform this omputation in an I/O-eÆient man-ner.Sine graph G0 = G satis�es Properties (ii){(v), we an assume that graphsG0; : : : ; Gi�1 are given and graph Gi has to be onstruted from graph Gi�1through a series of edge ontrations. In order to do that, let !(v) and �(v) betwo labels, for every vertex v in graphs G0; : : : ; Gr. Label !(v) is the number ofverties in G represented by v and is alled the weight of vertex v. Note thatevery vertex in G0 has weight one. If v 2 Gi, i > 0, then �(v) is the number ofverties in Gi�1 represented by v; �(v) is alled the size of v. In order to satisfyProperties (iii) and (iv), the algorithm ensures the following invariant:(I) For every vertex in Gi, !(v) � 2i and �(v) � 56.The onstrution starts with a graph G0i = Gi�1. Every vertex in G0i has thesame weight as in Gi�1. The size of every vertex in G0i is one. A vertex v 2 G0iis said to be heavy if either !(v) > 2i�1 or �(v) > 28. Otherwise v is light.An edge (v; w) 2 G0i is ontratible if both its endpoints are light. It is obviousthat a ontratible edge an be ontrated while maintaining Invariant (I). Thealgorithm now ontrats ontratible edges until no suh edge remains.Let G00i be the graph obtained when no more ontrations are possible. By thede�nition of a ontratible edge, no two light verties in G00i are adjaent. Nowthe light verties of degree at most two are partitioned into maximal subsets sothat the verties in eah subset are adjaent to the same set of heavy verties,have total weight at most 2i and total size at most 56. The light verties in eahsuh set are replaed by a single vertex. Let Gi be the graph obtained from G00iin this manner.Lemma 9.2. Graph Gi as onstruted by the above proedure has Properties(ii){(v).Proof. (ii): By indution, we an assume that G0i = Gi�1 is planar. Hene,G00i is planar, as it is obtained from G0i through a series of edge ontrations. Anembedding of Gi an be obtained from an embedding of G00i as follows: Let S bea set of light verties in G00i represented by a single vertex vS in Gi. Then hoosea vertex v 2 S and remove all verties in S n fvg from G00i . Rename v to vS .(iii) and (iv): Graph G0i has Property (iii) and, by indution, Property (iv).Hene, graph Gi an violate either of these two properties only if the onstru-tion merges a set of verties whose total weight exeeds 2i or whose total sizeexeeds 56. Sine this is not done, graph Gi has Properties (iii) and (iv).(v): To prove that graph Gi has Property (v), we make use of the followingproposition, whose proof an be found in [32℄.Proposition 9.3. Let G = (V1; V2; E) be a bipartite planar graph. Let vertexset V2 be partitioned into non-empty equivalene lasses C1; : : : ; Cq, where twoverties in V2 are equivalent if they have degree at most two and are adjaent tothe same set of verties in V1. Then q � 6jV1j.



Using this fat, we an prove that jGij � 28N=2i. In partiular, this laim istrue for G0 = G. So assume that the laim holds for all graphs G0; : : : ; Gi�1, andonsider the subgraph H of Gi indued by the edges inident to light verties.Graph H is bipartite, and no two light verties of degree at most two in H areadjaent to the same set of heavy verties. Hene, by Proposition 9.3, the numberof light verties in Gi is bounded by 6hi, and the total number of verties in Giis at most 7hi, where hi is the number of heavy verties in Gi. Thus, in orderto prove that jGij � 28N=2i, it suÆes to show that hi � 4N=2i. To do this, wepartition the heavy verties in Gi into two lasses: A vertex v of Gi is of type Iif !(v) > 2i�1. It is of type II if !(v) � 2i�1, but �(v) > 28. There are at mostN=2i�1 type-I verties and at most jGi�1j=28 type-II verties. Hene,hi � N2i�1 + jGi�1j28� N2i�1 + N2i�1= 4N2i : utBy Lemma 9.2, the above strategy for onstruting graphGi from graphGi�1guarantees that Gi has Properties (ii){(v). Construting G0i from Gi�1 is amatter of hanging the size �(v) of every vertex to one. Hene, this takesO(san(jGi�1j)) I/Os. To obtain graph Gi from graph G00i , it suÆes to sortthe light verties of degree at most two by their neighbors and then parti-tion eah equivalene lass of light verties into maximal groups of onseu-tive verties of total weight at at most 2i and total size at most 56. This takesO(sort(jG00i j)) = O(sort(jGi�1j)) I/Os. So let us onentrate on the onstrutionof G00i from G0i.This onstrution has to be done with some are beause the ontration ofan edge fv; wg may render another edge fv; w0g non-ontratible; but ontrat-ing the edges in G0i one at a time, in order to hek whether eah edge to beontrated is ontratible, does not seem to lead to an I/O-eÆient algorithm.The solution to this problem is a strategy that iteratively ontrats sets of edgesthat are guaranteed not to interfere with eah other's ontratibility. The on-trations in eah iteration are suÆient to guarantee that the minimum size ofthe verties in the graph inreases by a fator of two from one iteration to thenext, so that only dlog2 28e iterations are required before no ontratible edgesremain. The pseudo-ode of this proedure is shown in Algorithm 9.1.In this proedure the ontratible subgraph of a graph G is the subgraphof G indued by the ontratible edges in G. In eah iteration, the algorithm anrestrit its attention to graph Hj beause the edges of G0i that are not in Hj arenot ontratible. The ontrations in eah iteration are divided into two phases.The �rst phase (Lines 4{5) ontrats the edges in a maximal mathing Mof Hj . The ontration of any subset of the edges in M annot a�et the on-tratibility of the remaining edges in M beause no two edges in M share an



Proedure Compress1: H0  ontratible subgraph of G0i2: j  03: while Hj 6= ; do4: Compute a maximal mathingM of Hj .5: Contrat the edges inM.6: for every unmathed vertex v in Hj do7: if v has a light mathed neighbor w then8: Contrat v into w.9: end if10: end for11: Hj+1  ontratible subgraph of Hj12: j  j + 113: end whileAlgorithm 9.1Computing graph G00i from graph G0i.endpoint. Hene, this simultaneous ontration of the edges in M does not on-trat an edge that would have beome non-ontratible when performing edgeontrations one at a time.After this �rst phase, the verties ofHj an be partitioned into two ategories:A mathed vertex represents the two endpoints of an edge in M. All otherverties are unmathed. The goal of the seond phase (Lines 6{10) is to ensurethat the vertex set of graph Hj+1 ontains only mathed verties of Hj , i.e., thatno remaining unmathed vertex in Hj has an inident edge that is ontratible.It is easy to show that this implies that every vertex in Hj has size at least 2j , sothat the proedure terminates after at most dlog2 28e iterations of the while-loop,and the size of graph Hj is at most jG0ij=2j .To eliminate all unmathed verties from Hj in an I/O-eÆient manner,observe that the maximality of mathingM implies that all neighbors of an un-mathed vertex are mathed. Hene, the algorithm has to solve a bipartite on-tration problem where the set of mathed verties is �xed an every unmathedvertex should be ontrated into one of its mathed neighbors if possible. thisan be done as follows: Denote the set of mathed and unmathed verties of Hjby Vm and Vu, respetively, and assume that every vertex in Hj has a uniquenumerial ID. Then onstrut a DAG D with vertex set Vm. For every vertexv 2 Vu, graph D ontains a path Pv = (w1; : : : ; wk), where w1; : : : ; wk are theneighbors of v in Hj , sorted by inreasing numbers. Now use time-forward pro-essing to pass every vertex v 2 Vu along its path Pv in D. Every vertex w 2 Vminspets the unmathed verties v1; : : : ; vl it reeives from its in-neighbors. Let0 � h � l be the minimum index so that !(w) +Pha=1 !(va) > 2i�1 and�(w) + Pha=1 �(va) > 28. If no suh index exists, let h = l. Then vertiesv1; : : : ; vh are marked for ontration into vertex w. After these ontrationsvertex w is heavy, so that edges fvh+1; wg; : : : ; fvl; wg are not ontratible.Hene, verties vh+1; : : : ; vl are forwarded to the out-neighbors of w on paths



Pvh+1 ; : : : ; Pvl , to test whether they an be ontrated into those verties. Onegraph D has been proessed, the verties in Vu that have been marked for on-tration into a vertex in Vm an be ontrated into these mathed verties usingthe standard graph ontration proedure.This proedure ahieves the desired result beause every vertex v 2 Vu thatis not ontrated into one of its neighbors is passed along the whole path Pvin D, and every edge fv; wg, w 2 Pv is tested for its ontratibility. Hene, ifone of these edges were ontratible, it would have been ontrated.One iteration of the proedure Compress takes O(sort(jHj j)) I/Os: A max-imal mathing of Hj an be omputed in this number of I/Os [25, 32℄ (see theremark at the end of Setion 4.2). The ontration of the edges in M an bearried out in O(sort(jHj j)) I/Os in the standard fashion. The onstrution ofDAG D from Hj requires sorting and sanning the vertex and edge sets of Hja onstant number of times. DAG D has size O(jHj j), so that the applia-tion of time-forward proessing to D takes O(sort(jHj j)) I/Os (see Setion 4.1).Contrating the marked unmathed verties into their mathed neighbors takesanother O(sort(jHj j)) I/Os using the standard ontration proedure.We have shown that one iteration of Algorithm 9.1 takes O(sort(jHj j)) I/Os.We have also argued that jHj j � jG0ij=2j . This implies that the total I/O-omplexity of proedure Compress is O(sort(jG0ij)) = O(sort(jGi�1j)). Sinethe onstrution of graph Gi from graph G00i also takes O(sort(jGi�1j)) I/Os, thewhole onstrution of graph Gi from graph Gi�1 takes O(sort(jGi�1j)) I/Os. ByProperty (v) of the graph hierarhy, this shows the following lemma.Lemma 9.4. A graph hierarhy G = G0; G1; : : : ; Gr with Properties (i){(v) anbe omputed in O(sort(N)) I/Os.The following theorem now follows immediately from Lemmas 9.1 and 9.4.Theorem 9.5. Given a planar graph G = (V;E) and an integer h > 0, aseparator S partitioning G into subgraphs of size at most h an be omputedin O(sort(N)) I/Os, provided that M � 56h log2B. The size of S is O�N=ph�.10 Planar Undireted DFSAs the last result disussed in detail in this ourse, we now return to DFS inundireted graphs. This time, however, we restrit our attention to undiretedplanar graphs. As before we assume that the graph is given together with anembedding, and we do not distinguish between a graph and its embedding.The algorithmwe disuss is due to Arge et al. [5℄. Similar ideas have been usedin a PRAM-algorithm for DFS in planar graphs by Hagerup [16℄. The algorithmombines two ideas: The �rst one is that DFS in any graph an be redued toomputing appropriate DFS-trees of its bionneted omponents and \gluing"them together. The main idea for onstruting a DFS-tree of a bionnetedplanar graph G is to partition G into layers of extremely simple struture, usingBFS in a graph that is losely related to the dual of G. In partiular, these layers
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(a) (b)Figure 10.1(a) A partition of the faes of G into levels. (b) The layers de�ned by this partition.are trees of yles. A DFS-tree of a tree of yles an be obtained by omputingthe bionneted omponents of the graph (i.e., the yles) and removing anappropriate edge from eah omponent. Moreover, the relationship between theselayers and the struture of G is suh that a DFS-tree of G an be obtained by\gluing" together appropriate DFS-trees of the layers.10.1 Partitioning the Graph into LayersFormally, the layers of G are de�ned as follows (see Figure 10.1): Let r be thesoure of the DFS, i.e., the root of the DFS-tree to be omputed. Let s be a faeof G that has r on its boundary. Then the faes of G are partitioned into levelsas follows: Fae s is the only level-0 fae. A fae is at level i > 0 if it shares avertex with a fae at level i � 1, but not with a fae at level less than i � 1.Given the levels of the faes of G, the level of a vertex or edge x is de�ned asthe minimum level of the faes that have x on their boundaries. Let Vi be theset of verties at level i. Then Vi is the vertex set of layer Li. An edge e is anedge of layer Li if it is at level i and both its endpoints are at level i. Denote theset of these edges by Ei. That is, Li = (Vi; Ei). Finally, an edge at level i thathas at least one endpoint at level i� 1 is alled an attahment edge of layer Li.In partiular, suh an edge onnets a vertex in Li with a vertex in Li�1 or twoverties in Li�1. Let Ai be the set of attahment edges of layer Li.Before showing that layers L0; : : : ; Lk have a very simple struture, we ar-gue that these layers and their sets of attahment edges an be omputed inO(sort(N)) I/Os using proedure LayerPartition outlined in Algorithm 10.1.We do not disuss every single detail of the algorithm, but present the mainideas.The fae-on-vertex graph GF omputed in Line 1 of the algorithm is de�nedas follows (see Figure 10.2): Graph GF ontains all verties of G as well as onevertex f� for every fae f of G. There is an edge (v; f�) in GF if and only ifvertex v is on the boundary of fae f . We leave it as an exerise to verify thatwith this de�nition of GF , the levels of the verties and edges in G are omputedorretly in Lines 4 and 5, and that sorting the vertex and edge sets of G as in



Proedure LayerPartition1: Compute the fae-on-vertex graph GF of G.2: Choose a vertex s� in GF adjaent to vertex r.3: Perform BFS in GF from s�.4: Let the level of every vertex v 2 G be (d(s�; v)� 1)=2.5: Let the level of every edge e 2 G be the minimum of d(s�; f�1 )=2 and d(s�; f�2 )=2,where f1 and f2 are the two faes that have e on their boundaries.6: Sort the verties in V by their levels to partition them into vertex sets V0; : : : ; Vk.7: Sort the edges in E by their levels as primary key and by the minimum of thelevels of their endpoints as seondary key. This produes a partition of E into setsE0; A1; E1; : : : ; Ak; Ek.Algorithm 10.1An algorithm to partition G into layers.Lines 6 and 7 does indeed produe the desired partition of these sets into thevertex and edge sets of layers L0; : : : ; Lk and the sets A1; : : : ; Ak of attahmentedges.Assuming that every edge e of G \knows" the two faes f1 and f2 thathave e on their boundaries, the omputation of the levels of all verties andedges of G requires a onstant number of sort and san operations and henetakes O(sort(N)) I/Os. Lines 6 and 7 sort sets V and E and hene also takeO(sort(N)) I/Os. Thus, the main diÆulty of the algorithm is the omputationof graph GF and performing BFS in GF . The onstrution of graph GF alsoprovides every vertex and edge in G with the names of its two adjoining faes,thereby providing the omputation in Line 5 with the required input.In order to perform BFS in GF , observe that GF is obviously planar and hasO(N) verties. Hene, the shortest path algorithm from Setion 8 an be used toompute a BFS-tree ofGF in O(sort(N)) I/Os. What remains to be shown is howgraph GF an be onstruted: First ompute a set of yles Cf , one per fae fof G, so that yle Cf ontains one vertex per edge on the boundary of fae fand the verties appear in the same order along Cf as their orresponding edgeslokwise around f . The olletion of these yles an be obtained from G usingan adaptation of the Euler tour tehnique (see Setion 3.1). In partiular, replaeevery edge fv; wg 2 G with two direted edges (v; w) and (w; v) and de�ne thesuessor of every edge (u; v) as edge (v; w) so that edges fv; ug and fv; wg ap-pear onseutively in ounterlokwise order around v. The graph G0 de�ned asthe union of yles Cf is obviously planar. Hene it is sparse, and its onnetedomponents an be omputed in O(sort(N)) I/Os, by Theorem 5.11. The on-neted omponents of G0 are the yles Cf , and every vertex in Cf representsan edge (v; w). Now sort and san the vertex set of G0 and add a vertex f� peryle Cf and an edge ff�; vg per vertex (v; w) in yle Cf to GF . This takesanother O(sort(N)) I/Os.Sine all steps of Algorithm 10.1 an be arried out in O(sort(N)) I/Os, weobtain the following lemma.



Figure 10.2The fae-on-vertex graph of graph G shown in Figure 10.1a.Lemma 10.1. A partition of an undireted planar graph G with N verties intolayers L0; : : : ; Lk and sets A1; : : : ; Ak of attahment edges an be omputed inO(sort(N)) I/Os, provided that M = 
(B2 log2B).Remark. The above onstrution does not onstrut a planar embedding of GFfrom the planar embedding of G; but the shortest path algorithm of Setion 8requires a planar embedding of GF in order to perform BFS in GF . Given thatyles Cf have been identi�ed, graph G0 an be transformed into a olletionof linked lists, by removing one edge from eah yle. Now list ranking an beapplied to determine the order of the edges lokwise around eah fae. Thisinformation suÆes to onstrut a planar embedding of GF .10.2 DFS in a LayerGiven a partition of G into layers as omputed by proedure LayerPartition,we now fous on a single layer Li and show that it has a suÆiently simplestruture to perform DFS in Li I/O-eÆiently. In partiular, we say that abionneted omponent of Li is trivial if it onsists of a single edge. Otherwisethe bionneted omponent is non-trivial. Let Gi be the subgraph of G induedby the faes at levels 0 through i. We all a yle in Gi a boundary yle if theinident faes on one side of the yle are at level i, while the inident faes onthe other side are at level i+ 1.Lemma 10.2. The non-trivial bionneted omponents of Li are the boundaryyles of Gi.Proof. Consider a yle C in Li. All faes inident to C are at level i or i + 1.The faes of G at level at most i� 1 form a onneted region. Hene, either allthese faes are inside C, or all of them are outside C. This implies that eitherall faes outside C or all faes inside C are at level at least i + 1 beause theyannot share a vertex with a level-(i�1) fae. This proves that every yle in Liis a boundary yle.Every non-trivial bionneted omponent of Li that is not a yle ontainstwo verties v and w so that there are three internally vertex-disjoint paths P1,



rj rj

(a) (b) ()Figure 10.3(a) A tree G of yles. (b) The orresponding blok-utpoint-tree. Blok nodes aresquares; utpoints are diss. () A DFS-tree of G. Dotted edges are non-tree edges.P2, and P3 from v to w in Li. These paths de�ne two yles P1[P2 and P1[P3,whih are both boundary yles. However, this is impossible beause either P3is ompletely inside or ompletely outside the region bounded by P1 [ P2. utNow let H1; : : : ; Hq be the onneted omponents of Li, and let r1; : : : ; rqbe verties so that ri 2 Hi. We desribe a proedure that uses Lemma 10.2 toompute DFS-trees T1; : : : ; Tq of H1; : : : ; Hq rooted at verties r1; : : : ; rq .In order to ompute one suh DFS-tree Tj , ompute the blok-utpoint-tree T 0j of Hj (see Figure 10.3). Tree T 0j ontains all utpoints of Hj and onevertex per bionneted omponent of Hj . If vertex rj is not a utpoint of Hj , itis added as a vertex to T 0j . There is an edge fv; �g in T 0j , where � represents abionneted omponent B of Hi, if vertex v is ontained in B. Choose vertex rias the root of T 0j . The parent utpoint of a bionneted omponent is de�nedas the parent of the orresponding node in T 0j . A DFS-tree Tj of Hj an nowbe obtained by removing one of the two edges inident to its parent utpointfrom every non-trivial bionneted omponent of Hj . Next we show that tree Tjis indeed a DFS-tree of Hj and that the onstrution of trees T1; : : : ; Tq an bearried out I/O-eÆiently.Lemma 10.3. Given a layer Li with onneted omponents H1; : : : ; Hq and aset of verties r1; : : : ; rq so that rj 2 Hj , a set of DFS-trees T1; : : : ; Tq for graphsH1; : : : ; Hq rooted at verties r1; : : : ; rq an be omputed in O(sort(jLij)) I/Os.Proof. First we show that tree Tj as onstruted by the above proedure isa DFS-tree of Hj . To do this, we onsider a bionneted omponent B of Hj
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Figure 10.4A DFS-tree of G.ontaining a non-tree edge fv; wg. One of the endpoints of this edge, say v, isthe parent utpoint of B. Hene, any path from rj to w in Hj must ontain v. Inpartiular, this is true for the path from rj to w in Tj , so that v is an anestorof w in Tj . Sine this is true for any non-tree edge fv; wg, Tj is a DFS-tree of Hj .Next we prove that the omputation of tree Tj for graph Hj an be arriedout in O(sort(jHj j)) I/Os, whih implies that the omputation of trees T1; : : : ; Tqtakes O�Pqj=1 sort(jHj j)� = O(sort(jLij)) I/Os. The bionneted omponents ofHj an be omputed in O(sort(jHj j)) I/Os, using the algorithm from Setion 5.3.We leave it as an exerise to verify that given the bionneted omponents of Hj ,the blok-utpoint-tree T 0j an be omputed in O(sort(jHj j)) I/Os, by sortingand sanning the vertex and edge sets of Hj a onstant number of times. Thenthe Euler tour tehnique and list ranking an be applied to root T 0j at rj anddetermine the parent utpoint of every bionneted omponent. Given the parentutpoint of every bionneted omponent, it suÆes to san the edge set of thatbionneted omponent to (a) deide whether it is non-trivial (i.e., has morethan one edge) and if so, (b) �nd one of the two edges inident to the parentutpoint and remove it. utThe onstrution outlined above omputes a DFS-tree Tj for graphHj . In or-der to use this tree in the onstrution of the next setion, every vertex has to belabelled with its distane from rj in Tj . This an be done in O(sort(jHj j)) I/Os,using the Euler tour tehnique and list ranking again (see Setion 3).10.3 DFS in a Bionneted Planar GraphHaving developed a tool for onstruting DFS-trees of the layers of G, we nowshow how to obtain a DFS-tree of a bionneted planar graph from appropriateDFS-trees of its layers. In partiular, the DFS-algorithm starts with a DFS-tree T0 of G0 = L0 and then iteratively augments the urrent DFS-tree Ti of Giwith DFS-trees of the onneted omponents of Li+1 to obtain a DFS-tree Ti+1of Gi+1. A DFS-tree for G obtained in this manner is shown in Figure 10.4. If wean show that the augmentation an be arried out inO(sort(jLij+jLi+1j)), it fol-lows that the whole algorithm takes O(sort(N)) I/Os beause layers L0; : : : ; Lkare disjoint.



Tree T0 is easy to obtain using the Euler tour tehnique and list rankingbeause graph G0 is a simple yle.So assume that a DFS-tree Ti of Gi is given, whih is to be augmented toprodue a DFS-tree Ti+1 of Gi+1. Let �Gi be the subgraph of G indued by allfaes at level at least i + 1. Sine the faes at levels 0 through i form a on-neted region, the boundary between Gi and �Gi is a olletion of edge-disjointsimple yles and the removal of the faes of �Gi introdues a number of \holes"R1; : : : ; Rt whose boundaries are the boundary yles of Gi. By Lemma 10.2,these boundary yles are the bionneted omponents of Li. The following ob-servation now follows immediately from the way the DFS-trees for the onnetedomponents of Li are onstruted.Observation 10.1. Let Rj be a hole of Gi, and let v1; : : : ; vk be the vertieson its boundary, sorted lokwise around Rj and so that v1 has minimum depthin Ti. Then v1 is an anestor of verties v2; : : : ; vk, and either (v1; : : : ; vk) or(v1; vk; : : : ; v2) is a path in Ti.Intuitively, if w.l.o.g. (v1; : : : ; vk) is the path in Ti, the observation statesthat for any vertex vi, verties v1; : : : ; vi�1 are anestors of vi in Ti. Hene, thefollowing strategy produes a DFS-tree for Gi+1: For every onneted ompo-nent Hj of Li, �nd the set A0j of attahment edges of Hj . Every edge in A0jhas one endpoint on the boundary of the hole R ontaining Hj and the otherendpoint in Hj . Find the attahment edge fuj ; vjg whose endpoint uj on theboundary of R has maximal depth. Then ompute a DFS-tree of Hj rooted at vjand link it to Ti using edge fuj ; vjg. Let Ti+1 be the tree obtained by attahingDFS-trees for all onneted omponents of Li+1 to Ti in this manner.Lemma 10.4. Tree Ti+1 is a DFS-tree of Gi+1.Proof. We have to show that for every non-tree edge fv; wg of Ti+1 w.l.o.g. vis an anestor of w. We distinguish three ases: (1) v; w 2 Gi, (2) v 2 Gi andw 2 Li+1, and (3) v; w 2 Li+1. For Cases (1) and (3) the laim holds beauseTi+1 is the union of a DFS-tree Ti for Gi and DFS-trees for the onnetedomponents of Li+1.In Case (2) let w 2 Hj . Then v is on the boundary of the hole ontaining Hj .In partiular, by the hoie of the attahment edge fuj ; vjg of Hj inludedin Ti+1, v is an anestor of uj in Ti. Vertex w is a desendant of vj in the DFS-tree onstruted for Hj . This implies that v is an anestor of w in Ti+1. utNow observe that the above onstrution requires little more than a onstantnumber of sort and san operations. In partiular, the onneted omponentsof Li+1 an be found in O(sort(jLi+1j)) I/Os, by Theorem 5.11. Given the on-neted omponents H1; : : : ; Hj , it suÆes to sort the set Ai+1 of attahmentedges of Li+1 by their endpoints in Li+1, sort the verties in Li+1 by their num-bers, and san the two sorted lists to determine for every attahment edge theonneted omponent Hj of Li+1 ontaining one of its endpoints. After sort-ing the verties in Li by their IDs and the attahment edges in Ai+1 by their



endpoints in Li, a single san of these two sorted lists suÆes to label everyattahment edge of Li+1 with the depth of its endpoint in Ti. Now sort the at-tahment edges of Li+1 by the onneted omponents of Li+1 ontaining one oftheir endpoints as the primary key and by the depths of their endpoints in Ti asthe seondary key. This produes sets A0j , eah with its edges sorted by inreas-ing depths of their endpoints in Ti. A single san of these sorted lists suÆes toextrat edge fuj ; vjg as the �rst edge in A0j , for every onneted omponent Hj .In order to onstrut the DFS-trees for H1; : : : ; Hq , the onstrution of the pre-vious setion is used. Clearly this proedure takes O(sort(jLij + jLi+1j)) I/Os.Hene, we obtain the following result.Lemma 10.5. A DFS-tree of a bionneted planar graph G with N verties anbe omputed in O(sort(N)) I/Os, provided that M = 
(B2 log2B).10.4 DFS in Conneted Planar GraphsFinally, we are ready to put the bits and piees together to obtain a DFS-algorithm for onneted planar graphs. In fat, the algorithm just uses ideasalready presented above: If the graph is bionneted, apply Lemma 10.5 to ob-tain a DFS-tree of G. If G is not bionneted, apply a similar proedure as forDFS in a layer. In partiular, ompute the bionneted omponents of G, buildthe orresponding blok-utpoint-tree, and onstrut for every bionneted om-ponent of G, a DFS-tree rooted at its parent utpoint. Sine every non-tree edgehas both its endpoints in the same bionneted omponent, it is obvious thatthe union of these DFS-trees is a DFS-tree of G.The omputation of the bionneted omponents takes O(sort(N)) I/Os us-ing the bionnetivity algorithm from Setion 5.3. Computing a DFS-tree for abionneted omponent of size Ni takes O(sort(Ni)) I/Os, by Lemma 10.5. Sinethe total size of all bionneted omponents is O(N), omputing DFS-trees forall bionneted omponents therefore takes O(sort(N)) I/Os, and we obtain thefollowing result.Theorem 10.6. A DFS-tree of a onneted planar graph with N verties anbe omputed in O(sort(N)) I/Os, provided that M = 
(B2 log2B).11 Lower BoundsSo far we have foused on the design of I/O-eÆient algorithms for fundamentalgraph problems. In this setion we try to answer the question whether thesealgorithms are optimal or lose to optimal by proving lower bounds for some ofthe problems solved by the algorithms presented in Setions 2{10.In order to prove these lower bounds, we onentrate on two entral problems:list ranking and onneted omponents. One we have shown that these problemsrequire 
(perm(jV j)) and 
(perm(jEj)) I/Os, the same lower bounds an beobtained for numerous other problems using rather simple arguments.



Before going into the details of the proofs, a few remarks regarding the hoieof an appropriate model of omputation are in order beause hoosing the rightmodel for proving lower bounds for graphs problems is non-trivial. Consider forexample two ommon models assumed in lower bound proofs. The �rst modelassumes that reords are indivisible. That is, the output has to be representedas an appropriate permutation of the input beause the model does not allowthe reation of new reords. This model is too restritive beause most interest-ing graph problems require the omputation of a labelling of the verties of thegraph, so that any algorithm for this problem is fored to reate new reordsrepresenting the omputed labels. The seond model is the omparison model,whih in partiular does not allow any indiret addressing (i.e., exploiting thefat that omputers represent everything as numbers, whih allows the use ofdata items as indies for aesses into arrays). But internal memory graph al-gorithms make extensive use of indiret addressing, so that disallowing it inI/O-eÆient algorithms may overly handiap the latter and therefore preventa meaningful omparison between internal and external memory algorithms forthe same problem. Choosing muh more powerful models, on the other hand,makes it hard to prove non-trivial lower bounds.The lower bound proof for list ranking presented in Setion 11.1 assumes thatreords are indivisible, whih requires some are when formulating the argumentsin the proofs. In partiular, the onstrutions presented in the proofs ould beonsidered redutions from one problem to another. But these redutions wouldreate new reords and thereby leave the model. Instead we emphasize that theonstrutions are not arried out by an algorithm, but we use them only astools to prove the equivalene between input instanes for the two problems.Assuming indivisibility of reords also implies that the arguments apply only toa partiular type of algorithm, whih we speify arefully.The lower bound proof for onnetivity uses an augmented version of theomparison model: the indexed I/O-tree [28℄. Essentially this model is the om-parison model augmented with indiret addressing. The details of the model areof less relevane to our argument here beause we use a redution that requires avery weak model; but the lower bound of the problem we redue to onnetivityto prove a lower bound for onnetivity is shown in the indexed I/O-tree model.11.1 List Ranking, BFS, DFS, and Shortest PathsA lower bound for list ranking an be obtained by showing its equivalene tothe split proximate neighbors (SPN) problem. In this problem, a sequene S of2N integers in the range 1 through N is given. Sequene S is the onatenationof two sequenes S1 and S2 of length N so that eah integer ours exatly onein S1 and exatly one in S2. Sequene S1 is sorted. The goal is to permute theelements in S so that for every integer 1 � i � N , both ourrenes of i in S arestored in the same disk blok.The original lower bound proof for this problem [3℄ proves the lower boundby ounting the number of di�erent permutations an algorithm solving SPN hasto be able to produe. Here we present a more intuitive proof.



Lemma 11.1. The split proximate neighbor problem requires 
(perm(N)) I/Osfor an input sequene of size 2N .Proof. To prove the lemma, we show that if there is an algorithm that solvesSPN in I(N) I/Os, there is an algorithm that an permute N data items inO(I(N)) I/Os. Hene, I(N) = 
(perm(N)).So let x1; : : : ; xN be a set of data items, and let � : [1; N ℄ ! [1; N ℄ bea permutation so that elements x1; : : : ; xN have to be arranged in the orderx�(1); : : : ; x�(N). Let y = (1; 2; : : : ; N; �(1); �(2); : : : ; �(N)) be the instane ofSPN de�ned by permutation �. Now onsider an algorithm A that solves SPNin I(N) I/Os, let I(y) � I(N) be the number of I/Os performed by algorithm Aon instane y, and let S be the sequene of data moves performed by algorithm Aon instane y. That is, sequene S inurs I(y) I/Os. The elements x1; : : : ; xNan be arranged in the order x�(1); : : : ; x�(N) in at most 2I(y) � 2I(N) I/Os asfollows: First apply the same movements to elements x1; : : : ; xN as algorithm Aapplies to elements 1; 2; : : : ; N . Now reverse the data movements of algorithm A,letting element x�(i) play the role of element �(i) in y. To do this, element x�(i),1 � i � N , has to be moved into the plae of element �(i) before running algo-rithm A bakwards. However, after running algorithm A forward, element x�(i)is stored in the same blok into whih algorithm A plaes element �(i). Hene,element x�(i) an be moved into the plae of element �(i) when the reversal ofalgorithm A loads the blok ontaining element x�(i) into main memory for the�rst time. This does not inur any extra I/Os.Now let A0 be an algorithm that behaves as just desribed for any input in-stane x1; : : : ; xN and any permutation �. Sine the above onstrution does notmake any assumptions about the struture of permutation �, algorithm A0 ar-ranges any input instane in the orret order and does so in at most 2I(N) I/Os.Given the remark at the beginning of the proof, this proves the lemma. utLemma 11.1 an be used to prove a lower bound on the number of I/Osperformed by algorithms that are able to solve list ranking in its full generalityas stated in Setion 2. In partiular, we restrit our attention to algorithms thatsolve the weighted list ranking problem using only the assoiativity of the sumoperator de�ned on the set of vertex labels in the list. Note that this means thatthe lower bound does not hold for the unweighted list ranking problem beause(Z;+) is a group, so that some lever algorithm for this problem may ombineaddition and subtration to ompute the ranks of all nodes more eÆiently.Given that the algorithm uses only the assoiativity of summation, it anbe enfored that for every node xi, there is some point during the ourse of thealgorithm when nodes xi and su(xi) reside in main memory together. If thealgorithm does not already have this property, it an be enfored at the expenseof inreasing the I/O-omplexity of the algorithm by only a onstant fator.Now every SPN instane gives rise to an equivalent list ranking instane. Inpartiular, the suessor of element i in sequene S1 is de�ned to be element iin sequene S2. The suessor of element i in S2 is element i+1 in S1. Considerthe I/Os performed by the list ranking algorithm. Whenever two equal elements



from S1 and S2 end up in main memory at the same time, they an be moved toa bu�er of size B, whih is emptied to disk whenever it runs full. The resultingalgorithm performs N=B I/Os more than the list ranking algorithm and solvesSPN. Sine SPN requires 
(perm(N)) I/Os, we obtain the following result.Theorem 11.2. List ranking requires 
(perm(N)) I/Os.As an immediate onsequene of Theorem 11.2, we obtain lower bounds forBFS, DFS, and SSSP. In partiular, it suÆes to onsider the given list as anundireted graph whose edges have unit weights. Then list ranking an be solvedby performing BFS, DFS or SSSP in this graph, starting at the head of the list.Again the lower bound applies only to algorithms that ompute the distanes ofthe verties of G from the soure only by adding path lengths.Corollary 11.3. Breadth-�rst searh, depth-�rst searh and single soure short-est paths require 
(perm(N)) I/Os on a graph with N verties.11.2 Conneted and Bionneted ComponentsIn order to prove a lower bound for the number of I/Os required to ompute theonneted omponents of a graph, we use the following proposition shown in [28℄.Let the segmented dupliate elimination problem be de�ned as follows: Let S bea set of N integers drawn from the interval [P + 1; 2P ℄, and let P < N < P 2.Furthermore, assume that S an be divided into P ontiguous subsequenesS1; : : : ; SP , eah of length N=P , so that the elements in eah sequene Si aredistint. Then onstrut a Boolean array C[P + 1; : : : ; 2P ℄ so that C[i℄ = 1 ifand only if S ontains an element of value i.Proposition 11.4. The segmented dupliate elimination problem with parame-ters P and N as above requires 
((N=P )perm(P )) I/Os.In order to prove an 
(perm(jEj)) lower bound for omputing the onnetedomponents of a graph, the segmented dupliate elimination problem is reduedto that of omputing the onneted omponents of an appropriate graph. Inpartiular, onsider an instane of the segmented dupliate elimination problemwith N elements in the range [P + 1; 2P ℄, where N � 2P . Then graph G isde�ned as follows:1. Graph G has N=P + P verties.2. If P + i 2 Sj , then G ontains edge fj;N=P + ig.3. Graph G ontains edges f1; 2g; f2; 3g; : : : ; fN=P � 1; N=Pg.Graph G has N=P + P = �(P ) verties and N +N=P � 1 = �(N) edges. Theonstrution of the edge set of G an easily be arried out in O(san(N)) I/Os.Now it is easy to see that P+i 2 S if and only if verties 1 and N=P+i are in thesame onneted omponent. Hene, omputing the onneted omponents of Grequires 
((N=P )perm(P )) = 
((jEj=jV j)perm(jV j)) = 
(perm(jEj)) I/Os,and we obtain the following result.



Theorem 11.5. Computing the onneted omponents of a graph G = (V;E)requires 
(perm(jEj)) I/Os.Using a similar onstrution, the same lower bound an be shown for om-puting the bionneted omponents of a graph. In partiular, graph G aboveis augmented with a vertex 0 that is onneted to vertex 1 and to vertiesN=P + 1; : : : ; N=P + P . Then element P + i 2 S if and only if verties 0 andN=P + i are in the same bionneted omponent of the augmented graph G. Theaugmentation an be arried out in O(san(N)) I/Os. The sizes of the vertexand edge sets of G remain �(P ) and �(N), respetively. Hene, we obtain thefollowing result.Theorem 11.6. Computing the bionneted omponents of a graph G = (V;E)requires 
(perm(jEj)) I/Os.12 More Problems and SolutionsThis last setion is dediated to a short survey of a few results that should notbe missing from a ourse on I/O-eÆient graph algorithms and a disussion ofopen problems related to the material presented in this ourse. In Setion 12.1we disuss three lasses of sparse graphs other than planar graphs for whihO(sort(N)) I/O algorithms for BFS, DFS and the single soure shortest pathproblem exist. In Setion 12.2 we disuss the main ideas behind an I/O-eÆientalgorithm for planarity testing and planar embedding proposed in [26℄. Thealgorithm is partiularly interesting beause it uses separators to ompute theembedding, whih is possible only beause the separator algorithm from Setion 9does not use any information provided by a planar embedding of the graph. InSetion 12.3 we disuss a number of interesting open problems.12.1 More Classes of Sparse GraphsThere are a few more lasses of sparse graphs that researhers have onsidered,trying to develop I/O-eÆient algorithms for fundamental problems on theselasses of graphs. The interest in these lasses of sparse graphs stems either fromtheir pratial importane or from strutural properties that made these graphspromising andidates for I/O-eÆient solutions to the problems of interest. Westart our disussion with the most pratial lass whose favorable struturalproperties are obvious to the trained eye. Then we work our way to graph lasseswhose pratial relevane is disputable, but whose struture is more interesting.Grid graphs. In [6℄ Arge et al. study problems on grid graphs. The verties of agrid graph are a subset of the verties of a regularpN�pN grid. Every vertex van be onneted to at most eight other verties, namely the verties whose gridpositions di�er by at most one in eah dimension from the position of v. Thesegraphs arise naturally in omputations on raster-based elevation models used ingeographi information systems.



An interesting fat to observe about grid graphs is that they are almostplanar. That is, only diagonals an interset and every diagonal intersets atmost one other diagonal. Thus, it is not surprising that these graphs have smallseparators and that these separators an be used to ompute shortest paths inthe same way as for planar graphs.In partiular, hoosing every B-th row and olumn to be in the separator,one obtains a separator of size O(N=B) that partitions the graph into O(N=B2)subgraphs of size at most B2 and boundary size O(B). Moreover, every separatorvertex is on the boundary of at most four regions and the number of boundarysets is O�N=B2�. Hene, the shortest path algorithm for planar graphs an beapplied to grid graphs, using the separator just de�ned instead of the separatoromputed for planar graphs using the algorithm from Setion 9.Depth-�rst searh on grid graphs an be solved in O�N=pB� I/Os using aslightly modi�ed version of the internal memory DFS-algorithm. In partiular,hoosing the spae between separator rows and olumns to be pB, one obtainsa separator of size O�N=pB� that partitions the graph into O(N=B) subgraphsof size at most B and boundary size O�pB�. Now whenever the DFS-algorithmexplores an edge onneting a separator vertex with an internal vertex of a sub-graph Gi, the whole graph Gi is brought into main memory. The DFS-algorithmexplores edges in Gi until it omes to a separator vertex again, where the wholeproedure is repeated. It remains to be observed that every subgraph is enteredat most O�pB� times, one through eah boundary vertex. Eah time the graphis entered, the algorithm spends one I/O to bring it into main memory, so thatO�pB� I/Os are spent per subgraph. Sine there are O(N=B) subgraphs, theI/O-bound follows.Graphs of bounded treewidth. The treewidth of a graph has been de�nedby theoretiians as a parameter that aptures the hardness of many NP-hardproblems on this graph. In partiular, many of these problems an be solvedin linear time if the treewidth of the graph is onstant. Reently a number ofresearhers have argued that the graphs produed by web rawls have onstanttreewidth, so that I/O-eÆient algorithms for these graphs would be useful inweb-modelling appliations. Unfortunately the results we disuss next still are oflittle pratial relevane beause the onstants hidden in the big-Oh are super-exponential in the treewidth of the graph and hene are small only for graphs ofextremely small treewidth. Yet it is interesting that at least theoretially thesegraphs allow I/O-eÆient solutions to BFS and shortest paths.Intuitively, the treewidth of a graph G aptures how far awayG is from beinga tree. Hene, quite naturally, the treewidth of a tree is one. A tree-deompositionof a graph G is a tree T storing verties of G at its nodes. The union of thesevertex sets is the vertex set of G. For every edge of G, there exists a node of Tstoring both endpoints of G. The nodes of T storing a vertex v 2 G indue asubtree of T . The width of the tree-deomposition is k if no node of T storesmore than k + 1 verties of G.



Under these onditions, it an be shown that the vertex set Xv stored at anode v 2 T is a separator that partitions G into the subgraphs de�ned by thesubtrees of T obtained by removing v from T . Moreover, if k is onstant, thisseparator obviously has onstant size.In [25℄ it is shown that if G has onstant treewidth, a tree-deomposition ofminimal width for G an be obtained in O(sort(N)) I/Os. The algorithm is fairlyinvolved and follows the internal memory algorithm by Bodlaender and Kloks [7,8℄. Given the tree-deomposition, dynami programming an be applied to T inorder to solve single soure shortest paths on G. In partiular, assuming thattree T is rooted at some node �, it is �rst proessed from the leaves towards theroot to �nd for every node v, the distanes in G(v) between all verties in Xv,where G(v) is the subgraph of G indued by all verties stored at desendantsof v. In a seond phase tree T is proessed from the root towards the leaves, andthe information omputed in the �rst phase is used to ompute the distane fromthe soure s to all verties in G. Proessing T bottom-up or top-down an be doneusing time-forward proessing. Sine T is a tree, this takes O(san(N)) I/Os.Outerplanar graphs. A planar graph is outerplanar if it an be drawn in theplane so that all verties are on the boundary of a single fae. This fae is alledthe outer fae. These graphs have two properties we have seen to be useful forsolving shortest paths and DFS I/O-eÆiently: They are planar by de�nitionand have treewidth at most two. Given that they are planar graphs of smalltreewidth, it is not surprising that for outerplanar graphs there exist extremelysimple algorithms that solve shortest paths and DFS in a linear number of I/Os.The idea behind the shortest path algorithm is to exploit the simple geomet-ri struture of outerplanar graphs to obtain tree-deompositions of these graphsmuh more easily than using the general tree-deomposition algorithm. In par-tiular, Maheshwari and Zeh [24, 32℄ show that an outerplanar embedding of anouterplanar graph an be omputed in O(sort(N)) I/Os. A tree-deomposition ofthe graph is easily obtained from the dual of the omputed embedding. One thetree-deomposition is given, the single-soure shortest path problem an again besolved by applying dynami programming to the omputed tree-deomposition.The DFS-algorithm for outerplanar graphs is based on the following obser-vation: If the graph is bionneted, the boundary of the outer fae is a simpleyle. Hene, the removal of an arbitrary edge from this yle produes a sim-ple path that ontains all verties of the graph and is hene a DFS-tree of thegraph. If the graph is not bionneted, a DFS-tree an be obtained by \gluing"together appropriate spanning trees obtained in this manner for the bionnetedomponents of the graph. Intuitively, the resulting tree is the same as a treeobtained by walking along the boundary of the outer fae and baktraking assoon as a vertex is visited for the seond time.12.2 Planar EmbeddingThe planarity testing and planar embedding algorithm of [26, 32℄ �ts very wellinto the line of I/O-eÆient algorithms for planar graphs disussed in this ourse.



In partiular, all the algorithms for planar graphs we have disussed use the as-sumption that the main memory is apable of holding planar graphs of sizeO�B2� and then apply graph ontration ideas, sometimes somewhat disguised,to solve the problem at hand. The ontration is ahieved by loading eah sub-graph in a B2-partition of the graph into main memory and replaing it withanother graph that enodes the relevant strutural information about the bound-ary verties of the graph more suintly.For planarity testing, all graphs G1; : : : ; Gq in a B2-partition of the givengraph G are tested for planarity. If one of these graphs is non-planar, graph Gannot be planar. Otherwise eah graph Gi is replaed with another planargraph G0i of size O(B). Graphs G01; : : : ; G0q are onstruted so that G is planar ifand only if the approximate graph A obtained as the union of graphs G01; : : : ; G0qis planar. Sine there are O�N=B2� graphs G01; : : : ; G0q , and eah of them hassize O(B), graph A has size O(N=B).To see that this proedure takesO(sort(N)) I/Os, observe that eah graphGi�ts into main memory. Thus, it takes O(san(N)) I/Os to test graphs G1; : : : ; Gqfor planarity and replae them with graphs G01; : : : ; G0q. Sine graph A hassize O(N=B), graph A an be tested for planarity in O(san(N)) I/Os using anylinear-time planarity testing algorithm (e.g., [9℄). The whole algorithm takesO(sort(N)) instead of O(san(N)) I/Os beause it takes O(sort(N)) I/Os toompute a B2-partition P = (S; fG1; : : : ; Gqg) of G.If graph A is reported to be planar, the algorithm of [9℄ also produes a planarembedding of A. Undoing the onstrution of graph G0i from Gi, the embeddingof eah graph G0i indued by the omputed embedding of A an now be replaedwith a onsistent embedding of Gi. This an again be done in main memory, butrequires some are.The most diÆult part of the planarity testing algorithm is to prove thatgraphs G01; : : : ; G0q above exist and that eah graph G0i an be omputed solelyfrom Gi (i.e., without using any additional information about the struture ofgraph G.) Maheshwari and Zeh [26, 32℄ show that this an be done based on adeomposition of Gi into its onneted, bionneted and trionneted ompo-nents.There is a subtle point about the strategy of this algorithm that is worthpointing out: It uses a planar separator algorithm to test whether the graph isplanar. That is, it applies the separator algorithm without knowing whether thegraph is planar. This works only beause the separator algorithm from Setion 9does not use any information provided by a planar embedding of G. It is basedsolely on strutural properties the graph is guaranteed to have if it is planar. Inpartiular, sine it is guaranteed that the separator algorithm produes a smallseparator in O(sort(N)) I/Os if the graph is planar, it an be terminated withthe output that G is not planar if the omputed separator is too big or thealgorithm starts taking too long.12.3 Open ProblemsWe lose with a list of interesting open problems.



Optimal separators for grid graphs. The separator for grid graphs as de-�ned in Setion 12.1 is non-optimal if the grid is sparsely populated. In par-tiular, if all verties in the graph are either on the separator rows or on theseparator olumns, the separator ontains all verties in the graph. This leadsto a suboptimal performane of the shortest path algorithm. It is not hard tosee that the separator algorithm for planar graphs an be modi�ed, in order toobtain optimal separators for grid graphs; but the used mahinery seems tooheavy for graphs of suh a simple struture. Thus, the question is whether thegeometri information of grid graphs an be used to obtain optimal separatorsfor grid graphs more easily than using the planar separator algorithm. Whatabout weighted separators?DFS in grid graphs and graphs of bounded treewidth. The algorithmfor DFS in grid graphs disussed in Setion 12.1 is non-optimal by a pB-fator.It would seem that the ideas of the DFS-algorithm for planar graphs an beadapted to obtain an optimal DFS-algorithm on grid graphs; but no positiveanswer has been obtained so far.The DFS-algorithms for outerplanar and planar graphs exploit the geometryof these graphs to solve the problem in an optimal number of I/Os. The DFS-algorithm for grid graphs exploits the fat that these graphs an be partitionedinto O(N=B) subgraphs, eah of boundary size O�pB�. Graphs of boundedtreewidth have neither a geometri struture, nor is it known how to obtain aseparator partition similar to that obtainable for grid graphs. Hene, geometry-based approahes as well as approahes based on a partition into few subgraphswith small boundary size seem to fail on graphs of bounded treewidth, and thedevelopment of an I/O-eÆient DFS-algorithm for this lass of graphs is open.Semi-external shortest paths. Maheshwari and Zeh [26℄ argue that the mem-ory requirements of their separator algorithm an be redued by a polylog-fator(if not to �(B)) if the semi-external single soure shortest path problem an besolved in O(sort(jEj)) I/Os on arbitrary graphs. It is one of the most halleng-ing open problems to determine how the assumption that the vertex set an beheld in main memory an be exploited in shortest path algorithms to obtain anyI/O-omplexity better than O(jV j+ sort(jEj)).Optimal onnetivity. Finding the onneted omponents of a graph is a prob-lem that an be solved quite easily in linear time in internal memory. However,the existing I/O-eÆient algorithms for this problem are by a log2 log2(jV jB=jEj)fator away from optimal. While the hardness of BFS and DFS seems to stemfrom the fat that algorithms solving these two problems have to visit the ver-ties of the graph in a predetermined order (whih, unfortunately, is not knownto the algorithm), there is no suh limiting fator for onnetivity problems. Thesuboptimality of the existing ontration-based algorithms stems from the fatthat these algorithms redue the number of verties by a onstant fator in eah



iteration, but fail to ahieve the same for the number of edges. An interestingquestion is whether there exists a smarter ontration strategy that also reduesthe number of edges by a onstant fration. If suh a strategy exists, optimalonnetivity algorithms result. If no suh strategy exists, the next thing oneshould look for is a searh-based algorithm similar to BFS or DFS that takesadvantage of the fat that the verties an be visited in a fairly arbitrary order.Optimal BFS, DFS, and shortest paths, or lower bounds. So far it waswidely believed that an
(jV j) lower bound holds for the number of I/Os requiredto solve BFS on general graphs, while only an 
(perm(jV j)) lower bound ouldbe shown. The BFS-algorithm of Setion 6.3 disproves this onjeture. As aresult, we are at a loss as to whether 
�jV j=pB� is indeed a lower bound forBFS or whether BFS an be solved in o�jV j=pB� I/Os. Any result that leadsto an improvement in either diretion is at the top of the wish list of mostresearhers working on I/O-eÆient graph algorithms.For DFS and shortest paths, we are even further away from losing the gapbetween the 
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