External Memory Geometric Data Structures

Lars Arge*

Department of Computer Science
University of Aarhus and Duke University
large@daimi.au.dk

1 Introduction

Many modern applications store and process datasets much larger than the main
memory of even state-of-the-art high-end machines. Thus massive and dynami-
cally changing datasets often need to be stored in space efficient data structures
on external storage devices such as disks. In such cases the Input/Output (or
I/O) communication between internal and external memory can become a ma-
jor performance bottleneck. Many massive dataset applications involve geometric
data (for example points, lines, and polygons) or data that can be interpreted ge-
ometrically. Such applications often perform queries that correspond to searching
in massive multidimensional geometric databases for objects that satisfy certain
spatial constraints. Typical queries include reporting the objects intersecting
a query region, reporting the objects containing a query point, and reporting
objects near a query point.

While development of practically efficient (and ideally also multi-purpose)
external memory data structures (or indezes) has always been a main concern
in the database community, most data structure research in the algorithms com-
munity has focused on worst-case efficient internal memory data structures. Re-
cently however, there has been some cross-fertilization between the two areas. In
these lecture notes we discuss some of the recent advances in the development
of worst-case efficient external memory geometric data structures. We will fo-
cus on fundamental dynamic structures for one- and two-dimensional orthogonal
range searching, and try to highlight some of the fundamental techniques used
to develop such structures.

Accurately modeling memory and disk systems is a complex task. The pri-
mary feature of disks we want to model is their extremely long access time
relative to that of internal memory. In order to amortize the access time over
a large amount of data, typical disks read or write large blocks of contiguous
data at once and therefore the standard two-level disk model has the following
parameters:

* This work was supported in part by the US National Science Foundation through RI
grant ETA-9972879, CAREER grant CCR—9984099, ITR grant EIA-0112849, and
U.S.-Germany Cooperative Research Program grant INT-0129182, by the US Army
Research Office through grant W911NF-04-1-0278, and by an Ole Rgmer Scholarship
from the Danish National Science Research Council.

N = number of objects in the problem instance;
T = number of objects in the problem solution;
M = number of objects that can fit into internal memory;

B = number of objects per disk block;

where B2 < M < N. An I/O operation (or simply I/0) is the operation of
reading (or writing) a block from (or into) disk. Refer to Figure 1. Computation
can only be performed on objects in internal memory. The measures of perfor-
mance are the number of I/Os used to solve a problem, the amount of space
(disk blocks) used, and sometimes the internal memory computation time.

N R s

Fig. 1. Disk model. An I/O moves B contiguous elements between disk and main
memory (of size M).

Several authors have considered more accurate and complex multi-level mem-
ory models than the two-level model. An increasingly popular approach to in-
crease the performance of I/O systems is to use several disks in parallel so
work has especially been done in multi disk models. We will concentrate on the
two-level one-disk model, since the data structures and data structure design
techniques developed in this model often work well in more complex models.

Outline of note. The rest of this note is organized as follows. In Section 2
we discuss the B-tree, the most fundamental (one-dimensional) external data
structure. In Sections 3 to 5 we then discuss variants of B-trees, namely weight-
balanced B-tress, persistent B-trees, and buffer-tress. In Section 6 we discuss the
interval stabbing problem, which illustrates many of the important techniques
and ideas used in the development of I/O-efficient data structures for higher-
dimensional problems. In Section 7 and Section 8 we discuss data structures
for 3-sided and general (4-sided) two-dimensional orthogonal range searching,
respectively. Throughout the note we assume that the reader is familiar with
basic internal memory data structures and design and analysis methods, such as
balanced search trees and amortized analysis

Remarks. Ruemmler and Wilkes [69] discuss modern disk systems and why
they are hard to model accurately. The two-level disk model were introduced by

Aggarwal and Vitter [11]; see also e.g. [80,57]. For convenience we in this note
assume that M > B? (such that M/B > B) instead of the normal assumption
that M > 2B; all the structures we discuss can be modified to work under
the weaker assumption. Aggarwal and Vitter also showed that external sorting
requires O(% logar/ &) 1/Os. For a discussion of parallel disk result see e.g. the
recent survey by Vitter [79]. A somewhat more comprehensive survey of external
geometric data structures than the one given in these notes can be found in a
recent survey by the author [12]. While the focus of this note and the above
surveys are on worst-case efficient structures, there are many good reasons for
developing simpler (heuristic) and general purpose structures without worst-case
performance guarantees. A large number of such structures have been developed
in the database community. See for example the surveys in [10, 46, 64].

2 B-trees

The B-tree is the most fundamental external memory data structure. It cor-
responds to an internal memory balanced search tree. It uses linear space—
O(N/B) disk blocks—and supports insertions and deletions in O(logg N) I/Os.
One-dimensional range queries, asking for all elements in the tree in a query inter-
val [g1, g2, can be answered in O(logz N +T/B) I/Os, where T is the number of
reported elements. The space, update, and query bounds obtained by the B-tree
are the bounds we would like to obtain in general for more complicated prob-
lems. The bounds are significantly better than the bounds we would obtain if we
just used an internal memory data structure and virtual memory. The O(N/B)
space bound is obviously optimal and the O(loggz N +T/B) query bound is opti-
mal in a comparison model of computation. Note that the query bound consists
of an O(logy N) search-term corresponding to the familiar O(log, N) internal
memory search-term, and an O(T'/ B) reporting-term accounting for the O(T/B)
I/Os needed to report T' elements.

B-trees come in several variants, which are all special cases of a more general
class of trees called (a, b)-trees:

Definition 1. A tree T is an (a,b)-tree (a > 2,b > 2a — 1) if the following
conditions hold:

— All leaves of T are on the same level and contain between a and b elements.

— FEzxcept for the root, all nodes have degree between a and b (contain between
a—1 andb—1 elements)

— The root has degree between 2 and b (contain between 1 and b—1 elements).

Normally, the N data elements are stored in the leaves (in sorted order) of an
(a,b)-tree T, and elements in the internal nodes are only used to guide searches.
This way 7 use linear space and has height O(log, N). To answer a range query
[q1, q2], we first search down 7 for ¢; and g2 and then we report the elements
in the leaves between the leaves containing ¢; and g¢o. If we choose a,b = O(B)
each node and leaf can be stored in O(1) disk blocks. Thus we obtain a tree of

©(B) O(logp N)

e (B)

Fig. 2. B-tree. All internal nodes (except possibly the root) have fan-out ©(B) and
there are ©O(N/B) leaves. The tree has height O(logg N).

height O(logg N) using O(N/B) disk blocks, where a query can be perform in
O(logg N + T/B) 1/0s. Refer to Figure 2.

To insert an element z in an (a, b)-tree 7 we first searching down 7 for the
relevant leaf v and insert x in w. If v now contains b + 1 elements we split it
into two leaves u/ and u” with [2£1] and |25] elements respectively. Both new
leaves now have between || > a (since b > 2a — 1) and [2£L] < b (since
b > 2a —1 > 3) elements. Then we remove the reference to u in parent(u) and
insert references to v’ and u” instead (that is, we insert a new routing element
in parent(u)). If parent(u) now has degree b + 1 we recursively split it. Refer
to Figure 3. This way the need for a split may propagate up through O(log, N)
nodes of the tree. A new (degree 2) root is produced when the root splits and

the height of the tree grows by one.

b+1 [(+1)2] | (b+1)/2]

Fig. 3. Splitting degree b+ 1 node v (or leaf with b+ 1 elements) into nodes v’ and v".

Similarly, to delete an element x we first find and remove = from the relevant
leaf u. If u now contains a — 1 elements we fuse it with one of its siblings ', that
is, we delete v’ and inserts its elements in u. If this results in u containing more
then b (but less than a—1+b < 2b) elements we split it into two leaves. As before,
we also update parent(u) appropriately. If u was split, the routing elements in
parent(u) are updated but its degree remains unchanged; thus effectively we
have taken an appropriate number of elements from «’ and inserted them in
u—also called a share. Otherwise, the degree decreases by one and we may need
to recursively fuse parent(u) with a sibling. Refer to Figure 4. As before, fuse

>2a-1

Fig. 4. Fusing degree a — 1 node v (or leaf with a — 1 elements) with sibling v'.

operations may propagate up through O(log, N) nodes. If this results in the root
having degree one, it is removed and its child becomes the new root, that is, the
height of the tree decreases by one.

A single update in an (a,b)-tree can at most cause O(log, N) rebalancing
operations (splits or fuses). In fact, its easy to see that if b = 2a — 1 there
exists a sequence of updates where each update results in ©(log, N) rebalancing
operations. Refer to Figure 5. However, if b = 4a we only need to modify the
delete algorithm slightly to obtain a structure where an update can only cause
O(% log, N) rebalancing operations amortized: A new leaf u constructed when
performing a split during insertion rebalancing contains approximately 4a/2 =
2a elements. Thus a rebalancing operation will not be needed on u until at least
a updates (a deletions or 2a insertions) have been performed in it. Just after
a fuse of a leaf u during delete rebalancing, v contains between a — 1 + a =
2a — 1 and a — 1 + 4a = 5a — 1 elements. By splitting v if it contains more
than 3a elements (performing a share), we can guarantee that leaves involved in
rebalancing operations during a delete contain between approximately %a and
3a elements (since 3a < 2a — 1 < 22=1 < 3a). Thus a rebalancing operation will
not be needed for at least $a operations (3a deletions or a insertions). Therefore
O(N/a) leaf rebalancing operations are needed during N operations. The result

Delete

-
%

Insert

Fig. 5. Alternating insertion and deletion of the same element in an (2,3)-tree can
cause O(log, N) rebalancing operations each.

then follows, since one such operations trivially can at most lead to O(log, V)
rebalancing operations on internal nodes.

As mentioned, a B-tree is basically just an (a,b)-tree with a,b = O(B).
Sometimes, especially in the context of external data structures, it can be useful
to use variants of (a,b)-trees where the constraints on the degree of internal
nodes and on the number of elements in the leaves are not the same. For the
purpose of these notes we therefore define the following.

Definition 2. 7 is a B-tree with branching parameter b and leaf parameter k
(b, k > 8) if the following conditions hold:

— All leaves of T are on the same level and contain between ikz and k elements.
— FExcept for the root, all nodes have degree between ib and b
— The root has degree between 2 and b.

If we choose k = §2(B) we obtain a B-tree that can be stored in a linear
number of disk blocks. By modifying the update algorithms as discussed above
for the leaves as well as the nodes one level above the leaves, we then obtain the
following.

Theorem 1. An N-element B-tree T with branching parameter b and leaf pa-
rameter k = 2(B) uses O(N/B) space, has height O(log, &), and the amortized
number of internal node rebalancing operations (split/fuse) needed after an up-
date is O(37 log,).

Corollary 1. A B-tree with branching parameter ©(B¢), O < ¢ < 1, and
leaf parameter O(B) uses O(N/B) space, supports updates in O(logg. N) =
O(logg N) I/0s and queries in O(logg N +T/B) 1/0Os.

In internal memory, an N element search tree can be built in O(N log N)
time, which is optimal, simply by inserting the elements one by one. In external
memory we would use O(N logg N) I/Os to construct a B-tree using the same
method. Interestingly, this is not optimal since sorting N elements in external
memory takes @(% logr/p %) I/Os. We can construct a B-tree in the same
bound by first sorting the elements and then construct the tree level-by-level
bottom-up.

Theorem 2. An N-element B-tree T with branching parameter b and leaf pa-
rameter k = 2(B) can be constructed in O(% logrr/ s) 1/0s.

Remarks. B-trees with elements in the leaves, as the ones described here, are
normally called BT -trees in the database literature. Good references on B-tree
variants and properties include [24,36,57]; (a,b)-tree properties are discussed
extensively in [53]. As mentioned, a single update in an (a, b)-tree with b = 2a—1
can cause O(log, N) rebalancing operations. However, in an (a, b)-tree with b >
2a the number of rebalancing operations caused by an update can be reduced to
O(1/a) amortized [53]. In this note we only need the weaker O(% log, N) bound
that is easy to shown for b = 4a.

Several alternative B-tree balancing schemes, such as level-balance [1] and
weigh-balance [23], as well as several B-tree extensions, such as persistent B-
trees [39,25,77], buffer-trees [13], and string B-trees [44], have been developed.
In the following sections we discuss some of these structures (weight-balanced
B-trees, persistent B-trees, and buffer-trees).

3 Weight-balanced B-trees

The weight w(v) of node v in a search tree 7 is defined as the the number of
elements in the leaves of the subtree rooted in v. When secondary structures are
attached to internal nodes, it is often useful if rebalancing operations are not
performed too often on heavy nodes. It is especially useful to use a search tree
where a node v of weight w(v) is only involved in a rebalancing operation once for
every 2(w(v)) updates below it. Unfortunately, (a, b)-trees (and consequently B-
trees) do not have this property. Instead weight-balanced B-trees, balanced using
weight constraints rather than degree constraints, are used. Refer to Figure 6.

Definition 3. 7 is a weight-balanced B-tree with branching parameter b and
leaf parameter k (b, k > 8) if the following conditions hold:

— All leaves of T are on the same level (level 0) and each leaf u has weight
1k < w(u) < k.

— An internal node v on level | has weight v(w) < b'k.

— Except for the root, an internal node v on level | has weight v(w) > %blk.

— The root has more than one child.

The weight constraints on nodes of a weight-balanced B-tree actually implies
bounded degree similar to a B-tree; a node minimally has degree iblk ok = %b
and maximally degree b'k/ %bl_lk = 4b. Thus a weight-balanced B-tree on N
elements has height O(log, %) Weight-balanced B-tree are similar to normal
B-trees in that all leaves are on the same level and, as we will discuss below,
rebalancing can be done by splitting and fusing nodes. However, in some sense
weight-balanced B-trees are more balanced than normal B-trees. While the chil-
dren of a node v on level [of a weight-balanced B-tree are of approximately the

Lyl .. level [

iblilk bR level [— 1

Fig. 6. Level [node in weight balanced B-tree has weight between iblk and b'k.

same weight ©(b'~1k), their weight can differ by an exponential factor in [in a
B-tree.

To insert an element x in a weight-balanced B-tree 7 we first search down
T for the relevant leaf u and insert x. After this some of the nodes on the path
from u to the root of 7 may be out of balance, that is, a node on level I might
have weight b'k + 1 (leaf u can have weight °k + 1). To rebalance 7 we visit
these O(log, N) nodes starting with « and working towards the root: If a node
node v on level | has weight b'k + 1 we would like to split it into two nodes v’
and v” of weight [1(b'k +1)] and [4(b'k + 1)]. However except for u, a perfect
split is generally not possible since we have to perform the split so that v’ gets
the, say i, first (leftmost) of v’s children and v” gets the rest of the children.
However, since nodes on level [— 1 have weight at most b'~ 1k < %blkz, we can
always find an ¢ such that if we split at the ¢’th child the weight of both v’
and v” is between $b'k —b' "1k > 3b'k (> 1b'k) and bk 40Tk 41 < 2k 41
(< b'k). Since the new nodes v and v” are relatively rebalanced, 2(b'k) updates
have to be performed below each such node before it needs to be rebalanced
again. More precisely, at least %blk + 1 deletions or %blk insertions have to be
performed below v’ or v” before they need to be rebalanced again.

Similarly, to perform a deletion we first delete = from the relevant leaf u. Then
we rebalance the relevant nodes on the path to the root of 7. If a node v on level
[has weight iblkf 1 we fuse it with one of its siblings. The resulting node v’ has
weight at least %blk: -1+ %blk: = %blk: — 1 and at most %blk: —1+bk= %blk: —1.
If v' has weight greater than %blk we split it into two nodes (and thus effectively
perform a share) with weight at least =b'k —b!"1k—1 >]l—f’sblk —1 (> 1b'k) and
at most 2b'k qlL b=k < Solk < Zb'k (< b'k). Again 2(b'k) updates ($b'k + 1

insertions or 1—6blk deletions) need to be performed below a new node before it

needs rebalancing.

Theorem 3. An N -element weight-balanced B-tree with branching parameter b
and leaf parameter k = 2(B) uses O(N/B) space, has height O(log, &), and
the number of rebalancing operations (splits of fuses) needed after an update
is bounded by O(log, %) Between two consecutive rebalancing operations on a
node v, 2(w(v)) updates have to be performed in leaves below v.

As previously, we can construct a weight-balanced B-tree in (% log,, /B)
I/Os by first sorting the elements and then constructing the tree level-by-level
bottom-up.

Corollary 2. A weight-balanced B-tree with branching parameter @(B°), 0 <
¢ < 1, and leaf parameter O(B) uses O(N/B) space and can be constructed in
@(%bgM/B) 1/0s. It supports updates in O(logg N) 1/Os and queries in
O(logg N +T/B) 1/Os.

Remarks. The weight-balance B-tree was introduced by Arge and Vitter [23].
The structure resembles the k-fold tree of Willard [81]. It can be viewed as an ex-
ternal version of the BB[a]-trees [63], which are binary and (normally) rebalanced
using rotations and therefore not efficient in external memory. Weight-balanced

B-trees combines the useful properties of B-trees and BB[a]-trees. They are de-
fined using weight constraints like BB[«a]-trees and therefore they have the useful
weight-property (node v of weight w(v) only rebalanced every 2(w(v)) opera-
tions), while at the same time being balanced using normal B-tree operations
(splitting and fusion of nodes). Like BB[a]-trees, the weight-property means that
the weight-balanced B-tree can also be rebalanced using partial-rebuilding (see
e.g. [65]): Instead of splitting or fusing nodes on the path to the root after per-
forming an update in a leaf, we can simply rebuild the tree rooted in the highest
unbalanced node on this path. Since the (sub-) tree can easily be rebuilt in a
linear number of I/0s we obtain an O(logz N) amortized update bound.

4 Persistent B-trees

In some database applications one need to be able to update the current database
while querying both the current and earlier versions of the database (data struc-
ture). One simple but very inefficient way of supporting this functionality is
to copy the whole data structure every time an update is performed. Another
and much more efficient way is through the (partially) persistent technique, also
sometimes referred to as the multiversion method. Instead of making copies of
the structure, the idea in this technique is to maintain one structure at all times
but for each element keep track of the time interval (ezistence interval) it is
really present in the structure.

Definition 4. A persistent B-tree T with parameter b > 16 consists of a directed
graph 1g and a B-tree T with the following properties:

— Each node of 1g contains a number of elements each augmented with an
existence interval defined by an insertion and a deletion time (or version).

— For any time/version t, the nodes of Tg with at least one element with exis-
tence interval containing t form a B-tree with leaf and branching parameter
b.

— 1 is a B-tree with leaf and branching parameter b on the indegree 0 node
(roots) of Ig ordered by minimal existence interval beginning time (insert
version).

If we use b = B, we can easily query any version of a persistent B-tree
in O(logg N + T/B) 1/0s: To perform a query at time ¢, we simply find the
appropriate root node in 7g using 75 and then we perform the search in 7g as in
a normal B-tree. Below we discuss how to update the most recent (the current)
version of a persistent B-tree efficiently. We will say that an element is alive at
time ¢ (version t) if ¢ is in its existence interval; otherwise we call it dead. In
order to insure linear space use, we will maintain the new-node invariant that
whenever a new node is created it contains between %b and %b alive elements
(and no dead elements); note that this also means that its a valid parameter b
B-tree node.

To insert a new element x in the current version ¢ of a persistent B-tree we
first search for the relevant leaf u (in the B-tree defined by 7g at time t) and

insert x. If u now contains b+ 1 elements (dead or alive) we perform a version-
split: We make a copy of the alive elements in u and mark all elements in u
as deleted at time t (i.e. we delete u from the B-tree “embedded” in 7 at the
current time). If the number of copied elements is between %b and %b we then
simply create one new leaf node v’ with these elements and recursively update
parent(u) by persistently deleting the reference to u (as described below) and
inserting a reference to u’. If the number of copied elements is greater than
b we instead create two new leaves v’ and u” with approximately half of the
elements each, and update parent(u) recursively in the appropriate way. The
two new leaves u’ and w” both contain at most [%2] < Ib elements and more
than [$2b] > 2b elements so the new-node invariant is fulfilled. Note now this
corresponds to a split in an (a, b)-tree. Finally, if the number of copied elements
is smaller than %b we perform a version-split on a sibling u to obtain between b
and b other alive elements, for a total of between ib + ib = %b and %b +b= %b
elements. If we have less than %a elements we simply create a new leaf node v’.
Otherwise, we create two new leaves u/ and u’ containing between |£Ib] > 2b
and [$4b] < £b elements (perform a split). This way the new-node invariant is
fulfilled. Finally, we recursively update parent(u) appropriately. The first case
corresponds to a fuse in the B-tree embedded in 7 at time ¢, while the second
corresponds to a share. It is easy to see that nodes of 7g with live elements at
the current time form a B-tree with leaf and branching parameter b, that is, that

T is a correct persistent B-tree.

A deletion is handled similarly to an insertion. First we find the relevant
element x in a leaf u and mark it as deleted. This may result in u containing
ib — 1 alive elements and therefore we perform what corresponds to a fuse or
share as previously: We perform a version-split on « and one of its siblings to
obtain a total of between ib + ib -1= %b —1and b+ ib -1= %b — 1 alive
elements. We then either create a new leaf u’ with the obtained elements, or split
them and create two new leaves u’ and u” precisely as previously, fulfilling the
new-node invariant. We also recursively update parent(u) as previously. Again
it is easy to see that 7 is a correct persistent B-tree after the deletion.

An insertion or deletion after IV operations on an initially empty persistent
B-tree performs O(log, N) rebalancing operations since the rebalancing at most
propagates from u to the root of the B-tree corresponding to the current version.
To see that the update algorithms (the new-node invariant) ensure linear space
use, first note that a rebalance operation on a leaf creates at most two new
leaves. Once a new leaf v’ is created, at least éb updates have to be performed
on u’ before a rebalance operation is needed on it again. Thus at most 2;}’—8
leaves are created during N updates. Similarly, we can argue that the number of
leaf version-splits during N updates is Qb% (two version splits might only create
one new leaf). Each time a leaf is created or a leaf version-split performed, a
corresponding insertion or deletion is performed recursively one level up the tree.
Thus by the same argument the number of nodes created one level up the tree is

bounded by 22 (1]\15)2- By induction, the number of nodes created [levels up the
8

tree is bounded by 2!t N __ a b)l —7. The total number of nodes constructed over N

updates is therefore bounded by 3 T ZlogB (& b , which is O(4]) since b > 16.

Theorem 4. A persistent B-tree with parameter ©(B) can be implemented such
that after N insertions and deletions in an initially empty structure, it uses
O(N/B) space and supports range queries in any version in O(logg N +T/B)
I/0s. An update can be performed on the newest version in O(logg N) I/Os.

Remarks. General techniques for making data structures persistent were devel-
oped by Driscoll et al. [39]; see also [72]. They can be used to develop per-
sistent B-trees. Partially persistent B-trees (and in general partially persistent
structures) are sometimes referred to as multiversion B-trees (multiversion struc-
tures) [25, 77]. Our description of persistent B-trees follow that of Arge et al. [14]
and Becker et al. [25].

Several times in later sections we will construct a data structure by per-
forming N insertions and deletions on an initially empty persistent B-tree, and
then use the resulting (static) structure to answer queries. Using the update
algorithms discussed in this section the construction takes O(N logz N) I/Os.
Unlike B-trees and weight-balanced B-trees, it seems hard to construct the struc-
ture efficiently bottom-up. However, as discussed in the next section, the so-
called buffer-tree technique can be used to improve the O(N loggz N) bound
to O(logy/ s B) Utilizing the distribution-sweeping technique, Goodrich et
al. [47] showed how to construct a persistent B-tree structure (different from the
one described above) in the same bound.

The persistent B-tree as described, as well as the structure by Goodrich et
al. [47], requires that every pair of elements in the structure are comparable—
even a pair of elements not present in the structure at the same time. This
sometimes create problems, e.g. when working with geometric objects (such as
line segments). Arge et al. [14] described a modified version of the persistent B-
tree that only requires that elements present at the same time are comparable.
Unfortunately, this structure cannot be constructed efficiently using the buffer-
tree technique.

5 Buffer trees

In internal memory we can sort N elements in optimal O(N log N) time using
O(N) operations on a dynamic balanced search tree. Using the same algorithm

and a B-tree in external memory results in an algorithm using O(N logg N) I/Os.
Blogp N

log /5 (N/B)
ing algorithm we need a search tree that supports updates in O(E logys s %)
I/0Os. In general, if we were able to perform insertions on various structures, for
example on a persistent B-tree, in O(4 1ogM/B) I/Os we would be able to
construct the structures in the optimal O(logyr/ &) 1/0s simply by perform-
ing N insertions. In this section we discuss the buffer tree technique that can

This is a factor of from optimal. In order to obtain an optimal sort-

be used to obtain this bound amortized by introducing “laziness” in the update
algorithms and utilizing the large main memory to process (portions of) a large
number of updates simultaneously.

[J M elements

OQlog /5)

Fig. 7. Buffer tree.

The basic buffer tree is simply a B-tree with branching parameter M /B and
leaf parameter B, where each internal node has been augmented with a buffer
of size M. Refer to Figure 7. The idea is then to perform operations in a “lazy”
manner using the buffers. For example, to perform an insertion we do not search
all the way down the tree for the relevant leaf. Instead, we simply insert it in
the buffer of the root. When a buffer “runs full” the elements in the buffer are
then “pushed” one level down to buffers on the next level. We can perform such
a buffer-emptying process in O(M/B) 1/Os since the elements in the buffer fit in
main memory and the fan-out of the tree is O(M/B). If the buffer of any of the
nodes on the next level becomes full by this process, the buffer-emptying process
is applied recursively. Since we push ©(M) elements one level down the tree using
O(M/B) I/Os (that is, we use O(1) I/Os to push one block one level down), we
can argue that every block of elements is touched a constant number of times
on each of the O(logy, %) levels of the tree. Thus, disregarding rebalancing,
inserting N elements requires O(% log,, /B) 1/Os in total. Below we discuss
the buffer technique in more detail and show how to perform both insertions and
deletions. Note that as a result of the laziness, we can have several insertions
and deletions of the same element in the tree at the same time and we therefore
“time stamp” elements when they are inserted in the root buffer.

Definition 5. A basic buffer tree T is

— A B-tree with branching parameter % and leaf parameter B where;
— FEach internal node has a buffer of size M.

We perform an insertion or deletion on a buffer tree 7 as follows: We con-
struct an element consisting of the element in question, a time stamp, and an
indication of whether the element corresponds to an insertion or a deletion.
When we have collected B such elements in internal memory we insert them

in the buffer of the root. If this buffer now contains more than M elements
we perform a buffer-emptying process. During such a process, and the result-
ing recursive buffer-emptying processes, buffers can contain many more than M
elements (when many elements from a buffer is distributed to the same child).
However, by distributing elements in sorted order, we maintain that a full buffer
consists of at most M unsorted elements followed by a list of sorted elements;
it can thus be sorted in a linear number of I/Os by first loading and sorting the
M unsorted elements and then merging them with the list of sorted elements.
We perform buffer-emptying processes differently on internal nodes (nodes that
do not have leaves as children) and on leaf nodes. On internal nodes we ba-
sically proceed as described above: We first sort the elements while removing
corresponding insert and delete element (with time stamps in the correct or-
der). Then we in a simple scan distribute the remaining elements to buffers one
level down. Finally, we apply the buffer-emptying process on children with full
buffers, provided they are internal nodes. We proceed to empty leaf node buffers
only after finishing all internal node buffer-emptying processes. The reason is of
course that a buffer-emptying process on a leaf node may result in the need for
rebalancing. By only emptying leaf nodes after all internal node buffer-emptying
processes have been performed we prevent rebalancing and buffer-emptying pro-
cesses from interfering with each other.

We empty all relevant leaf nodes buffers one-by-one while maintaining the
leaf-emptying invariant that all buffers of nodes on the path from the root of 7°
to a leaf node with full buffer are empty. The invariant is obviously true when
we start emptying leaf buffers. To empty the buffer of a leaf node v we first sort
the buffer while removing matching inserts and deletes as in the internal node
case. Next we merge this list with the elements in the, say k, leaves below v,
again removing matching elements. Then we replace the elements in the k leaves
with the resulting set of sorted elements (and update the “routing elements”
in v). If we do not have enough elements to fill the k leaves we instead insert
“placeholder-elements”. If we have more than enough elements, we insert the
remaining elements one-by-one and rebalance the B-tree. We can rebalance as
normally using splits (Figure 3), since the leaf-emptying invariant insures that
all nodes from u to the root of 7 have empty buffers.

After we have emptied all leaf-node buffers we remove the placeholder-ele-
ments one-by-one. We do so basically as in a normal B-tree, except that we
slightly modify the rebalancing operations. Recall that rebalancing after a delete
in a leaf u involves fusing (Figure 4) a number of nodes on the path to the
root of 7 with one of their siblings (possibly followed by a split). The leaf-
emptying invariant ensures that a node v on the path from u to the root has
an empty buffer, but its siblings may not have empty buffers. Therefore we
perform a buffer-emptying processes on v’s (one or two) immediate sibling(s)
before performing the actual fuse. The emptying of the buffer of a sibling node
v’ can result in leaf node buffer’s running full; in such cases the leaf-emptying
invariant is still fulfilled since all nodes on the path from the parent of v’ have
empty buffers (since it is also the parent of v). We empty all relevant buffers,

excluding leaf-node buffers, before performing the fuse on v. Note that the special
way of handling deletes with placeholder-elements ensures that we are only in the
process of handling (rebalancing after) one delete operation at any given time
(insert rebalancing, splits, after a leaf buffer emptying cannot result in buffer-
emptying processes). Note also that we empty the buffers of both immediate
siblings of v because insert rebalancing may result in one (but not both) of them
not having the same parent as v (if the parent of v splits).

A buffer-emptying process on a node containing X elements, not counting
recursive buffer-emptyings or rebalancing, takes O(X/B + M/B) 1/Os: Scan-
ning the X elements takes O(X/B) I/Os and distributing them to the ©(M/B)
buffers one level down (in the internal node case) or scanning the ©(M) ele-
ments below it (in the leaf node case) takes another O(X/B + M/B) 1/O. Thus
the cost of emptying a full buffer is O(X/B + M/B) = O(X/B) 1/0s, and the
argument in the beginning of this chapter can be used to show that the to-
tal cost of all full buffer-emptying, not counting rebalancing, is O(% logys/ %)
I/Os. By Theorem 1 the total number of internal node rebalancing operations
performed during N updates is O(#/B log s/ %) Since each such operation
takes O(M/B) I/Os (to empty a non-empty buffer), the total cost of the rebal-
ancing is also O(% logas/ X) 1/0s.

Theorem 5. The total cost of a sequence of N update operation on an initially
empty buffer tree is O(% logyr/ X) 1/0s.

In order to use the buffer tree in a simple sorting algorithm we need an empty
operation that empties all buffers and then reports the elements in the leaves in
sorted order. All buffers can be emptied simply by performing a buffer-emptying
process on all nodes in the tree in BFS order. As emptying one buffer costs O(%)
I/Os (not counting recursive processes), and as the total number of buffers in

the tree is O(% /24), we obtain the following.

Theorem 6. The total cost of emptying all buffers of a buffer tree after per-
forming N updates on it is O(% logrr/ B X 1/0s.

Corollary 3. A set of N elements can be sorted in O(% logyr/) 1/0s using
a buffer tree.

Using the buffer tree techniques, a persistent B-tree can be constructed ef-
ficiently (while not performing queries), simply by performing the N updates
using buffers and then empty all the buffers as above.

Corollary 4. A sequence of N updates can be performed on an initially empty
persistent B-tree (the tree can be constructed) in O(% log /B X) 1/0s.

The buffer tree technique can also be used to develop an efficient priority
queue structure. A search tree structure can normally be used to implement a
priority queue because the smallest element in a search tree is in the leftmost
leaf. The same strategy cannot immediately be used on the buffer tree, since the

smallest element is not necessarily stored in the leftmost leaf—smaller elements
could reside in buffers of the nodes on the leftmost root-leaf path. However, there
is a simple strategy for performing a deletemin operation in the desired amortized
I/O bound. We simply perform a buffer-emptying process on all nodes on the
path from the root to the leftmost leaf using O(4% -logn 1) 1/Os amortized.
Then we delete the 9(% - B) smallest elements stored in the children (leaves)
of the leftmost leaf node and keep them in internal memory. This way we can
answer the next ©(M) deletemin operations without performing any I/O0s. Of
course we then also have to update the minimal elements in internal memory as
insertions and deletions are performed, but we can do so in a straightforward
without performing extra I/Os. Thus, since we use O(%logM/B X) 1/0s to
perform @(M) deletemin operations, we obtain the following.

Theorem 7. Using O(M) internal memory, an arbitrary sequence of N insert,
delete and deletemin operations on an initially empty buffer tree can be performed
in O(% log /B X 1/0s.

Remarks. The buffer tree technique was developed by Arge [13] who also showed
how the basic buffer tree can support range queries in O(F logy/z E+Z)1/0s
amortized. The range queries are batched in the sense that we do not obtain
the result of a query immediately; instead parts of the result will be reported at
different times as the query is pushed down the tree. Arge [13] also showed how
to implement a buffered segment tree. The buffer tree based priority queue
was described by Arge [13]. Note that in this case queries (deletemins) are not
batched. By decreasing the fan-out and the size of buffers to ©((M/B)°) for
some 0 < ¢ < 1 the buffer tree priority queue can be modified to use only
O((M/B)¢) rather than ©(M/B) blocks in internal memory. This is useful in
applications that utilize more than one priority queue (see, e.g., [22]). Using the
buffer technique on a heap, Fadel et al. [43] and Kumar and Schwabe [60] devel-
oped alternative external priority queues. Using a partial rebuilding idea, Bro-
dal and Katajainen [29] developed a worst-case efficient external priority queue,
that is, a structure where a sequence of B operations requires O(logM/ B %)
I/Os worst-case. Using the buffer tree technique on a tournament tree, Kumar
and Schwabe [60] developed a priority queue supporting update operations in
O(% log &) I/Os amortized. Note that if the key of an element to be updated
is known, the update can be performed in O(% logar/) 1/0s on a buffer tree
using a deletion and an insertion. The buffer tree technique has also been used
on several other data structures, such as SB-trees [16] and R-trees [17,75].

6 Dynamic interval stabbing: External interval tree

After considering simple one-dimensional problems, we now turn to higher-
dimensional problems. In this section we consider the “1.5-dimensional” interval
stabbing problem: We want to maintain a dynamically changing set of (one-
dimensional) intervals I such that given a query point ¢ we can report all T
intervals containing ¢ efficiently.

q

Fig. 8. Static solution to stabbing query problem using persistence.

The static version of the stabbing problem (where the set of intervals is fixed)
can easily be solved I/O-efficiently using a sweeping idea and a persistent B-tree.
Consider sweeping the N intervals in I along the z-axis starting at —oo, inserting
each interval in a B-tree when its left endpoint is reached, and deleting it again
when its right endpoint is reached. To answer a stabbing query with ¢ we simply
have to report all intervals in the B-tree at “time” g—refer to Figure 8. Thus by
Theorem 4 and Corollary 4 we have the following.

Theorem 8. A static set of N intervals can be stored in a linear space data
structures such that a stabbing query can be answered in O(logg N+T/B) 1/0s.
The structure can be constructed in O(% logrr/ B) 1/0s.

In internal memory, the dynamic interval stabbing problem is solved using
an interval tree. Such a tree consists of a binary base tree 7 on the sorted set of
interval endpoints, with the intervals stored in secondary structures associated
with internal nodes of the tree. An interval X, consisting of all endpoints below
v is associated with each internal node v in a natural way. The interval X, of
the root r of 7 is thus divided in two by the intervals X,, and X, associated
with its two children v; and v,., and an interval is stored in r if it contains the
“boundary” between X,, and X, (if it overlaps both X,, and X,_). Refer to
Figure 9. Intervals on the left (right) side of the boundary are stored recursively
in the subtree rooted in v; (v,). Intervals in r are stored in two structures: A
search tree sorted according to left endpoints of the intervals and one sorted
according to right endpoints. A stabbing query with ¢ is answered by reporting

Fig. 9. Internal interval tree and examples of intervals stored in secondary structures
of the root.

the intervals in r containing ¢ and recursively reporting the relevant intervals in
the subtree containing q. If ¢ is contained in X, , the intervals in containing ¢
are found by traversing the intervals in r sorted according to left endpoints,
from the intervals with smallest left endpoints toward the ones with largest left
endpoints, until an interval not containing ¢ is encountered. None of the intervals
in the sorted order after this interval can contain ¢. Since O(T}.) time is used to
report T, intervals in r, a query is answered in O(log, N + T') time in total.

A first natural idea to make the interval tree I/O-efficient is to group nodes
in 7 together into small trees of height ©(log B) (©(B) nodes) and storing them
together on disk, effectively obtaining a tree with fanout @(B). This way a root-
leaf path can be traversed in O(logz N) I/Os. However, to answer a query we
may still use O(log N) I/Os to query the O(log N) secondary structures on a
root-leaf path. Below we show how to modify the structure further in order to
overcome this problem, obtaining an external interval tree.

Structure. An external interval tree on I consists of a weight-balanced B-
tree with branching parameter i\/ﬁ and leaf parameter B (Corollary 2) on
the O(N) sorted endpoints of intervals in I. This base tree T tree has height
O(log,/5 N) = O(logp N). As in the internal case, with each internal node v
we associate an interval X, consisting of all endpoints below v. The interval X,,
is divided into at most /B subintervals by the intervals associated with the
children vy, vs,... of v. Refer to Figure 10. For illustrative purposes, we call
the subintervals slabs and the left (right) endpoint of a slab a slab boundary.
We define a multislab to be a contiguous range of slabs, such as for example
Xy Xy Xv, in Figure 10. In a node v of 7 we store intervals from I that cross
one or more of the slab boundaries associated with v, but none of the slab
boundaries associated with parent(v). In a leaf u we store intervals with both
endpoints among the endpoints in u; we assume without loss of generality that
the endpoints of all intervals in I are distinct, such that the number of intervals
stored in a leaf is less than B/2 and can therefore be stored in one block. We store
the set of intervals I, C I associated with v in the following ©(B) secondary
structures associated with v.

— For each of O(v/B) slab boundaries b; we store

o A right slab list R; containing intervals from I, with right endpoint
between b; and b; 1. R; is sorted according to right endpoints.

o A left slab list L; containing intervals from I,, with left endpoint between
b; and b;—1. L; is sorted according to left endpoints.

e O(V/B) multislab lists—one for each boundary to the right of b;. The
list M, ; for boundary b; (j > %) contains intervals from I, with left
endpoint between b;_; and b; and right endpoint between b; and b;4;.
M; ; is sorted according to right endpoints.

— If the number of intervals stored in a multislab list M; ; is less than ©(B),
we instead store them in an underflow structure U along with intervals as-
sociated with all the other multislab lists with fewer than ©(B) intervals.
More precisely, only if more than B intervals are associated with a multi-
slab do we store the intervals in the multislab list. Similarly, if fewer than

B/2 intervals are associated with a multislab, we store the intervals in the
underflow structure. If the number of intervals is between B/2 and B they
can be stored in either the multislab list or in the underflow structure. Since
O((vVB)?) = O(B) multislabs lists are associated with v, the underflow struc-
ture U always contains fewer than B? intervals.

We implement all secondary list structures associated with v using B-trees
with branching and leaf parameter B (Corollary 1), and the underflow structure
using the static interval stabbing structure discussed above (Theorem 8). In each
node v, in O(1) index blocks, we also maintain information about the size and
place of each of the O(B) structures associated with v.

With the definitions above, an interval in I, is stored in two or three struc-
tures: Two slab lists L; and R; and possibly in either a multislab list M; ; or in
the underflow structure U. For example, we store interval s in Figure 10 in the
left slab list Lo of by, in the right slab list R4 of by, and in either the multislab
list My 4 corresponding to by and by or the underflow structure U. Note the
similarity between the slab lists and the two sorted lists of intervals in the nodes
of an internal interval tree. As in the internal case, s is stored in a sorted list for
each of its two endpoints. This represents the part of s to the left of the leftmost
boundary contained in s, and the part to the right of the rightmost boundary
contained in s. Unlike in the internal case, in the external case we also need to
represent the part of s between the two extreme boundaries. We do so using one
of O(B) multislab lists.

b1 bo b3 by b5 b6 b; a biy1
I I I I I I
I I I v I I | |
| / \\‘\\:\ ! | |
1 1 1 1 1 1 i i
| | | ! | . |
I I I I | |
b Oua O Oesr Ova 1 Ops —
e T o R
l l l l l I ! -
1= X 71T Xy T 1T Xz T 1T Xy 1T Xug T : :
X | |
Fig.10. A node in the base tree. In- Fig.11. Intervals containing q
terval s is stored in L2, R4, and either are stored in Ry, L, ,, the mul-
M4 or U. tislab lists spanning slab, and U.

The external interval tree uses linear space: The base tree 7 itself uses
O(N/B) space and each interval is stored in a constant number of linear space
secondary structures (Corollary 1 and Theorem 8). The number of other blocks
used in a node is O(v/B): O(1) index blocks and one block for the underflow
structure and for each of the 2v/B slab lists. Since 7 has O(N/(Bv/B)) internal
nodes, the structure uses a total of O(N/B) blocks. Note that if we did not
store the sparse multislab lists in the underflow structure, we could have £2(B)

sparsely utilized blocks in each node, which would result in a super-linear space
bound.

Query. In order to answer a stabbing query ¢, we search down 7 for the leaf
containing ¢, reporting all relevant intervals among the intervals I, stored in
each node v encountered. Assuming ¢ lies between slab boundaries b; and b;11
in v, we report the relevant intervals by loading the O(1) index blocks and then
proceeding as follows: We first report intervals in all multislab lists containing
intervals crossing b; and b; 1, that is, multislab lists M; ; with [< ¢ and k& > 4.
Then we perform a stabbing query with ¢ on the underflow structure U and
report the result. Finally, we report intervals in R; from the largest toward
the smallest (according to right endpoint) until we encounter an interval not
containing ¢, and intervals in L;;; from the smallest toward the largest until
we encounter an interval not containing g. It is easy to see that our algorithm
reports all intervals in I, containing ¢: All relevant intervals are either stored in
a multislab list M, with I <i <k, in U, in R;, or in L;y;. Refer to Figure 11.
We correctly reports all intervals in R; containing ¢, since if an interval in the
right-to-left order of this list does not contain ¢, then neither does any other
interval to the left of it. A similar argument holds for the left-to-right search in
Li+1.

That the query algorithm uses O(logz N +7/B) I/Os can be seen as follows.
We visit O(logg N) nodes in 7. In each node v we use O(1) I/Os to load the
index blocks and O(1 + T,/B) I/Os to query the two slab list R; and L;y,
where T, is the number of intervals reported in v; there is no O(logz N)-term
since we do not search in the lists. Since each visited multislab list contains
2(B) intervals, we also use O(T,/B) 1/0Os to visit these lists. Note how U is
crucial to obtain this bound. Finally, we use O(log B?> +1T,/B) = O(1+T,/B)
I/Os to query U. Overall, we use O(1 + T,,/B) I/Os in node v, for a total of
O(>.,(1+T,/B)) =0(logg N +T/B) 1/Os to answer a query.

Updates. To insert or delete an interval s in the external interval tree, we
first update the base tree, that is, we insert or delete the two relevant endpoints.
Next we update the secondary structures by first searching down 7 to find the
first node v where s contains one or more slab boundaries; there we load the
O(1) index blocks of v. If performing an insertion, we insert s into the two
relevant slab lists L; and R;. If the multislab list M, ; exists, we also insert s
there. Otherwise, the other intervals (if any) corresponding to M; ; are stored in
the underflow structure U and we insert s in this structure. If that brings the
number of intervals corresponding to M; ; up to B, we delete them all from U
and insert them in M; ;. Similarly, if performing a deletion, we delete s from two
slab lists L; and R;. We also delete s from U or M, ;; if s is deleted from M; ;
and the list now contains B/2 intervals, we delete all intervals in M; ; and insert
them into U. Finally, we update and store the index blocks.

Disregarding the update of the base tree 7, the number of I/Os needed to
perform an update can be analyzed as follows: For both insertions and dele-
tions we use O(logg N) I/Os to search down 7, and then in one node we use
O(log N) I/0s to update the secondary list structures. We may also update the

underflow structure U, which is static since it it based on persistence. However,
since U has size O(B?) we can use global rebuilding to make it dynamic: We
simply store updates in a special “update block” and once B updates have been
collected we rebuild U using O(%f logyr/ %) = O(B) I/0s (Theorem 8), or
O(1) I/Os amortized. We continue to be able to answer queries on U efficiently,
since we only need to use O(1) extra I/Os to check the update block. Thus the
manipulation of the underflow structure U uses O(1) I/Os amortized, except
in the cases where ©(B) intervals are moved between U and a multislab list
M; ;. In this case we use O(B) I/Os but then there must have been at least B/2
O(1) I/O updates involving intervals in M; ; since the last time an O(B) cost
was incurred. Hence the amortized I/O cost is O(1) and overall the update is
performed in O(logz N) 1/0Os.

Now consider the update of the base tree 7, which takes O(logg N) I/Os
(Corollary 2), except that we have to consider what happens to the secondary
structures when we perform a rebalancing operation (split or fuse) on base tree
node v. Figure 12 illustrates how the slabs associated with v are affected when
v splits into nodes v’ and v”: All the slabs on one side of a slab boundary b
get associated with v/, the boundaries on the other side of b get associated with
v”, and b becomes a new slab boundary in parent(v). As a result, all intervals
in the secondary structures of v that contain b need to be inserted into the
secondary structures of parent(v). The rest of the intervals need to be stored in
the secondary structures of v’ and v”. Furthermore, as a result of the addition
of the new boundary b, some of the intervals in parent(v) containing b also need
to be moved to new secondary structures. Refer to Figure 13.

First consider the intervals in the secondary structures of v. Since each in-
terval is stored in a left slab list and a right slab list, we can collect all intervals
containing b (to be moved to parent(v)) by scanning through all of v’s slab lists.
We first construct a list L, of the relevant intervals sorted according to right end-
point by scanning through the right slab lists. We scan through each right slab
list (stored in the leaves of a B-tree) of v in order, starting with the rightmost slab
boundary, adding intervals containing b to L,. This way L, will automatically
be sorted. We construct a list L; sorted according to left endpoint by scanning
through the left slab lists in a similar way. Since the secondary structures of
v contain O(w(v)) intervals (they all have an endpoint below v), and since we

o i i [
b b

Fig. 12. Splitting a node; v splits along b, which becomes a new boundary in parent(v).

Fig. 13. All solid intervals need to move. Intervals in v containing b move to parent(v)
and some intervals move within parent(v).

can scan through each of the O(v/B) slab lists in a linear number of 1/Os, we
construct L, and L; in O(VB + w(v)/B) = O(w(v)) 1/Os. Next we construct
the slab lists of v" and v”, simply by removing intervals containing b from each
slab list of v. We remove the relevant intervals from a given slab list by scanning
through the leaves of its B-tree, collecting the intervals for the new list in sorted
order, and then constructing a new list (B-tree). This way we construct all the
slab lists in O(w(v)) I/Os. We construct the multislab lists for v' and v” simply
by removing all multislabs lists containing b. We can do so in O(w(v)) I/Os. We
construct the underflow structures for v’ and v” by first scanning through the
underflow structure for v and collecting the intervals for the two structures, and
then constructing them individually using O(w(v)/B) = O(w(v)) 1/Os (Theo-
rem 8). We complete the construction of v' and v” in O(w(v)) 1/0s by scanning
though the lists of each of the nodes, collecting the information for the index
blocks.

Next consider parent(v). We need to insert the intervals in L; and L, into the
secondary structures of parent(v) and move some of the intervals already in these
structures. The intervals we need to consider all have one of their endpoints in
X,. For simplicity we only consider intervals with left endpoint in X,; intervals
with right endpoint in X, are handled similarly. All intervals with left endpoint
in X, that are stored in parent(v) cross boundary b; 1. Thus we need to consider
each of these intervals in one or two of v/ B + 1 lists, namely, in the left slab
list Liy1 of bix1 and possibly in one of O(v/B) multislab lists M1 ;. When
introducing the new slab boundary b, some of the intervals in L;; need to be
moved to the new left slab list of b. In a scan through L;;; we collect these
intervals in sorted order using O(|X,|/B) = O(w(v)/B) = O(w(v)) 1/Os. The
intervals in L; also need to be stored in the left slab list of b, so we merge L;
with the collected list of intervals and construct a B-tree on the resulting list. We

can easily do so in O(w(v)) I/Os and we can update L;y; in the same bound.
Similarly, some of the intervals in multislab lists M;;1 ; need to be moved to
new multislab lists corresponding to multislabs with b as left boundary instead
of bi+1. We can easily move the relevant intervals (and thus construct the new
multislab lists) in O(w(v)) I/Os using a scan through the relevant multislab lists,
similarly to the way we moved intervals from the left slab list of ;11 to the left
slab list of b. (Note that intervals in the underflow structure do not need to be
moved). If any of the new multislab lists contain fewer than B/2 intervals, we
instead insert the intervals into the underflow structure U. We can easily do so
in O(B) = O(w(v)) I/Os by rebuilding U. Finally, to complete the split process
we update the index blocks of parent(v).

To summarize, we can split a node v in O(w(v)) 1/0s. By Theorem 3, we
know that when performing a split on v (during an insertion) £2(w(v)) updates
must have been performed below v since it was last involved in a rebalance
operation. Thus the amortized cost of a split is O(1) I/Os. Since O(logg N)
nodes split during an insertion (Theorem 3), the update of the base tree 7 during
an insertion can therefore be performed in O(logz N) I/Os amortized. We can
analyze the cost of deleting two endpoints in a similar way by considering the
cost of fusing two nodes. However, deletes can also be handled in a simpler way
using global rebuilding: Instead of deleting the endpoints, we just mark the two
endpoints in the leaves of 7 as deleted. This does not increase the number of I/Os
needed to perform a later update or query operation, but it does not decrease it
either. Therefore we periodically rebuild the structure completely. Let Ny be the
number of points in 7 just after such a rebuild. As long as Ny = ©(N) the query
bound remains O(loggz N + T'/B). After Ny/2 deletions have been performed
we rebuild the structure in O(Nylogg No) = O(N logg N)I/Os, leading to an
O(logg N) amortized delete I/O bound: We scan through the leaves of the old
base tree and construct a sorted list of the undeleted endpoints. We then use this
list to construct the new base tree. All of this can be done in O(Ny/B) I/Os.
Finally, we insert the O(N) intervals one-by-one without rebalancing the base
tree using O(N) - O(logz No) I/Os.

Theorem 9. An external interval tree on a set of N intervals uses O(N/B)
space and answers stabbing queries in O(logg N + T/B) 1/0s. Updates can be
performed in O(logg N) I/Os amortized.

Remarks. The internal memory interval tree was developed by Edelsbrunner [40,
41]. The external interval tree as described here was developed by Arge and
Vitter [23] following earlier attempts by several authors [55,73,67,28,54]. The
global rebuilding ideas used in the structure is due to Overmars [65]. The amor-
tized update bounds can be made worst-case using standard lazy-rebuilding
techniques also due to Overmars [65]. Variants of the external interval tree
structure—as well as experimental results on applications of it in isosurface
extraction—have been considered by Chiang and Silva [33,35,34]. The struc-
ture also forms the basis for several external planar point location structures [1,
21].

The external interval tree illustrates some of the problems encountered when
trying to map multilevel internal memory structures to external memory, mainly
the problems encountered when needing to use multi-way trees as base trees, as
well as the techniques commonly used to overcome these problems: The multi-
level base tree resulted in the need for multislabs. To handle multislabs efficiently
we used the notion of underflow structure, as well as the fact that we could de-
crease the fan-out of 7 to ©(v/B) while maintaining the O(logg N) tree height.
The underflow structure—implemented using sweeping and a persistent B-tree—
solved a static version of the problem on O(B?) interval in O(1 + T, /B) 1/Os.
The structure was necessary since if we had just stored the intervals in multislab
lists we might have ended up spending ©(B) I/O0s to visit the ©(B) multislab
lists of a node without reporting more than O(B) intervals in total. This would
have resulted in an 2(Bloggy N +T'/B) query bound. We did not store intervals
in multislab lists containing £2(B) intervals in the underflow structure, since the
I/Os spent on visiting such lists during a query can always be charged to the
O(T,/B)-term in the query bound. The idea of charging some of the query cost
to the output size is often called filtering [31], and the idea of using a static struc-
ture on O(B?) elements in each node has been called the bootstrapping paradigm
[79]. Finally, we used weight-balancing and global rebuilding to obtain efficient
update bounds.

7 Three-sided planar range searching: External priority
search tree

We now move on and consider the special case of planar orthogonal range search-
ing called 3-sided planar range searching: Maintain a set .S of point in the plane
such that given a 3-sided query g = (q1, g2, g3) we can report all points (z,y) € S
with g1 <z < g2 and y > g3. Refer to Figure 14. This problem is actually a gen-
eralization of the interval stabbing problem, since interval stabbing is equivalent
to performing diagonal corner queries on a set of points in the plane: Consider
mapping an interval [z, y] to the point (z,y) in the plane. Finding all intervals
containing a query point ¢ then corresponds to finding all points (z, y) such that
x < qand y > q. Refer to Figure 15.

Fig. 14. 3-sided query. Fig. 15. Diagonal corner query.

Like in the interval stabbing case, the static version of the 3-sided range
searching problem can easily be solved using a persistent B-tree. This time we
imagine sweeping the plane with a horizontal line from y = co to y = —oo and
inserting the z-coordinate of points from S in a persistent B-tree as they are met.
To answer a query ¢ = (¢1,¢2,q3) we perform a one-dimensional range query
[¢1, 2] on the B-tree at “time” g3. This way we obtain the following (Theorem 4
and Corollary 4).

Theorem 10. A static set of N points in the plane can be stored in a lin-
ear space data structures such that a 3-sided range query can be answered in
O(logg N + T/B) 1/0Os. The structure can be constructed in O(%logM/B)
I/0s.

A dynamic solution to the 3-sided range query problem can be obtained using
an external priority search tree.

Structure. An external priority search tree consists of a weight-balanced
base B-tree 7 with branching parameter iB and leaf parameter B on the z-
coordinates of the points in S. As in the interval tree case, each internal node
v corresponds naturally to an z-range X,, which is divided into ©(B) slabs by
the x-ranges of its children. In each node v we store O(B) points from S for
each of its ©(B) children v;, namely the B points with the highest y-coordinates
in the z-range X,, of v; (if existing) that have not been stored in ancestors
of v. We store the O(B?) points in the linear space static structure discussed
above—the “B2-structure”—such that a 3-sided query on the points can be an-
swered in O(logg B? +T,/B) = O(1 + T,,/B) 1/Os (Theorem 10). Note that as
in the interval tree case, we can update the B?—structure in O(1) I/Os using an
“update block” and global rebuilding. In a leaf u of 7 we store the points with
z-coordinates among the z-coordinates in u that are not stored further up the
tree; assuming without loss of generality that all z-coordinate are distinct, we
can store these points in a single block. Overall the external priority search tree
uses O(N/B) space, since 7 uses linear space and since every point is stored in
precisely one B2-structure.

Query. To answer a 3-sided query ¢ = (¢1,q2,¢q3) we start at the root of 7
and proceed recursively to the appropriate subtrees: When visiting a node v we
first query the B%-structure and report the relevant points. Then we advance
the search to some of the children of v. The search is advanced to a child v; if
it is either along the search path for ¢; or the search path for ¢s, or if the entire
set of points corresponding to v; in the B?-structure were reported—refer to
Figure 16(a). The query procedure reports all points in the query range since
if we do not visit child v; corresponding to a slab completely spanned by the
interval [q1, go], it means that at least one of the points in the B2-structure
corresponding to v; is not in ¢. This in turn means that none of the points in
the subtree rooted at v; can be in gq.

That we use O(logz N+T/B) 1/0s to answer a query can be seen as follows.
In each internal node v of 7 visited by the query procedure we spend O(1+7T,,/B)
I/Os, where T), is the number of points reported. There are O(logz N) nodes vis-
ited on the search paths in 7 to the leaf containing ¢; and the leaf containing go,

and thus the number of I/Os used in these nodes adds up to O(logy N + T/ B).
Each remaining visited internal node v in 7 is not on the search paths but it
is visited because ©(B) points corresponding to v were reported in its parent.
Thus the cost of visiting these nodes adds up to O(T/B), even if we spend a
constant number of I/Os in some nodes without finding ©(B) points to report.

* .. . i 3 o o : . 3 . e E o : : . ‘e ‘ . E
% ! o, * : i i i N i
3 R R ! o= !
A : A ' :/3 ' A T Vs E : : E
[d, I A A H i
(a) (b)
Fig. 16. a) Internal node v with children v1, va, ..., vs. The points in bold are stored in

the B?-structure. To answer a 3-sided query ¢ = (q1, 92,43, q4) we report the relevant
of the O(B?) points and answer the query recursively in vz, vs, and vs. The query is
not extended to vs because not all of the points from v4 in the B?-structure is in q. (b)
The 6(B?) (small) points stored in a node v and ©(B) (big) points stored in parent(v)
corresponding to v. O(B) new points is needed in parent(v) when v splits an a new
slab boundary is inserted in parent(v).

Updates. To insert or delete a point p = (z,y) in the external priority search
tree, we first insert or delete x from the base tree 7. If we are performing an
insertion we then update the secondary structures using the following recursive
bubble-down procedure starting at the root v: We first find the (at most) B
points in the B?-structure of v corresponding to the child v; whose z-range X,,
contains z; we find these points simply by performing the (degenerate) 3-sided
query defined by X,, and y = —oo on the B?-structure. If p is below these points
(and there are B of them), we recursively insert p in v;. Otherwise, we insert p
in the B?-structure. If this means that the B?-structure contains more than B
points corresponding to v;, we delete the lowest of these points (which can again
be identified by a simple query) and insert it recursively in v;. If v is a leaf, we
simply store the point in the associated block. If we are performing a deletion we
first identify the node v containing p by searching down 7 for x while querying
the B2?-structure for the (at most) B points corresponding to the relevant child
v;. Then we delete p from the B?-structure. Since this decreases the number
of points from X, stored in v, we promote a point from v; using a recursive
bubble-up procedure: We first find the topmost point p’ (if existing) stored in
v; using a (degenerate) query on its B%-structure. Then we delete p’ from the
B?-structure of v; and insert it in the B?-structure of v. Finally, we recursively
promote a point from the child of v; corresponding to the slab containing p’.
Thus we may end up promoting points along a path to a leaf; at a leaf we simply

load the single block containing points in order to identify, delete, and promote
the relevant point.

Disregarding the update of the base tree 7, an update is performed in
O(logp N) I/0Os amortized: We search down one path of 7 of length O(logg N)
and in each node we perform a query and a constant number of updates on a
B2-structure. Since we only perform queries that return at most B points, each
of them takes O(logz B?> + B/B) = O(1) 1/Os (Theorem 4). Each update also
takes O(1) I/Os amortized.

The update of the base tree 7 also takes O(logg N) I/Os (Theorem 3),
except that we have to consider what happens to the secondary B2?-structures
when we perform a rebalancing operation (split or fuse) on a base tree node v. As
discussed in Section 6, when v is split into v' and v” along a boundary b, all slabs
on one side of b gets associated with v" and all slabs on the other side with v,
and b becomes a new slab boundary in parent(v). Refer to Figure 12. The B?-
structures of v" and v” then simply contains the relevant of the points that were
stored in the B2?-structure of v. However, since the insertion of b in parent(v)
splits a slab into two, the B2-structure of parent(v) now contains B too few
points. Refer to Figure 16(b). Thus we need to promote (a most) B points from
v and v to parent(v). We can do so simply by performing O(B) bubble-up
operations. Since we can construct the B2-structures of v' and v in O(B) 1/Os,
and perform the O(B) bubble-up operations in O(Bloggw(v)) (because the
height of the tree rooted in v is O(logz w(v))), we can in total perform a split in
O(Blogp w(v)) = O(w(v)) I/0s. By Theorem 3, we know that when performing
a split on v (during an insertion) 2(w(v)) updates must have been performed
below v since it was last involved in a rebalance operation. Thus the amortized
cost of a split is O(1) I/Os and thus an insertion is performed in O(logg N)
I/Os amortized. As previously, we can handle deletes on 7 in a simple way
using global rebuilding rather than fusion of nodes: To delete an z-coordinate
we simply mark it as deleted in the relevant leaf of 7 and periodically rebuild the
structure. Let Ny be the number of points in the structure just after a rebuild.
After No/2 deletions we rebuild the structure in O(Nylogg No) = O(N logg N)
I/Os. This way the query bound is maintained and we obtain an O(logg N)
amortized delete I/O bound.

Theorem 11. An external priority search tree on a set of N points in the plane
uses O(N/B) space and answers 3-sided range queries in O(logg N+T/B) 1/0s.
Updates can be performed in O(logg N) I/Os amortized.

Remarks In internal memory the priority search tree was developed by Mec-
Creight [62]. The external priority search tree was described by Arge et al. [19],
following earlier attempt by several authors [67,73,28,54]. They also showed
several ways of removing the amortization from the update bounds. Note how
the structure uses many of the ideas already utilized in the development of the
external interval tree structure in Section 6: Bootstrapping using a static struc-
ture, filtering, and a weight-balanced B-tree.

8 General planar orthogonal range searching

After discussing 2- and 3-sided planar range searching, we are now ready to
consider general (4-sided) orthogonal range searching. Given a set of points S
in the plane we want to be able to find all points contained in an axis-aligned
query rectangle. While linear space and O(logg N +T'/B) query structures exist
for 2- and 3-sided queries, it turns out that in order to obtain an O(loggz N +
T/B) query bound for the general case we have to use Q(B logloglggN ~) space.
We describe the external range tree obtaining these bounds in "Section 8.1. In
practical applications involving massive datasets it is often crucial that external
data structures use linear space. In that case we need 2(/N/B+T/B) 1/Os to

answer a query. We describe the O-tree obtaining these bounds in Section 8.2.

8.1 External range tree

Structure. An external range tree on a set of points S in the plane consists
of a base weight-balanced B-tree 7 with branching parameter ilogB N and
leaf parameter B on the z-coordinates of the points. As previously, an x-range
X, is associated with each node v and it is subdivided into ©(logz N) slabs
by v’s children. We store all the points from S in X, in four secondary data
structures associated with v. The first two structures are priority search trees
for answering 3-sided queries—one for answering queries with opening to the left
and one for queries with opening to the right. The third structure is a B-tree on
the points sorted by y-coordinate. For the fourth structure, we imagine for each
child v; linking together the points in X,, in y-order, producing a polygonal line
monotone with respect to the y-axis. We project all the segments produced in
this way onto the y-axis and store them in an external interval tree. Refer to
Figure 17(a). With each segment endpoint in X,,, we also store a pointer to the
same point in the B-tree of the child node v;.

Since the tree has O(logo, . N (N/B)) = O(logg N/logg 1ogBN) levels and
we use linear space on each level the structure uses O(% log;’cﬁ%) space in
total.

Query. To answer a 4-sided query ¢ = (¢q1, ¢2, g3, q4) we first find the topmost
node v in the base tree 7 where the z-range [qi1, g2] of the query contains a
slab boundary. Consider the case where ¢; lies in the z-range X,, of v; and g2
lies in the z-range X, of v;. The query ¢ is naturally decomposed into three
parts, consisting of a part in X, a part in X,,, and a part completely spanning
slabs X, , fori < k < j; refer to Figure 17(b). We find the points contained in the
first two parts in O(loggz N+7/B) I/Os using the right opening 3-sided structure
associated with v; and the left opening 3-sided structure associated with v;. To
find the points in the third part we query the interval tree associated with v
with the y-value g3. This way we obtain the O(logz N) segments in the structure
containing g3, and thus (a pointer to) the bottommost point contained in the
query for each of the nodes v;y1, vi42,...,vj—1. We then traverse the relevant
leaves of the j — i — 1 = O(logg N) relevant B-tree and output the remaining

logp N logg N

vi R . . .vj .
q4 [
° \\\ . ¢
. i x§ o o*
e \%)
a3 N .
° 4 °
L] L]
L] L] °
q1 q2
(@) (b)

Fig.17. a) The slabs corresponding to a node v in the base tree and the segments
projected onto the y-axis and stored in an interval tree. (b) A query ¢ = (q1, g2, ¢3,q4)
is naturally decomposed into a part in X,,, a part in X, and a part that spans all
slabs X, for i <k < j.

points using O(logy N + T/B) I/Os. Thus overall the query ¢ is answered in
O(logg N +T/B) 1/0s.

Updates. To insert a point in or delete a point from the external range tree
we first update the base tree 7; below we discuss how to do so. Then we per-
form O(1) updates using O(logz N) I/Os each in the secondary structures of
the O(logg N/logglogz N) nodes on the path from the root of 7 to the leaf
containing the point, for a total of O(logk N/ logg logg N) 1/0s.

As previously, we update the base tree 7 during a deletion using global
rebuilding: When deleting a point (z-coordinate) we simply mark it as deleted
in a leaf. If Ny was the number of points in the structure when it was last
rebuilt, we then rebuild it again after Ny/2 deletes. Since a secondary structure
(B-tree, interval tree, or priority search tree) on the w(v) points in the z-range
X, of anode v can easily be constructed in O(w(v) log g Np) I/Os using repeated
insertion, the structure is constructed in O(Nylogg Ny - logg No/logg logs No)
1/0s or O(log N/ logp log N) I/Os amortized.

Insertions in the base tree 7 are also relatively easy to handle, since each node
stores all points in its z-range (that is, each point is stored on each level of 7).
When rebalancing a node v during an insertion, that is, splitting it into v’ and v,
we simply split the w(v) points in v into two sets and construct the secondary
structures for the two new nodes using O(w(v)logz N) I/Os. A discussed in
Section 6 and 7, the split introduces a new boundary in parent(v). This effects
the interval tree of parent(v), since the O(w(v)) intervals generated from the
points in X, change. Refer to Figure 18. The other structures remain unchanged.
We can easily update the interval tree in parent(v) in O(w(v)logg N) I/Os,
simply by deleting the O(w(v)) superfluous intervals and inserting the O(w(v))
new ones generated as a result of the split. This takes O(w(v)logz N) I/Os in
total. Since 2(w(v)) updates must have been performed below v since it was last
involved in a rebalance operation (Theorem 3), the amortized cost of a split is

Fig. 18. Change of intervals when new boundary is inserted in parent(v) when v splits.

O(logz N) 1/O. Thus an insertion is also performed in O(logs N/ logy logy N)
I/Os amortized.

Theorem 12. An external range tree on a set of N points in the plane uses

O(% k)glzgi%ﬂv) space and answers orthogonal range queries in O(logg N+T/B)

I/0s. Updates can be performed in O(logy N/ logglogg N) 1/Os amortized.

Remarks. The external range tree is adopted from the internal range tree due to
Chazelle [31]. Subramanian and Ramaswamy [73] were the first to attempt to ex-
ternalize this structure. Based on a sub-optimal linear space structure for answer-
ing 3-sided queries they developed the P-range tree that uses O(%%)
space but slightly more than O(loggz N + T/B) I/0s to answer a query. Using
their optimal structure for 3-sided queries, Arge et al. [19] obtained the struc-
ture described above. Subramanian and Ramaswamy [73] proved that one cannot
obtain an O(logg N + T/B) query bound using less than @(%bglzgli’gg]\;]v) disk
blocks, that is, that the external range tree is optimal. In fact, this lower bound
even holds for a query bound of O(logz N+1T'/B) for any constant ¢ > 1. It holds
in a natural external memory version of the pointer machine model [32]. A sim-
ilar bound in a slightly different (stronger) model where the search component
of the query is ignored was proved by Arge et al. [19]. This indezability model
was defined by Hellerstein et al. [52] and considered by several authors [55, 59,
71,20].

8.2 O-tree

In this section we describe the linear space O-tree that supports range queries in
O(y/N/B+T/B) 1/0s. We start by describing the external kd-tree, which is an
externalization of the internal memory kd-tree. This structure actually supports
queries in O(y/N/B + T/B) 1/Os but updates require O(log% N) 1/Os. Next
we describe the actual O-tree, which improves the update bound to O(logg N)
utilizing the external kd-tree.

External kd-tree

Structure. An internal memory kd-tree 7 on a set S of N points in the plane is
a binary tree of height O(log, N) with the points stored in the leaves of the tree.
The internal nodes represent a recursive decomposition of the plane by means of
axis-orthogonal lines that partition the set of, say, N’ points below a node into
two subsets of approximately equal size |[N'/2]| and [N’/2]. On even levels of
7T we use horizontal dividing lines and on odd levels vertical dividing lines. In
this way a rectangular region R, is naturally associated with each node v and
the nodes on any particular level of 7 partition the plane into disjoint regions.
In particular, the regions associated with the leaves represent a partition of the
plane into rectangular regions containing one point each. Refer to Figure 19.

Y8

Yo

Yio

3 5

Fig.19. A kd-tree and the corresponding partitioning.

A (static) external memory kd-tree is simply a kd-tree 7 where we stop the
recursive partition when the number of point in a region falls below B. This
way the structure has O(N/B) leaves containing between |B/2| and B points
each. We store the points in each leaf together in a disk block. Since the number
of internal nodes is O(N/B), the structures uses O(N/B) blocks regardless of
how we store these nodes on disk. However, in order to be able to follow a root-
leaf path in O(logz N) I/Os, we block the internal nodes of 7 in a way similar
to a B-tree: Starting at the root we visit nodes in breadth-first order until we
have visited a subtree consisting of log B — 1 whole levels of internal nodes. This
subtree contains less than 2-21°65~1 = B nodes and we can therefore store it in
one disk block. Then we recursively visit and block the O(B) tress rooted below
the subtree; when a subtree has less than log B — 1 levels (contains less than B
internal nodes) we simply store it in a disk block. This way a root leaf path in
T of length O(log %) is stored in O(log &)/(log B—1) + 1 = O(logz N) blocks,
such that it can be traversed in O(logz N) I/Os.

We can easily construct an external static kd-tree 7 on a set S of N points in
O(% log &) 1/Os: We first creating two lists of the points in S sorted by 2- and
y-coordinates, respectively. Then we create the root of 7 using O(N/B) 1/Os,
simply by scanning the list sorted by y-coordinates and computing the horizon-
tal median split. After this we partition the two sorted lists according to this

median, and recursively construct the rest of the tree. After having constructed
the tree we can block the O(N/B) internal nodes in O(N/B) I/Os using a simple
recursive depth-first traversal of the tree.

Query. A point query on S, that is, a search for a given point, can obviously be
answered in O(logg N) I/Os by following one root-leaf path in 7. A range query
q = (q1, g2, 93, qa) can be answered with a simple recursive procedure starting at
the root: At a node v we advance the query to a child w if ¢ intersects the region
R,, associated with w. At a leaf u we return the points in u contained in gq.

To bound the number of node in 7 visited when answering a range query g,
or equivalently, the number of nodes v where R, intersects ¢, we first bound the
number of nodes v where R, intersects a vertical line [. The region R, associated
with the root r is obviously intersected by [, but as the regions associated with
its two children represent a subdivision of R, with a vertical line, only the region
R,, associated with one of these children w is intersected. Because the region R,
is subdivided by a horizontal line, the regions associated with both children of w
are intersected. Let L = O(N/B) be the number of leaves in the kd-tree. As the
children of w are roots in kd-trees with L/4 leaves, the recurrence for the number
of regions intersected by 1 is Q(L) < 2 + 2Q(L/4) = O(L) = O(,/N/B).
Similarly, we can show that the number of regions intersected by a horizontal
line is O(y/N/B). This means that the number of nodes v with regions R,
intersected by the boundary of ¢ is O(y/N/B). All the additional nodes visited
when answering ¢ correspond to regions completely inside g. Since each leaf
contains O(B) points there are O(T/B) leaves with regions completely inside
q. Since the region R, corresponding to an internal node v is only completely
contained in q if the regions corresponding to the leaves below v are contained
in ¢ (and since the kd-tree is binary), the total number of regions completely
inside ¢ is also O(T/B). Thus in total O(y/N/B + T/B) nodes are visited and
therefore a query is answered in O(y/N/B + T/B) 1/0s.

Theorem 13. A static external kd-tree for storing a set of N points in the plane
uses linear space and can be constructed in O(% log %) I/0s. It supports point
queries in O(logg N) I/Os and orthogonal range query in O(\/N/B + T/B)
I/0s.

Updates. We first consider the case where we only want to support insertions.
We do so using the so-called logarithmic method: We maintain a set of O(logy N)
static kd-trees 7y, 71, . . ., such that 7; is either empty or has size 2¢. We perform
an insertion by finding the first empty structure 7;, discarding all structures
7;,j < i, and building 7; from the new point and the ;;01 2! = 27 — 1 points in
the discarded structures using O(% log %) I/Os (Theorem 13). If we divide this
cost between the 27 points, each of them is charged O(% log &) I/Os. Because
points never move from higher to lower indexed structures, we charge each point
O(log N) times. Thus the amortized cost of an insertion is O(% log % log N) =
O(log%; N) 1/Os.

To answer a query we simply query each of the O(log N) structures. In gen-
eral, querying 7; takes O(1 + /2!/B + T;/B) 1/Os, where T; is the number of

reported points. However, if we keep the first log B structures in memory, using
O(1) blocks of main memory, we can query these structures without performing
any 1/Os. Thus in total we use %52 » O(\/27/B+T;/B) = O(,/N/B+T/B)
I/Os to answer a query.

Next we also consider deletions. We first describe how we can modify the
static external kd-tree (Theorem 13) to support deletions efficiently: To delete a
point p, we first perform a point query on 7 to find the leaf u containing p. Next
we simply remove p from w. If the number of points in u falls to B/4 we then
rebuild the kd-tree rooted in the parent v of u (what we call a local rebuilding);
note that after a number of rebuildings, v can be root in a very large kd-tree.
During the rebuild we store the internal nodes in the rebuilt structure in the
same blocks as were previously used for the subtree rooted in v. In particular,
we may store v (and a cirtain number of levels of nodes below v) in a block
also containing some of v ancestors. Finally, we also periodically rebuild the
entire structure (global rebuilding): If Ny is the number of points in the structure
just after the last complete rebuild, we rebuild the structure again after No/2
deletions.

The delete algorithm ensures that the linear space bound and the O(logz N)
point query and O(y/N/B + T/B) range query performance is maintained: The
global rebuilding ensures that the space bound remains O(Ny/B) = O(N/B) and
that the recurrence for the number of nodes corresponding to regions intersected
by a vertical line remains Q(L) < 2 + 2Q(L/4) = O(VL) = O(/Ny/B) =
O(y/N/B); the local rebuilding ensures that each leaf always contain O(B)
points (between B/4 and B) and thus that the number of nodes correspond-
ing to regions completely inside a query g remains O(T'/B). This way the range
query bound is maintained. The use of the original blocking of internal nodes
of the tree during local rebuildings ensure that the point query bound is main-
tained.

The amortized number of 1/Os needed to perform a deletion on an exte-
nal kd-tree 7 is O(log% N): The search for p requires O(logz N) 1/Os. The
global rebuilding every No/2 deletions is performed in O(Z2 log §¢) 1/0s, or
O(% log 22) = O(logz N) 1/Os amortized. When local rebuilding is performed
on a node v, one of v children w is a leaf containing B/4 points. This means
that all but B/4 of the original points stored below w—and thus all but B/4 of
half of the original points below v—have been deleted since v was constructed
(during a local or global rebuild). Since the number of points below v was at
least 2% = B at that time, the number of deleted points is proportional to
the number of original points below v. Amortized each deleted point therefore
contribute O(log Z2) I/Os to the local rebuilding. Since each points con-
tributes on each of the O(log %) levels of the tree, the total amortized cost
is O(% log? oy = O(log% N) 1/Os.

Finally, we describe how to support both insertions and deletions. To delete
a point p from the external kd-tree supporting insertions using the logarithmic
method, we simply delete p from the relevant 7; using the algorithm described
above. We globally rebuild the entire structure after every Ny/2 deletes, such

that the number of structures remains O(log N). This ensures that a range query
can still be answered in O(\/N/B + T/B) 1/0s. We ignore deletions in terms
of the logarithmic method, that is, we destroy and reconstruct structures 7; as
if no deletions were taking place. This way, points still only move from lower to
higher index structures, which ensures that the amortized insertion cost remains
O(logQB N). Regarding deleted points as still being present in terms of the log-
arithmic method also lets us efficiently find the structure 7; containing a point
p to be deleted. We simply maintain a separate B-tree 7; on the points in the
structure. For point p, 7y stores how many points were inserted since the last
global rebuild when p was inserted. Maintenance of 75 adds O(logz N) I/0s to
the insertion bound. To find the structure 7; containing a given point p, we query
74 with p using O(logg N) I/Os. A simple calculation, based on the obtained
information and the current number of elements inserted since the last global
rebuilding, then determines 4. After that p can be deleted in O(logh N) 1/Os.

Theorem 14. An external kd-tree for storing a set of N points in the plane
uses linear space and can be constructed in O(% log %) I/0s. It supports point
queries in O(logg N) I/0s, orthogonal range query in O(y/N/B+ T/B) I/0s,
and updates in O(loghy N) I/Os amortized.

O-tree structure

After describing the external kd-tree we are now ready to describe the O-tree
with an improved O(logz N) update bound.

Structure. Consider dividing the plane into slabs using @(y/N/B/logg N)
vertical lines such that the number of points from S in each slab is between
2V NBlogg N and VNBlogg N. Each of these slabs are further divided into
cells using ©(\/N/B/logg N) horizontal lines such that each cell contains be-
tween 3B log% N and Blogh N points. Refer to Figure 20(a). The O-tree consist
of a B-tree 7, (with leaf and branching parameter B) on the vertical lines, a B-
tree 7; (with leaf and branching parameter B) in each slab s; on the horizontal
lines in s;, and an external kd-tree on the points in each cell; the kd-tree in the
j’th cell in slabs s; is called 7;;. Refer to Figure 20(b).

The O-tree uses linear space: The B-trees use O((\/N/B/logg N)?/B) =
O(N/(Blogg N)?) space in total (Theorem 1) and each point is store in exactly
one linear space kd-tree (Theorem 14). We can easily construct the structure in
O(% log &) 1/0s: We first compute the vertical lines bacically by sorting the
points in S by z-coordinates using O(% logar/ s &) 1/0s. Then we construct 7,
in the same bound (Theorem 2). We compute the horizontal lines and construct
7; in each slab s; in O(% logy,/p &) 1/Os in total in a similar way. Finally we
construct the kd-tree in all cells in O(% log &) I/Os in total (Theorem 14).

Query. A point query on S, that is, a search for a given point p, can easily be
answered in O(logp N) I/Os by performing a search in 7,,, followed by a search
in one 7;, and finally a search in one kd-tree 7;; (Corollary 1 and Theorem 14).
To answer a range query ¢ = (q1, 92,43, q4), we first perform a query on 7, to

VN/B/logg N slabs

o . . \ \\'\ b . o B-tree
AN ..
- | NN

5] E7S

e MASAAMAANAL ™™
/

q1 q2 B log% N points

() (b)

Fig.20. a) Division of plane into cells containing ©(Blogh N) points using
O(y/N/Blogg N) vertical lines and ©(\/N/Blogg N) horizontal lines in each slab.
(b) O-tree: B-tree on vertical lines, B-tree on horizontal lines in each slab, and kd-tree
on points in each cell. A query q = (q1,q2, g3, q4) is answered by querying all kd-trees
in cells in slabs s; and s, containing ¢1 and g2, as well as all kd-trees in cells intersected
by [g3, ga] in slabs spanned by [g1, g2].

find the O(y/N/B/logp N) slabs intersected by the z-range [g1, ¢2] of ¢. If g1 is
in slab s; and ¢ in slab s, we then query all kd-trees 7;; and 7;; in slabs s; and
sy to find all points in these slabs in ¢. The remaining points in ¢ are all in one
of the slabs s;, I < i < r, completely spanned by [g1, ¢2]. In each such slab s; we
query 7; to find the O(y/N/B/logy N) cells intersected by the y-range [¢s3, g4]
of g. Then we query the kd-tree 7;; for each of these cells to find all points in s;
in q. Refer to Figure 20.

That we answer a range query in O(y/N/B + T/B) as on a external kd-tree
can be seen as follows (using Corollary 1 and Theorem 14): The query on B-tree

7, is performed in O(logz(v/N/B/logg N)++/N/B/(Blogg N)) = O(\/N/B),
since we know the output from the query is of size O(y/N/B/logg N). Querying
the 2-O((y/N/B/logg N) kd-trees in slab s; and s, takes O((y/N/B/loggz N)-
O(y/Blogy N)/B) + O(T/B) = O(\/N/B 4 T/B) 1/Os. The query on B-trees
7; in the O(y/N/B/logg N) slabs s; completely spanned by the z-range [¢1, ¢2]
takes O(y/N/B/logg N) - O(logg(y/N/B/logg N) + O(T/B) = O(y/N/B +
T/B), since we know that the combined output size for all the queries is O(T +
/N/B/logg N) (because all but 2 reported cells in each slab s; is completly
contained in ¢). Finally, the total number of I/Os required to query the kd-trees
7;; in cells intersected by the y-range [¢s, q4] in all slabs s; completely spanned
by the a-range [q1, g2] is 2-O(y/N/B/logg N)-O(1/ Blogy N)/B)+O(T/B) =
O(y/N/B+T/B), since we know that all points are reported in all but two cells

in each of the O(y/N/B/logy N) slabs (i.e. the query-term in the query bound
is dominated by the output term in all but 2- O(y/N/B/logg N) kd-trees).

Updates. We utilize a global rebuilding strategy to update the O-tree effi-
ciently: If Ny is the number of points in the structure just after rebuilding it, we
rebuild it again after No/2 updates using O(52 log £2) I/Os or O(+4 log 42) =
O(logg N) I/Os amortized. By allowing the number of points in each slab to
vary between i\/NOBlogB Ny and %\/NOB logp Ny and in each cell between
iB log% Ny and %Blog% Ny, we can then update the O-tree in O(logg N) I/Os
amortized as described below.

To insert a point p we first perform a point query to find the cell (kd-tree 7;;)
containing p. Then we insert p in 7;;. If the cell containing p now contains more
than %B logQB Ny points we simply split it into two cells containing approximately
%B logQB Ny points each using a horizontal line, remove the kd-tree for the old
cell, and construct two new kd-trees for the two new cells. We also insert the new
horizontal line in the B-tree 7; for the slab s; containing p. Similarly, if slab s; now
contains more than %x/NOB log 5 Np points we split it into two slabs containing
approximately %\/ NoBlogg Ny points each using a vertical line, insert the line in
7., and use O(y/Ny/B/logg Ny) horizontal lines in each new slab to construct
new cells containing between %B 1og23 Ny and B 1ogQB Ny points each; we discard
the B-trees 7; on the horizontal lines in the old slab and create two new B-trees
for the two new slabs, and finally we construct a kd-tree on the points in each
of the new cells.

To delete a point p we also first perform a point query to find the relevant
kd-tree 7;; (cell containing p). Then we delete p from 7;;. If the cell now contains
less than iB log% Ny points we merge it with one of its neighbors: We remove the
kd-trees for the two cells and collect the between %Blog% Ny and gB log% No
points in the cells; we also delete the horizontal splitting line between the cells
from the B-tree 7; of the slab s; containing p. If the number of collected points
is between %BlogQB Ny and BlogQB Ny we then simply construct one new kd-
tree for the new (merged) cell. Otherwise we split the set of points in two with
a horizontal line, that is, we split the new cell in two cells containing between
%B logQB Ny and %B log2B Ny points, insert the horizontal line in 7;, and construct
two new kd-trees. Similarly, if the slab s; containing p now contains less than
i\/NoB logz Ny points we merge it with one of its neighbors: We delete the ver-
tical splitting line between the two slabs from 7,,, delete the B-trees containing
the horizontal lines from the two slabs, and remove all the kd-trees for the two
slabs while collecting the between %\/NOB logz Ny and g\/NOB logz Ny points.
If the number of collected points is between %\/NOB logz Ny and v/NoBlogg Ny
we simply use ©(y/No/B/logg Noy) horizontal lines in the (merged) slab to con-
struct new cells containing between %B logQB Ny and B 1og23 Ny points each; we
create a new B-tree on the lines for the slab, and construct a kd-tree for each of
the new cells. Otherwise we first use a vertical split line to construct two new
slabs containing between %\/NOB logz Ny and %\/NOB log 3 Ny points each, in-

sert the line in 7, and in each slab construct ©(y/Ny/B/logg No) cells (B-tree
and kd-trees) containing between %B log% Ny and Blog% Ny points as above.
That the update algorithms use O(logg N) I/Os amortized can be seen as
follows (using Corollary 1 as well as Theorems 1 and 14): The initial point query
takes O(logg No) = O(logg N) I/Os. In the case where no cell or slab becomes
too large or small the update is then finished with an update on an external
kd-tree using O(log%(Blogh No) = O(logz N) 1/Os. If a cell becomes too large
or small (contains less than 1 Blog} Ny or more than 2B log% Ny points) and we
perform O(1) splits or merges, we in total perform O(1) of updates on a B-trees 7;
in slabs s; using O(logz (v/No/B/logg No)) = O(logg Np) I/0Os, and remove and
construct of O(1) kd-trees of size O(Blog% Ny) using O(Z loggg M Jog
O(logQB Ny - log 1og23 No) 1/Os. Since a newly created cell always contains be-
tween %B 1og23 Ny and B logQB Ny points, the amortized update bound is there-
fore O(log% Ny - loglogy NO)/(iBlogQB No) = O(%) = O(logg N). If a
slab becomes too large or small (contains less than %\/NOBlogB Ny or more
than 21/NoBlogp Ny points) and we perform O(1) splits or merges of slabs, we
in total perform O(1) updates on B-tree 7, using O(logz(1/No/B/logg No) =
O(logz N) I/Os. We also remove and construct O(1) B-trees 7; in slabs S; using
O(\/No/BélogB No IOgM/B \/No/BélogB No) _ O(\/NO/BélogB No IOgB No) I/OS,

and remove and construct O(/No/B/logp Ng) kd-trees of size O(Blog% No)

each using O(y/Noy/B/logg Ny) - O(log% Ny - loglog%, No) 1/Os; the last bound

dominates the first. Since the number of points in a newly created slab is al-
1 .

ways between 5/ NoBlogg Nog and /NoBlogg N, the amortized update bound

is therefore O(y/No/B/logg Ny) - (log% No - loglogh, No)/(3v/NoBlogg No) =

O(%) = O(logg N). The O(logg N) bound follows since an update is

charged at most twice in the amortization argument (in a slab and a cell).

Blog2B No) _
B

Theorem 15. An O-tree for storing a set of N points in the plane uses linear
space and supports point queries in O(logg N) I/Os, orthogonal range query in
O(\/N/B+T/B) I/0s, and updates in O(logg N) 1/Os amortized.

Remarks. The internal memory kd-tree was developed by Bentley [26]. The
static external version presented here is similar to the static version of the kdB-
tree of Robinson [68], and the dynamic version is similar to the Bkd-tree of
Agarwal et al. [66]. Several other dynamic external versions of the kd-tree (with-
out worst-case performance guarantees) have been proposed (e.g. [68,61,42]; see
also [70]). The logarithmic method was introduced by Bentley [27] (see also [65]).
The external kd-tree update bounds can be improved slightly using an improved
O(% logy, /B &) construction algorithm due to Agarwal et al. [66,5] and an ex-
ternal version of the logarithmic method (where O(logz N) rather than O(log N)
structures are maintained) due to Arge and Vahrenhold [21]. The amortized up-
date bounds can also be made worst-case using standard lazy-rebuilding tech-
niques [65].

The O-tree is due to Kanth and Singh [56]. The ideas used in the structure
is similar to the ones utilized by van Kreveld and Overmars [76] in divided k-d
trees. As for the external kd-tree, the O-tree construction bound (and thus exact
update bounds) can be improve slightly and the amortized bounds can be made
worst-case. The O-tree described here is slightly different than the structure of
Kanth and Singh [56]. Grossi and Italiano [50,51] developed a structure called a
cross-tree obtaining the same bounds as the O-tree. The external kd-tree, the O-
tree and the cross-tree can all be extended to d-dimensions in a straightforward
way obtaining a O((N/B)'=Y/4 +T/B) query bound. These bounds are optimal
for data structures that only store one copy of each data point [56,9].

9 Conclusions

In this note we have discussed some of the recent advances in the development
of provably efficient dynamic external memory data structures for one- and two-
dimensional orthogonal range searching. We have discussed some of the most
important techniques utilized to obtain efficient structures.

Even though a lot of progress has been made, many problems still remain
open. For example, O(logz N)-query and space efficient structures still need to
be found for many higher-dimensional problems. The practical performance of
many of the worst-case efficient structures also needs to be researched.

Remarks. While this note only covers a few structures for one- and two-dimen-
sional orthogonal range searching, a large number of worst-case efficient data
structures for other (and often more complicated) problems have also be devel-
oped in recent years. These include structures for three- and higher-dimensional
orthogonal range searching [78,79,50,51,56], variants such as rang counting,
max, and stabbing queries [48,82, 7,20, 8], for halfspace range searching [45, 3,
2], for queries on moving objects [58,2,6, 4], for closest pair and nearest neigh-
bor queries [30,49,2, 3], point location queries [47,22,18,37,74,21,1,14], and
for rectangle range searching [38,9, 15]. This list is not meant to be exhaustive.

References

1. P. K. Agarwal, L. Arge, G. S. Brodal, and J. S. Vitter. I/O-efficient dynamic point
location in monotone planar subdivisions. In Proc. ACM-SIAM Symposium on
Discrete Algorithms, pages 1116-1127, 1999.

2. P. K. Agarwal, L. Arge, and J. Erickson. Indexing moving points. Journal of
Computer and System Sciences, 66(1):207-243, 2003.

3. P. K. Agarwal, L. Arge, J. Erickson, P. Franciosa, and J. Vitter. Efficient searching
with linear constraints. Journal of Computer and System Sciences, 61(2):194-216,
2000.

4. P. K. Agarwal, L. Arge, J. Erickson, and H. Yu. Efficient tradeoff schemes in
data structures for querying moving objects. In Proc. European Symposium on
Algorithms, LNCS 3221, pages 4-15, 2004.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

P. K. Agarwal, L. Arge, O. Procopiuc, and J. S. Vitter. A framework for index
bulk loading and dynamization. In Proc. International Colloquium on Automata,
Languages, and Programming, LNCS 2076, pages 115-127, 2001.

P. K. Agarwal, L. Arge, and J. Vahrenhold. A time responsive indexing scheme
for moving points. In Proc. Workshop on Algorithms and Data Structures, LNCS
2076, pages 50-61, 2001.

P. K. Agarwal, L. Arge, J. Yang, and K. Yi. I/O-efficient structures for orthogonal
range max and stabbing max queries. In Proc. Furopean Symposium on Algorithms,
LNCS 2832, pages 7-18, 2003.

P. K. Agarwal, L. Arge, and K. Yi. An optimal dynamic interval stabbing-max
data structure? In Proc. ACM-SIAM Symposium on Discrete Algorithms, pages
803-812, 2005.

P. K. Agarwal, M. de Berg, J. Gudmundsson, M. Hammer, and H. J. Haverkort.
Box-trees and R-trees with near-optimal query time. In Proc. ACM Symposium
on Computational Geometry, pages 124-133, 2001.

P. K. Agarwal and J. Erickson. Geometric range searching and its relatives. In
B. Chagzelle, J. E. Goodman, and R. Pollack, editors, Advances in Discrete and
Computational Geometry, volume 223 of Contemporary Mathematics, pages 1-56.
American Mathematical Society, 1999.

A. Aggarwal and J. S. Vitter. The Input/Output complexity of sorting and related
problems. Communications of the ACM, 31(9):1116-1127, 1988.

L. Arge. External memory data structures. In J. Abello, P. M. Pardalos, and
M. G. C. Resende, editors, Handbook of Massive Data Sets, pages 313-358. Kluwer
Academic Publishers, 2002.

L. Arge. The buffer tree: A technique for designing batched external data struc-
tures. Algorithmica, 37(1):1-24, 2003.

L. Arge, A. Danner, and S.-H. Teh. I/O-efficient point location using persistent
B-trees. In Proc. Workshop on Algorithm Engineering and Experimentation, 2003.
L. Arge, M. de Berg, H. J. Haverkort, and K. Yi. The priority R-tree: A prac-
tically efficient and worst-case optimal R-tree. In Proc. SIGMOD International
Conference on Management of Data, pages 347-358, 2004.

L. Arge, P. Ferragina, R. Grossi, and J. Vitter. On sorting strings in external
memory. In Proc. ACM Symposium on Theory of Computation, pages 540548,
1997.

L. Arge, K. H. Hinrichs, J. Vahrenhold, and J. S. Vitter. Efficient bulk operations
on dynamic R-trees. Algorithmica, 33(1):104-128, 2002.

L. Arge, O. Procopiuc, S. Ramaswamy, T. Suel, and J. S. Vitter. Theory and prac-
tice of I/O-efficient algorithms for multidimensional batched searching problems.
In Proc. ACM-SIAM Symposium on Discrete Algorithms, pages 685694, 1998.
L. Arge, V. Samoladas, and J. S. Vitter. On two-dimensional indexability and
optimal range search indexing. In Proc. ACM Symposium on Principles of Database
Systems, pages 346357, 1999.

L. Arge, V. Samoladas, and K. Yi. Optimal external memory planar point en-
closure. In Proc. European Symposium on Algorithms, LNCS 3221, pages 40-52,
2004.

L. Arge and J. Vahrenhold. I/O-efficient dynamic planar point location. Compu-
tational Geometry: Theory and Applications, 29(2):147-162, 2004.

L. Arge, D. E. Vengroff, and J. S. Vitter. External-memory algorithms for pro-
cessing line segments in geographic information systems. Algorithmica, 1998.

L. Arge and J. S. Vitter. Optimal external memory interval management. STAM
Journal on Computing, 32(6):1488-1508, 2003.

24

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

R. Bayer and E. McCreight. Organization and maintenance of large ordered in-
dexes. Acta Informatica, 1:173-189, 1972.

B. Becker, S. Gschwind, T. Ohler, B. Seeger, and P. Widmayer. An asymptotically
optimal multiversion B-tree. VLDB Journal, 5(4):264-275, 1996.

J. L. Bentley. Multidimensional binary search trees used for associative searching.
Communications of the ACM, 18:509-517, 1975.

J. L. Bentley. Decomposable searching problems. Information Processing Letters,
8(5):244-251, 1979.

G. Blankenagel and R. H. Giiting. XP-trees—External priority search trees. Tech-
nical report, FernUniversitdt Hagen, Informatik-Bericht Nr. 92, 1990.

G. S. Brodal and J. Katajainen. Worst-case efficient external-memory priority
queues. In Proc. Scandinavian Workshop on Algorithms Theory, LNCS 1432, pages
107-118, 1998.

P. Callahan, M. T. Goodrich, and K. Ramaiyer. Topology B-trees and their appli-
cations. In Proc. Workshop on Algorithms and Data Structures, LNCS 955, pages
381-392, 1995.

B. Chazelle. Filtering search: a new approach to query-answering. SIAM J. Com-
put., 15(3):703-724, 1986.

B. Chazelle. Lower bounds for orthogonal range searching: I. the reporting case.
Journal of the ACM, 37(2):200-212, Apr. 1990.

Y .-J. Chiang and C. T. Silva. I/O optimal isosurface extraction. In Proc. IEEE
Visualization, pages 293-300, 1997.

Y .-J. Chiang and C. T. Silva. External memory techniques for isosurface extrac-
tion in scientific visualization. In J. Abello and J. S. Vitter, editors, External
memory algorithms and visualization, pages 247-277. American Mathematical So-
ciety, DIMACS series in Discrete Mathematics and Theoretical Computer Science,
1999.

Y .-J. Chiang, C. T. Silva, and W. J. Schroeder. Interactive out-of-core isosurface
extraction. In Proc. IEEFE Visualization, pages 167-174, 1998.

D. Comer. The ubiquitous B-tree. ACM Computing Surveys, 11(2):121-137, 1979.
A. Crauser, P. Ferragina, K. Mehlhorn, U. Meyer, and E. Ramos. Randomized
external-memory algorithms for some geometric problems. International Journal
of Computational Geometry & Applications, 11(3):305-337, 2001.

M. de Berg, J. Gudmundsson, M. Hammar, and M. Overmars. On R-trees with low
stabbing number. In Proc. Furopean Symposium on Algorithms, pages 167178,
2000.

J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. Tarjan. Making data structures
persistent. Journal of Computer and System Sciences, 38:86-124, 1989.

H. Edelsbrunner. A new approach to rectangle intersections, part I. Int. J. Com-
puter Mathematics, 13:209-219, 1983.

H. Edelsbrunner. A new approach to rectangle intersections, part II. Int. J.
Computer Mathematics, 13:221-229, 1983.

G. Evangelidis, D. Lomet, and B. Salzberg. The hb™-tree: A multi-attribute index
supporting concurrency, recovery and node consolidation. The VLDB Journal,
6(1):1-25, 1997.

R. Fadel, K. V. Jakobsen, J. Katajainen, and J. Teuhola. Heaps and heapsort on
secondary storage. Theoretical Computer Science, 220(2):345-362, 1999.

P. Ferragina and R. Grossi. A fully-dynamic data structure for external substring
search. In Proc. ACM Symposium on Theory of Computation, pages 693—702, 1995.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

P. G. Franciosa and M. Talamo. Orders, k-sets and fast halfplane search on paged
memory. In Proc. Workshop on Orders, Algorithms and Applications , LNCS 831,
pages 117-127, 1994.

V. Gaede and O. Giinther. Multidimensional access methods. ACM Computing
Surveys, 30(2):170-231, 1998.

M. T. Goodrich, J.-J. Tsay, D. E. Vengroff, and J. S. Vitter. External-memory
computational geometry. In Proc. IEEE Symposium on Foundations of Computer
Science, pages 714-723, 1993.

S. Govindarajan, P. K. Agarwal, and L. Arge. CRB-tree: An efficient indexing
scheme for range-aggregate queries. In Proc. International Conference on Database
Theory, pages 143-157, 2003.

S. Govindarajan, T. Lukovszki, A. Maheshwari, and N. Zeh. I/O-efficient well-
separated pair decomposition and its applications. In Proc. European Symposium
on Algorithms, LNCS 1879, pages 220-231, 2000.

R. Grossi and G. F. Italiano. Efficient cross-tree for external memory. In J. Abello
and J. S. Vitter, editors, External Memory Algorithms and Visualization, pages
87-106. American Mathematical Society, 1999.

R. Grossi and G. F. Italiano. Efficient splitting and merging algorithms for order
decomposable problems. Information and Computation, 154(1):1-33, 1999.

J. M. Hellerstein, E. Koutsoupias, and C. H. Papadimitriou. On the analysis of
indexing schemes. In Proc. ACM Symposium on Principles of Database Systems,
pages 249-256, 1997.

S. Huddleston and K. Mehlhorn. A new data structure for representing sorted lists.
Acta Informatica, 17:157-184, 1982.

C. Icking, R. Klein, and T. Ottmann. Priority search trees in secondary memory.
In Proc. Graph-Theoretic Concepts in Computer Science, LNCS 81/, pages 84-93,
1987.

P. C. Kanellakis, S. Ramaswamy, D. E. Vengroff, and J. S. Vitter. Indexing for data
models with constraints and classes. Journal of Computer and System Sciences,
52(3):589-612, 1996.

K. V. R. Kanth and A. K. Singh. Optimal dynamic range searching in non-
replicating index structures. In Proc. International Conference on Database The-
ory, LNCS 1540, pages 257-276, 1999.

D. E. Knuth. Sorting and Searching, volume 3 of The Art of Computer Program-
ming. Addison-Wesley, Reading MA, second edition, 1998.

G. Kollios, D. Gunopulos, and V. J. Tsotras. On indexing mobile objects. In Proc.
ACM Symposium on Principles of Database Systems, pages 261-272, 1999.

E. Koutsoupias and D. S. Taylor. Tight bounds for 2-dimensional indexing schemes.
In Proc. ACM Symposium on Principles of Database Systems, pages 52-58, 1998.
V. Kumar and E. Schwabe. Improved algorithms and data structures for solv-
ing graph problems in external memory. In Proc. IEEE Symp. on Parallel and
Distributed Processing, pages 169-177, 1996.

D. Lomet and B. Salzberg. The hB-tree: A multiattribute indexing method
with good guaranteed performance. ACM Transactions on Database Systems,
15(4):625-658, 1990.

E. McCreight. Priority search trees. SIAM Journal on Computing, 14(2):257-276,
1985.

J. Nievergelt and E. M. Reingold. Binary search tree of bounded balance. STAM
Journal on Computing, 2(1):33-43, 1973.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

4.

75.

76.

7.

78.

79.

80.

81.

82.

J. Nievergelt and P. Widmayer. Spatial data structures: Concepts and design
choices. In M. van Kreveld, J. Nievergelt, T. Roos, and P. Widmayer, editors, Al-
gorithmic Foundations of GIS, pages 153-197. Springer-Verlag, LNCS 1340, 1997.
M. H. Overmars. The Design of Dynamic Data Structures. Springer-Verlag, LNCS
156, 1983.

O. Procopiuc, P. K. Agarwal, L. Arge, and J. S. Vitter. Bkd-tree: A dynamic scal-
able kd-tree. In Proc. International Symposium on Spatial and Temporal Databases,
LNCS 2750, 2003.

S. Ramaswamy and S. Subramanian. Path caching: A technique for optimal ex-
ternal searching. In Proc. ACM Symposium on Principles of Database Systems,
pages 25-35, 1994.

J. Robinson. The K-D-B tree: A search structure for large multidimensional dy-
namic indexes. In Proc. SIGMOD International Conference on Management of
Data, pages 10-18, 1981.

C. Ruemmler and J. Wilkes. An introduction to disk drive modeling. IEEE Com-
puter, 27(3):17-28, 1994.

H. Samet. The Design and Analyses of Spatial Data Structures. Addison Wesley,
MA, 1990.

V. Samoladas and D. Miranker. A lower bound theorem for indexing schemes and
its application to multidimensional range queries. In Proc. ACM Symposium on
Principles of Database Systems, pages 44-51, 1998.

N. Sarnak and R. E. Tarjan. Planar point location using persistent search trees.
Communications of the ACM, 29:669-679, 1986.

S. Subramanian and S. Ramaswamy. The P-range tree: A new data structure
for range searching in secondary memory. In Proc. ACM-SIAM Symposium on
Discrete Algorithms, pages 378-387, 1995.

J. Vahrenhold and K. H. Hinrichs. Planar point location for large data sets: To
seek or not to seek. In Proc. Workshop on Algorithm Engineering, LNCS 1982,
pages 184-194, 2001.

J. van den Bercken, B. Seeger, and P. Widmayer. A generic approach to bulk
loading multidimensional index structures. In Proc. International Conference on
Very Large Databases, pages 406-415, 1997.

M. J. van Kreveld and M. H. Overmars. Divided k-d trees. Algorithmica, 6:840-858,
1991.

P. J. Varman and R. M. Verma. An efficient multiversion access structure. IEEE
Transactions on Knowledge and Data Engineering, 9(3):391-409, 1997.

D. E. Vengroff and J. S. Vitter. Efficient 3-D range searching in external memory.
In Proc. ACM Symposium on Theory of Computation, pages 192-201, 1996.

J. S. Vitter. External memory algorithms and data structures: Dealing with MAS-
SIVE data. ACM Computing Surveys, 33(2):209-271, 2001.

J. S. Vitter and E. A. M. Shriver. Algorithms for parallel memory, I: Two-level
memories. Algorithmica, 12(2-3):110-147, 1994.

D. E. Willard. Reduced memory space for multi-dimensional search trees. In
Symposium on Theoretical Aspects of Computer Science, LNCS 182, pages 363
374, 1985.

D. Zhang, A. Markowetz, V. Tsotras, D. Gunopulos, and B. Seeger. Efficient com-
putation of temporal aggregates with range predicates. In Proc. ACM Symposium
on Principles of Database Systems, pages 237-245, 2001.

